
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

Resource Multiplexing in Tuning and Serving
Large Language Models

Yongjun He and Haofeng Yang, ETH Zurich; Yao Lu, National University of
Singapore; Ana Klimovic and Gustavo Alonso, ETH Zurich
https://www.usenix.org/conference/atc25/presentation/he-yongjun

Resource Multiplexing in Tuning and Serving Large Language Models

Yongjun He
ETH Zürich

yongjun.he@inf.ethz.ch

Haofeng Yang
ETH Zürich

yanghao@student.ethz.ch

Yao Lu
National University of Singapore

yao@nus.edu.sg

Ana Klimović
ETH Zürich

aklimovic@ethz.ch

Gustavo Alonso
ETH Zürich

alonso@inf.ethz.ch

Abstract
Large language models (LLMs) have been increasingly
adopted in a variety of application scenarios. However, in
spite of the high demand for both tuning and inference, GPUs
are often underutilized because they are devoted to a single
task. A common argument for single-purpose deployments
is the need to meet strict service-level objectives (SLOs). As
LLM workloads become more complex, there are, indeed,
significant challenges in achieving high utilization while still
guaranteeing the necessary low latency. In this paper, we
present LLMStation, a flexible spatial-temporal multiplex-
ing and scheduling system for concurrent LLM fine-tuning
and inference. LLMStation adopts several novel approaches,
including a new iteration-level multitasking scheduling mech-
anism, an Autograd engine that transforms a tuning task into
a suspendable pipeline, and an inference engine capable of
batching inference and tuning requests. Our evaluation shows
that LLMStation delivers 1.38× to 14.77× the throughput
of state-of-the-art systems while meeting inference latency
SLOs. These performance gains remain under various setups
and workloads, proving LLMStation to be an effective tool to
increase the efficiency of LLM deployments.

1 Introduction

GPUs are widely used for AI applications to maximize per-
formance per watt. Due to their high cost [63] and power
consumption, operating GPUs at high utilization is critical
for minimizing the total cost of ownership and for making
optimal use of limited power budgets [50, 58, 59].

However, even resource-intensive LLM workloads struggle
to keep GPU hardware highly utilized as applications like
LLM inference consist of phases with different resource re-
quirements, which often leave some parts of the GPU idle
for a significant fraction of time [30, 50, 52, 58, 59]. For ex-
ample, during the memory-bound decoding phase of serving
a Llama3-8B model on A100 GPUs, Microsoft reports less
than 10% GPU compute utilization [16, 33].

Llama-8B
1 x 3090

Llama-13B
2 x 3090

Llama-70B
4 x H100

Model and GPU

21

24

T
im

e
 (

s
)

0.5 1.0 1.5 2.0 2.5

Inference request rate (req/s)

28

212

L
a

te
n

c
y
 (

m
s
)

Model loading (CPU-GPU)

Tuning initialization

Serving initialization

Inference (TTFT)

Spatial (TTFT)

Inference (TPOT)

Spatial (TPOT)

Figure 1: Measured context switch overhead (left). Perfor-
mance interference between LLM tuning and serving co-
located on the same GPU (right).

A natural way to improve resource utilization and cost is to
consolidate models and requests on fewer GPUs rather than
dedicating a single GPU for each task or model, with time-
sharing and/or spatial sharing [23,43,52,58,59]. Time-sharing
the GPU for workloads involving multiple models or tasks
can lead to high context-switching overhead, which becomes
a critical bottleneck [26, 50]. Figure 1(left) shows the time
taken to load models to the GPU memory and initialize the ex-
ecution engines for inference or fine-tuning (e.g., vLLM [36]
and torchtune [54]). As the experiments show, this can take
seconds to minutes. In addition to context-switching over-
head issues, temporal sharing systems for mixed tasks such
as FineInfer [26] may not be able to meet strict latency SLO
requirements when models are relatively large, and waste
computation resources in the memory-bound decoding phase.

The alternative of spatial-sharing GPUs also faces signif-
icant challenges. LLMs require large GPU memory, up to
hundreds of GBs, thus preventing strict isolation solutions
from being usable, such as the Nvidia virtual GPU [3] which
divides the GPU memory into independent small chunks.
When relaxing strict isolation, there can be significant in-
terference between processes. Figure 1(right) highlights the
performance degradation when tuning and serving tasks on
Llama-3.1-8B [22] are co-located on an RTX 3090, with p99

USENIX Association 2025 USENIX Annual Technical Conference 1639

Time to First Token (TTFT) and p99 Time Per Output Token
(TPOT) increasing to up to 13.2× and 3.6×, respectively.

To increase the efficiency of LLM systems and reduce re-
source consumption, in this paper we explore how to share a
GPU between LLM parameter-efficient fine-tuning (PEFT)
and inference/serving in a spatial-temporal manner, as PEFT
creates new opportunities for multiplexing memory and com-
putation resources by sharing base models [26, 29, 44] and
co-execution of memory-bound and compute-bound opera-
tions [26, 44]. In engineering practice, PEFT is frequently
conducted to adapt base models to various tasks and is also
commonly performed continuously [10, 13, 15, 31] after de-
ployment to address potential data drift. This scenario is
increasingly relevant for applications using on-premise in-
frastructure, where fine-tuning and model serving compete
for limited resources. This is particularly the case when the
inference demand fluctuates [21, 50].

To cope with the challenges described above, we propose
LLMStation, which employs a novel strategy for spatial-
temporal multiplexing. The key insight is that LLM tuning
and serving tasks have distinct workload patterns. By spatially
batching and temporally reordering tasks, LLMStation si-
multaneously achieves controllable interference between pro-
cesses, rapid context switching, maximized LLM fine-tuning
throughput, and LLMs serving within the SLO limits.

LLMStation has been implemented in 3k lines of code.
It includes a set of novel techniques including an iteration-
level multitasking scheduling mechanism, an Autograd engine
transforming a tuning task into a pre-emptable pipeline, an
inference engine that batches inference requests and tuning
requests, and a memory manager that manages base models,
adapters, and intermediate states between different tasks. A
comprehensive evaluation on Nvidia RTX 3090 and H100
GPUs shows that LLMStation achieves up to 14.77× the fine-
tuning throughput of state-of-the-art systems, while maintain-
ing inference latency SLOs. Microbenchmarks confirm that
scheduling and context-switching overheads remain minimal.
Despite that focusing on the specific but highly relevant use
case of LLM tuning and serving, the ideas behind LLMStation
can be generalized and the design provides the foundation for
future research into GPU virtualization and resource multi-
plexing to bypass the existing hardware and driver limitations.

2 Background and Motivation

In this section, we provide background on PEFT, LLM infer-
ence, and GPU resource multiplexing to motivate our work.

2.1 Parameter-Efficient Fine-Tuning
With the growing adoption of LLMs, fine-tuning becomes
more and more frequent in order to adapt base models to
different data and downstream tasks [10, 13, 51]. As shown
in Figure 2, more than a hundred thousand of adapters were

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Time

24

29

214

C
u
m

u
la

ti
v
e
 P

E
F
T

A
d
a
p
te

r
C

o
u
n
t

Gemma

Llama

Mistral

Qwen

Figure 2: The number of PEFT adapters based on popular
open-source model series uploaded to Hugging Face in 2024.

uploaded to Hugging Face in 2024. Even after models are de-
ployed for inference, it is common and important to continue
fine-tuning them to adapt to potential data drift [10,13,15,31],
as reflected in the continuously changes in model weights for
these Hugging Face model repositories.

To make fine-tuning cost-effective, various PEFT tech-
niques [29, 37, 39, 41, 42] have been proposed to reduce its
memory requirements while retaining comparable statistical
performance. The core idea of PEFT technique is to freeze
most parameters of the pre-trained model and only update
a small part of the model parameters (i.e., adapters), which
can greatly reduce the memory footprint of the optimizer
state during fine-tuning. A representative PEFT technique is
Low-Rank Adaptation (LoRA) [29] that freezes the whole
pre-trained model and only fine-tunes extra rank decomposi-
tion matrices injected in each transformer layer. The output
of a LoRA layer can be formulated as:

h(x) =Wx+∆Wx =Wx+BAx,

where W ∈ Rd×k is a pre-trained matrix, and B ∈ Rd×r and
A ∈ Rr×k are trainable matrices. By setting the rank r ≪
min(d,k), the number of trainable parameters in LoRA fine-
tuning can be reduced by a factor of 1000 compared to full
parameter fine-tuning.

2.2 LLM Inference
LLM inference is an auto-regressive process that, given an
input sequence (x1, · · · ,xn), generates an output sequence
(xn+1, · · · ,xn+T) according to:

p(x1, · · · ,xn+T) = p(EOS|x1, · · · ,xn+T)
n+T

∏
t=1

p(xt |x1, · · · ,xt−1),

where EOS is the end-of-sequence symbol. Mainstream LLM
serving systems [36, 62] divide the process into two phases:
(1) The prefilling phase generates the first new token xn+1
and stores the KV cache tensors representing the model states
of the input tokens; (2) The decoding phase takes the latest
generated token as input, computes and stores its KV cache
tensors. Then it utilizes all KV cache tensors to generate a new
token. The decoding phase will execute multiple decoding
steps until the generation length limit T is reached or the EOS
symbol is encountered.

1640 2025 USENIX Annual Technical Conference USENIX Association

11:31 12:07 13:03 13:33 14:05 14:37 15:07 15:38 16:10

Time
(a) BurstGPT trace (3k users)

22

25

28

R
e
q
u
e
s
t

ra
te

 (
re

q
/m

in
)

05:27 06:33 07:33 08:31 09:21 10:14 11:42 13:16 14:31

Time
(b) Chatbot Arena trace (19k users, 22 models)

0

10

20

30

R
e
q
u
e
s
t

ra
te

 (
re

q
/m

in
)

all RWKV-14B

Figure 3: Real-world LLM inference workloads, Burst-
GPT [57] and Chatbot Arena [65].

2.3 Resource Multiplexing in LLM Workloads
The characteristics of LLM workloads reveal opportunities
to improve GPU utilization by colocating LLM tuning and
serving tasks as described in Section 2.3.1. However, in the
presence of SLOs, present systems struggle to achieve high
utilization while still guaranteeing the necessary low latencies
as discussed in Section 2.3.2.

2.3.1 Opportunities

The advances of open-source LLMs make self-hosting LLMs
in on-premise or cloud servers an attractive alternative to
cloud APIs. These deployments usually over-provision GPU
resources based on peak load, but the huge minute-to-minute
fluctuations [21, 50] in request load lead to inevitable under-
utilization of resources during certain short and discrete time
periods. Figure 3 shows the request loads of two real-world
LLM inference workloads from thousands of users (i.e., Burst-
GPT [57] and Chatbot Arena [65]). The underutilization of
GPU resource will be more serious if the request loads to
multiple LLMs are unbalanced as shown in Figure 3(b). This
observation reveals an opportunity to utilize idle GPU cycles
of the highly fluctuating LLM serving workloads.

On the other hand, the Model FLOPs Utilization (MFU)
of the LLM decoding process is typically less than 5% [64],
because each decoding step loads and evicts the entire model
between HBM and SRAM, yet the computation involves only
the last generated token rather than the whole sequence. This
observation reveals an opportunity to co-execute compute-
intensive PEFT and memory-intensive LLM inference to max-
imize GPU computation utilization.

Tuning base LLMs for downstream tasks often only re-
quires hundreds [51] or thousands [11] of labeled data sam-
ples, which can be completed in ten minutes to an hour us-
ing one or a few GPUs. The high frequency of computation-

intensive LLM fine-tuning, along with its relatively low to
moderate time and resource demands, makes it an ideal task
for utilizing otherwise idle GPU capacity.

In addition to utilizing spare computing resources in the
fluctuating LLM serving workloads, the growing popularity
of AI PCs [12, 14] has also made resource multiplexing of
PEFT and serving an emerging requirement. AI PCs enable
users to locally run inferences on LLMs and regularly finetune
them using their personal data [12, 26], highlighting the need
for optimized resource multiplexing between these tasks.

2.3.2 Challenges

Previous studies have explored various resource multiplexing
techniques to improve GPU utilization. However, existing
solutions cannot maximize GPU utilization while meeting
the SLO when co-executing PEFT and LLM inference, as
illustrated in Figure 4.

Base model multiplexing. The increasing size of LLMs
renders out-of-the-box solutions [1, 3, 8]—where each task
or fine-tuned LLM must hold an exclusive copy of the base
model—less practical, as even a single LLM can exhaust
the entire GPU memory capacity, preventing the sharing of
compute and memory bandwidth across different tasks or
fine-tuned LLMs. Therefore, recent frameworks [18, 26, 31,
44, 48, 61] combine base model multiplexing (i.e., sharing the
base model across different tasks and fine-tuned LLMs) with
temporal multiplexing and/or spatial multiplexing to create
opportunities for GPU resource multiplexing.

Temporal multiplexing. FineInfer [26] proposed Deferred
Continuous Batching to schedule PEFT and LLM inference
tasks in a temporal multiplexing manner [8]. The advantage
of temporal multiplexing in co-execution is that it does not
interfere with LLM decoding, thus ensuring that the TPOT
of LLM inference meets the SLO. However, as the input
sequence length of PEFT becomes longer or the model size
becomes larger, TTFT will experience a significant delay
because LLM inference cannot start until the current step of
PEFT ends, as shown in Figure 4(a). Figure 5(left) shows that
fine-tuning latency increases with input sequence length and
model size, exceeding the commonly used TTFT SLOs.

Spatial multiplexing. An out-of-the-box solution is to use
Nvidia MPS [1] with high-performance LLM serving and
fine-tuning frameworks to schedule PEFT and LLM inference
tasks in a spatial multiplexing manner. By carefully config-
uring CUDA_MPS_ACTIVE_THREAD_PERCENTAGE to partition
the computing units (i.e., streaming multiprocessors), spatial
multiplexing can maximize GPU utilization while ensuring
SLOs when processing static LLM workloads. Besides inher-
iting the aforementioned drawbacks of out-of-the-box solu-
tions, its main limitation is that the percentages are fixed at
framework startup and cannot be adjusted dynamically during
task execution. Figure 4(b) shows that, if the percentage of
computing units allocated to PEFT is not restricted, the TPOT

USENIX Association 2025 USENIX Annual Technical Conference 1641

(a) Temporal Multiplexing

(c) Spatial Multiplexing
(limit GPU resources allocated to fine-tuning worker)

(d) LLMStation (Ours)

Time

(b) Spatial Multiplexing
(no limit on fine-tuning worker)

prefill

decode

fine-tuning
forward
fine-tuning
backward

fused
forward

idle

Time
Arrival of
inference request

High TTFT High TTFT &TPOT

GPU Underutilization

Figure 4: Illustration of different task scheduling strategies.

2
5

2
6 2

7
2
8

2
9

2
10 2

11

Sequence length

0

1

2

3

L
a

te
n

c
y
 (

s
)

2
1
2
2
2
3 2

4
2
5
2
6 2

7
2
8
2
9
2
10

Chunk size

0.5K

1K

1.5K

2K

T
h

ro
u

g
h

p
u

t
(t

o
k
e

n
s
/s

)

Llama-8B (1 x RTX 3090)

Llama-13B (2 x RTX 3090)

Llama-70B (4 x H100)

Figure 5: Latency for LoRA fine-tuning per sample for differ-
ent sequence lengths and model sizes. (left) Throughput of
chunked-training for different chunk sizes and model sizes.
The complete input sequence length for each sample is fixed
to 1024. (right)

of LLM inference becomes very high with many LLM infer-
ence requests. If one restricts the percentage of computing
units allocated to PEFT, GPU resources will be underutilized
when the LLM inference request load is low (Figure 4(c)).

FlexLLM [44] leverages chunked-training [40] to further
break down the PEFT tasks. It divides the input sequence into
several chunks and performs forward and backward passes on
each chunk separately. By storing and reusing the results and
states of each chunk required by rest chunks, chunked-training
can achieve the same results as regular PEFT. Nevertheless,
it is subject to two significant limitations. First, as shown in
Figure 5(right), shorter input sequences cannot fully utilize
the computing resources of the GPU [19, 34, 35, 38, 56] and
it incurs additional data movement overhead. If the input
sequence is divided into N chunks, the whole LLM needs to
be loaded from slow HBM to fast SRAM 2N times. Second, it
may degenerate into simple temporal or spatial multiplexing
in real-world workloads and suffers from the same problems
as the latter. For example, if chunked training does not split
the input sequence to avoid incurring additional overhead
when no LLM inference requests are running, it cannot ensure

the SLO for newly arrived LLM inference requests while
processing the current PEFT step.

3 LLMStation Overview

In this section, we give a brief overview of LLMStation,
whose architecture is illustrated in Figure 6. LLMStation
follows three design principles: (1) SLO-guarantee. The co-
execution of PEFT and LLM inference should not violate the
performance SLOs of LLM serving. (2) GPU utilization max-
imiazion. Our primary objective is to maximize the GPU uti-
lization in each short time slice to improve PEFT throughput
under the highly fluctuating real-world LLM serving work-
load. (3) Memory efficiency. The system should be able to
reduce memory consumption by sharing common base model
weights, adapter weights, and states between PEFT and infer-
ence. The principal components are as follows and details in
Section 4 and Section 5:

1. SLO-aware task scheduler (Section 4). LLMStation is
built around an iteration-level multi-tasking scheduling
mechanism that improves PEFT throughput by assigning
proper number of PEFT tasklets to be executed with the
current inference iteration according to the SLOs. Before
the execution of each iteration, the scheduler obtains the
latencies of the different kinds of tasks using profiling
results, cached runtime records or its own latency pre-
dictor, and then uses its planner to adaptively determine
the number of PEFT tasklets to execute together.

2. Suspendable automatic differentiation engine (Sec-
tion 5). Achieving our proposed scheduling mechanism
requires system support to decompose the PEFT task
into tasklets that can be executed together with the in-
ference iterations without violating the SLO. We do so
by taking an existing automatic differentiation engine
(PyTorch Autograd [46]) and transforming its backward
path to coroutines.

1642 2025 USENIX Annual Technical Conference USENIX Association

GPU 0

Fine-tuning
Queue

Inference
Queue

GPU 1

PEFT Worker
Coroutine Executor

Model Manager

Autograd Engine

SuspendResume

Adapters Shard

Inference States
Cache Manager

Finetuning States

GPU N - 1

Task Scheduler
Latency Predictor

Base Model Shard

Inference Worker
Inference Engine

Fusion Engine

Planner

Figure 6: LLMStation overview.

3. Workers. LLMStation divides the workers into PEFT
workers and inference workers to handle different parts
of the co-execution in different situations: (1) If infer-
ence workers are in the prefilling phase, the PEFT work-
ers will be suspended. (2) If the inference workers are in
the decoding phase and PEFT workers are in the forward
pass, the PEFT workers will fuse their forward pass and
the decoding step of the inference workers. (3) If the
inference workers are in the decoding phase and PEFT
workers are in the backward pass, the PEFT workers will
run PEFT tasklets in parallel.

4. Memory manager. Leveraging base model multiplexing,
LLMStation’s GPU-CPU memory manager only keeps
one copy of the base model, adapter, and inference state,
which is shared by PEFT workers and inference workers.
Only the fine-tuning state is exclusive to PEFT workers.
When the available GPU memory is insufficient to hold
the new inference states, LLMStation can swap some
GPU tensors to CPU memory and swap back when GPU
memory is sufficient.

4 LLMStation Scheduler

In this section, we describe the detailed design of LLMSta-
tion’s scheduler. At its core is a new iteration-level multi-
tasking scheduling mechanism that improves PEFT through-
put by co-executing PEFT tasklets with inference requests
without violating SLOs, as illustrated in Figure 4(d).

4.1 Scheduling Strategy
The pseudocode in Algorithm 1 shows how LLMStation’s
scheduling strategy co-executes PEFT and LLM inference.
Whenever new inference requests arrive (lines 8 - 11), the
scheduler dispatches them to the inference workers to perform
the prefilling step (line 18) while suspending the PEFT work-
ers. Before performing the decoding step, the scheduler will

Algorithm 1 Iteration-level multitasking scheduling.

Input: hardware and model configurations c, prefilling
SLOp, and decoding SLOd

1: let Qi and Q f denote inference request queue and fine-
tuning request queue

2: let Wi and Wf denote inference workers and fine-tuning
workers,

3: let Bi,B f ← /0, /0 denote the current batch of inference
requests and the current batch of fine-tuning samples

4: let Bnew← /0 denote the batch of new inference requests
5: while True do
6: Bnew← /0

7: if B f = /0 then B f ← get_first_batch(Q f)
8: for all r ∈ Qi do
9: if r cannot fit in the memory then

10: Break
11: Bnew← Bnew∪ r
12: if Bnew ̸= /0 then
13: Qi← Qi \Bnew
14: prefill(Wi,Bnew,SLOp)
15: Bi← Bi∪Bnew
16: if Wf is in forward pass then
17: latencies← latency_predictor(forward, c,Bi,B f)
18: budget← planner(latencies, SLOd)
19: forward_fused(budget, Wf ,Bi,B f)
20: else
21: latencies← latency_predictor(backward,

c,Bi,B f)
22: budget← planner(latencies, SLOd)
23: async_decode(Wi,Bi)
24: async_backward(budget, Wf ,B f)
25: Bi← Bi\ finished_requests(Bi)
26: B f ← B f \ finished_samples(B f)

send the batch size and length of input sequences, the current
phase of PEFT workers, and the hardware and model configu-
rations (e.g., GPU types and numbers, parallelism strategies,
model sizes, and adapter types) to the latency predictor. If the
PEFT workers are performing the forward pass, the latency
predictor estimates the latency of fused execution of LLM
decoding and PEFT forward tasklets (line 17). If the PEFT
workers are performing the backward pass, the latency predic-
tor estimates the latency of running LLM decoding step and
PEFT backward tasklets in parallel (line 21). After obtaining
the latencies, the scheduler’s planner calculates the number
of PEFT tasklets that can be executed together with the LLM
decoding step without violating the SLOs (lines 18 and 22).
Finally, the scheduler dispatches the tasks to corresponding
workers (lines 19, 23 and 24).

When the fine-tuning request queue is empty, our schedul-
ing strategy degenerates to continuous batching [62]. When
the inference request queue is empty, our scheduling strategy

USENIX Association 2025 USENIX Annual Technical Conference 1643

degenerates to normal fine-tuning. In actual implementation,
LLMStation also seeks to optimize GPU utilization during
the prefilling phase (line 14) by: (1) selectively co-executing
PEFT and prefilling steps, as some prompts are short; and
(2) scheduling the prefilling step using Deferred Continuous
Batching from FineInfer [26]. When there is no running in-
ference request, Deferred Continuous Batching defers newly
arrived requests according to their arrival time and prefilling
SLO, thus improving their chance of being able to batch up
with other requests.

4.2 Planner and Latency Predictor
Considering that the workloads of LLM inference vary sig-
nificantly across different short time periods, the scheduler
needs to make decisions based on the information of the next
iteration adaptively to maximize the PEFT throughput.

Objective. Let SLOd denote the decoding SLO, ld and ld0
denote the latencies of running a decoding tasklet with and
without PEFT tasklets, and lp denote the latency of running a
PEFT tasklet with decoding tasklets. The objective and the
SLO constraint can be formulated as

max Np

s.t. Nd · ld +(Nd,all−Nd) · ld0 ≤ SLOd

Np · lp ≤ Nd · ld

where Np and Nd are the number of PEFT tasklets and de-
coding tasklets to be executed together, and Nd,all is the total
number of decoding tasklets that need to be completed in
the upcoming iteration. We can further derive the following
inequality about Np:

Np ≤
(SLOd−Nd,all · ld0) · ld

(ld− ld0) · lp
. (1)

Besides the SLO constraint, the planner also calculates the
peak memory usage of PEFT and LLM inference, respectively,
to check whether the planned tasks can meet the memory
constraints before execution.

Latency predictor. In Eq. 1, although SLOd and Nd,all are
user-configured constants, the remaining variables (i.e., ld0,
ld and lp) are highly dependent on the hardware and software
environment, the length of the input sequence, the distribu-
tion, number, and architecture of adapters and models, etc.
Furthermore, ld and lp differ in the forward and backward
passes and are highly dependent on the tasks executed in par-
allel with them. Therefore, for co-executed tasklets without
cached runtime records or profiling results, the planner adopts
a learned latency predictor to estimate the three different types
of latency mentioned above. The latency predictor used to
estimate the latencies can be defined as:

l = y(computation
FLOP/sGPU

, communication
bandwidthinterconnect

, memory_access
bandwidthmemory

,w),

where l are predicted latencies, y are prediction models, and
w of each prediction model are parameters that need to be
learned. Similar to recent works in LLM performance pre-
diction [32, 40], the current implementation of LLMStation
adopts linear models for y and uses simple feature engineering
to obtain computation, communication, and memory access
from raw input features (e.g., the batch size and sequence
length of inference requests and PEFT samples, and the archi-
tecture of models and adapters).

Note that we only use the learned latency predictor when
the system does not have any profiling results or cached run-
time records. Therefore, after a few initial iterations, the pre-
diction error and runtime latency of the simple linear regres-
sion models have little impact on performance, as the actual
co-execution latencies are stored in the system’s cache, which
is organized as a nested index. At the top level, records are
grouped and keyed by the (hardware, model, adapter) tuple.
Within each group, the records of decoding tasklet latency
and PEFT tasklet latency are further keyed by (decode batch
size, PEFT input length). Since the required information is
available at the start of each iteration, caching and usage of
latencies are straightforward. When co-locating PEFT-based
LLM inference tasks and PEFT tasks, LLMStation addition-
ally includes the adapters used by PEFT-based LLM inference
as a key in the index.

5 LLMStation Engines

Now we describe the design of LLMStation’s execution en-
gines. For inference requests, the prefilling step is handled
by the inference engine and the decoding step is selectively
handled by the inference engine or the fusion engine. For
PEFT samples, the backward pass is handled by the Autograd
engine and the forward pass is handled by the fusion engine.

5.1 Autograd Engine
In the PyTorch Autograd engine, the backward pass is done
synchronously by the PEFT workers and the gradients are
calculated from the last layer to the first layer according to
the computation graph constructed in the forward pass. As
shown in Figure 7(a), once the backward pass starts, the PEFT
workers cannot adjust their execution according to the current
workload of the inference workers. As a result, it can not real-
ize the iteration-level multitasking scheduling algorithm (See
Algorithm 1) to ensure that the SLOs of inference requests
are met.

The key to splitting the backward pass into tasklets is trans-
forming nested functions on the backward path into corou-
tines [2], which are functions that can be suspended voluntar-
ily and be resumed later. In the LLMStation Autograd engine,
the functions involved in the function call chains of the back-
ward pass are implemented as coroutines, instead of “normal”
functions. We use co_await to invoke other coroutines and

1644 2025 USENIX Annual Technical Conference USENIX Association

(a) PyTorch Autograd

(b) LLMStation Autograd

PEFT
Worker

Inference
Worker

call return

Layer
N - 1

Layer
0 …

Decoding … Decoding

Backward

TTFT > SLOd

Inference
Worker

returnresume

Layer
N - 1

Decoding …

Layer
N - 2

Backward Coroutines

TTFT < SLOd

Coroutine
Executor

PEFT
Worker

call suspend

Decoding

suspend

Decoding

… resume

Layer
0

schedule schedule

Figure 7: An illustration of Pytorch Autograd engine (a) and
LLMStation Autograd engine (b) running backward pass
while the inference engine is running the decoding phase.

replace return with co_return. After this transformation, the
PEFT worker can use its coroutine executor to voluntarily
suspend and resume the backward pass. Figure 7(b) illus-
trates the end-to-end control flow. When a new backward
task is created, LLMStation starts to execute it in a coroutine.
According to the workload of the next LLM decoding step,
LLMStation scheduler uses its planner to estimate how many
layers of the backward pass could be executed together with-
out violating SLOs. After the PEFT tasklets are completed,
the LLMStation Autograd Engine returns control to the PEFT
worker. The scheduler will then estimate the number of PEFT
tasklets to run in the next iteration based on the next LLM
decoding step and resume the backward coroutine. Finally,
after the backward pass of the current batch is completed, the
scheduler starts a new batch and performs a forward pass on
it, which we will discuss in the next subsection. The above
design enables LLMStation Autograd engine to help users
flexibly generate suspendable backward passes for different
models and adapters.

5.2 Inference and Fusion Engines

When the PEFT workers are in the backward pass, the cur-
rent iteration of that inference request will be fully processed
by the inference worker. The inference engine in the infer-
ence workers is similar to the inference engine in the main-
stream LLM serving systems. When an inference request is
in the decoding phase and PEFT workers are in the forward
pass, LLMStation uses the Fusion engine to amortize the data
movement, communication, and kernel launch overheads in
the PEFT forward pass. Previous works leverage prompt and
generation composition strategies [16, 27] to amortize the
overheads of the prefilling phase, but we found that less than

Input XiInput Xf

Input Xcomposite

AdaptersiAdaptersf

add

(Sf, H) (Si, H)

(Sf+Si, H)

QKV

identity

(Sf, 3H) (Si, 3H)

identity

all-reduce

GateUP

Down

attni KVcacheattnf

composite AttnOutput all-reduce

(Sf+Si, H)

…

split

Self-Attention MLP

Figure 8: An illustration of LLMStation Fusion engine co-
executing inference requests and fine-tuning samples on a
Transformer layer. We only depict the QKV projection, the
Attention, the Attention Output projection, and the multilayer
perceptron (MLP) for simplicity.

5% of decoding iterations are mixed with prefilling when
running real-world workloads, which leaves room for us to
composite the decoding phase and the PEFT forward pass.

Figure 8 describes the execution flow of the Fusion engine,
where computational operations are represented by ellipses
and weight matrices, input sequences, and intermediate states
are represented by rectangles. Instead of processing inference
requests of shape (Si,H) and fine-tuning samples of shape
(S f ,H) separately, the Fusion engine processes them as the
following procedure: (1) composites them to an input tensor
of shape (S f + Si,H) which is then fed to QKV projection;
(2) adds up the results from the base model and the adapters
required by inference and PEFT; (3) splits the results and per-
forms self-attention operation separately; (4) composites them
again and then performs AttnOutput projection, GateUP pro-
jection and Down projection. With the Fusion engine, we can
utilize the computing resources in decoding phases without vi-
olating the decoding SLO. For distributed co-execution, LLM-
Station adopts tensor model parallelism [49] and partitions the
weight matrices of QKV projection and GateUP projection
along columns (output dimension), and the weight matrices
of AttnOoutput projection and Down projection along rows
(input dimension). All-reduce operations are performed after
AttnOutput projection and Down projection during the for-
ward pass and before QKV projection and GateUP projection
during the backward pass.

Similar to the co-execution of the decoding phase and the
backward pass, the LLMStation scheduler estimates the num-
ber of layers that the decoding phase and the forward pass can
run together. The remaining layers of the decoding phase are
executed in the normal decoding way. Alternatively, the LLM-
Station Fusion engine can composite the inference requests

USENIX Association 2025 USENIX Annual Technical Conference 1645

and the PEFT samples for every layer and let the LLMStation
scheduler estimate the number of tokens that can be batched.

6 Evaluation

We empirically evaluate the performance of LLMStation on
both synthetic and real-world workloads. Through experi-
ments, we answer the following questions:

• How does LLMStation compare to other specialized
frameworks and out-of-the-box solutions for co-execution
of PEFT and LLM inference?

• What are the throughput-latency tradeoffs in LLMStation?

• What are the overheads of LLMStation ’s scheduler and
Autograd engine?

6.1 Experimental Setup
Here we describe the setup used throughout the experiments.

Hardware. The experiments are conducted on various hard-
ware settings, including a server with four RTX 3090 GPUs
and servers with four H100 GPUs. The RAM capacities of
these servers range from 256 GB to 512 GB, and all are
equipped with intra-node NVLink.

Models and adapters. We use representative open-source
LLMs, the Llama series [22], and one of the most popular
PEFT methods, LoRA [29]. As listed in Table 1, we consid-
ered three different sizes of Llama models, 7B, 13B, and 70B,
and three different sizes of LoRA adapters, with ranks of 8,
16, and 32, respectively.

Datasets and traces. For input sequences, we use the
ShareGPT [6] datasets for LLM inference and the Alpaca [53]
dataset for PEFT, both are real-world datasets. For inference
request rates, synthetic workloads send inference requests at a
steady rate and real-world workloads send inference requests
according to the BurstGPT [57] trace.

Implementation. LLMStation is implemented in about
3k lines of code and combines multiple components from
different systems. We modified PyTorch Autograd [46] using
C++ stackless coroutines and used it as the Autograd engine
for LLMStation. The inference engine, memory manager and
cache manager are built atop vLLM [36]. The fusion engine is
built atop FineInfer [26], and the implementation of different
parallelism strategies refers to Nanotron [4]. Also, we align
the fine-tuning results of LLMStation with Hugging Face
PEFT [5] to ensure the correctness of our implementation.

Baselines. We compare LLMStation with three baselines.
We use the combination of vLLM [36] + torchtune [54] as
the out-of-the-box solution. vLLM is a SoTA LLM serving
system with the batching mechanism of adapter computation
from Punica [18] and an optimized GPU memory allocation
mechanism. torchtune is a high-performance fine-tuning sys-
tem that integrates a range of commonly used performance

Table 1: Model and GPU configurations.

Model GPU # Layers TP Degree

Llama-3.1-8B 2 RTX 3090 32 2
Llama-2-13B 4 RTX 3090 32 4
Llama-3.1-70B 2×4 H100 80 4

optimization techniques. In the category of specialized frame-
works, we evaluate FineInfer [26] and chunked-training [44],
which are discussed in Section 2.

Metrics and SLOs. In end-to-end comparison, we report
the throughput (i.e., samples/s) of PEFT that each system
can achieve while the given P99 TTFT SLO and P99 TPOT
SLO are not violated. Unless otherwise specified, the P99
TTFT SLO is set to 500 ms for all configurations, and the P99
TPOT SLO is set to 50 ms for Llama-3.1-8B and 80 ms for
larger models. To compare latencies, we report the latency for
different systems to achieve a given PEFT throughput.

6.2 End-to-End Comparison

In this section, we evaluate the end-to-end performance
using both synthetic and real-world workloads. To get
the best performance of baselines, we carefully tune
their configurations such as deferral bound for FineInfer,
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE for vLLM + torch-
tune, and chunk size for chunked-training.

Synthetic workloads with varying request rates. Our
first experiment evaluates the PEFT throughput that dif-
ferent systems can achieve at different inference request
rates under commonly used SLO targets. Figure 9i shows
the results on the synthetic workloads with different in-
ference request rates. When the inference request rates
are relatively low (i.e., ≤ 0.5 req/s) in serving Llama-
8B and Llama-13B with RTX 3090, LLMStation outper-
forms FineInfer/vLLM + torchtune/chunked-training by
2.38∼8.17×/2.53∼14.77×/1.57∼2.18×. As a temporal mul-
tiplexing solution, FineInfer does not co-execute the de-
coding phase and PEFT, and therefore cannot fully utilize
the computational power of the GPU. As a spatial mul-
tiplexing solution, vLLM + torchtune needs to limit the
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE of the PEFT work-
ers at launch time to ensure SLOs, but this also reduces their
PEFT throughput when no inference requests are being pro-
cessed. Chunked-training does not suffer from the above two
problems, and its slowdown is mainly due to the inherent
additional data movement overhead. As the inference request
rate increases, FineInfer’s PEFT throughput quickly drops to
zero since it cannot guarantee TTFT. The PEFT throughput
of the other systems gradually becomes very close, until it
drops to zero when TPOT cannot be guaranteed.

When using two servers equipped with four H100 GPUs

1646 2025 USENIX Annual Technical Conference USENIX Association

0.5 1 2 3 4 5
Inference request rate (req/s)

(a) Llama-8B, 2 x RTX 3090, TTFT 500ms, TPOT 50ms

0

1

2

3

4

5

P
E

F
T

 t
h

ro
u

g
h

p
u

t
(s

a
m

p
le

/s
)

0.25 0.5 1 2 3 4
Inference request rate (req/s)

(b) Llama-13B, 4 x RTX 3090, TTFT 500ms, TPOT 80ms

0

1

2

3

4

5

2 4 6 8 10 12
Inference request rate (req/s)

(c) Llama-70B, 8 x H100, TTFT 500ms, TPOT 80ms

0

1

2

3

4

5

FineInfer vLLM + torchtune chunked-training LLMStation

(i) PEFT throughput under synthetic workloads and varying inference request rates.

40 60 80 100 120 140
P99 TPOT SLO (ms)

(a) Llama-8B, 2 x RTX 3090, TTFT 500ms

0
1
2
3
4
5

P
E

F
T

 t
h

ro
u

g
h

p
u

t
(s

a
m

p
le

/s
)

60 80 100 120 140 160
P99 TPOT SLO (ms)

(b) Llama-13B, 4 x RTX 3090, TTFT 500ms

0
1
2
3
4
5

60 80 100 120 140 160
P99 TPOT SLO (ms)

(c) Llama-70B, 8 x H100, TTFT 500ms

0
1
2
3
4
5

175 200 225 250 275 300
P99 TTFT SLO (ms)

(d) Llama-70B, 8 x H100, TPOT 80ms

0
1
2
3
4
5

FineInfer vLLM + torchtune chunked-training LLMStation

(ii) PEFT throughput under real-world workload and varying SLO targets.

14:54 14:55 14:56 14:57
Time

(a) SM Active

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 (
%

)

14:54 14:55 14:56 14:57
Time

(b) Compute Warps in Flight

0

10

20

30

40

50

14:54 14:55 14:56 14:57
Time

(c) DRAM Read Bandwidth

0

10

20

30

40

50

14:54 14:55 14:56 14:57
Time

(d) DRAM Write Bandwidth

0

10

20

30

40

50

FineInfer vLLM + torchtune chunked-training LLMStation

(iii) Case study of GPU utilization under real-world workload.

Figure 9: End-to-end comparison of LLMStation and baselines.

and built-in node NVLink to serve Llama-70B, the perfor-
mance difference also comes from the flexibility of deploy-
ment and service. Considering the low interconnection band-
width between servers and the high PEFT latency per sample
on Llama-70B, we need to deploy a 4-way tensor-parallel
base model for FineInfer on each server instead of partition-
ing the model to two servers via pipeline parallelism or 8-
way tensor parallelism. Considering that the vLLM + torch-
tune cannot share the base model, and the GPU memory of
a server is only enough to place the basic model and state
of vLLM or torchtune, we need to deploy vLLM and torch-
tune on different servers respectively. For a fair comparison,
LLMStation and chunked-training are deployed in the same
way. Therefore, when inference requests cannot saturate a
single server, LLMStation outperforms FineInfer/vLLM +
torchtune/chunked-training by up to 1.77×/1.8×/1.38×. This
is because FineInfer and vLLM + torchtune can only use the
resources of one server for PEFT, while LLMStation can use
the total remaining resources of two servers. When execut-
ing inference requests requires two servers to guarantee the
SLOs, the PEFT throughput of FineInfer and vLLM + torch-
tune drops to zero. On the contrary, LLMStation can still
leverage the remaining resources of one server to perform
PEFT until inference requests saturate two servers.

Real-world workloads with varying SLO targets. Our
second experiment tests how different approaches perform
under varying SLO targets under real-world workloads. The
trace was extracted from BurstGPT [57], with an average re-
quest rate of 4.15 req/s. Figure 9ii(a - c) show results under
varying P99 TPOT SLOs, where the performance differences
can be attributed to similar reasons discussed previously. In
real-world workloads, more requests arrive at similar times, so
the decoding phases of more requests can be batched together,
which leaves more room for PEFT. However, vLLM + torch-
tune and FineInfer may perform worse on real-world work-
loads with fluctuating request loads than on synthetic work-
loads with stable request loads. Since more requests arrive at
similar times, vLLM + torchtune needs to impose stricter re-
source constraints on PEFT workers to avoid violating SLOs,
while FineInfer may always violate TTFT SLOs in some
cases. As the P99 TPOT SLO increases, the PEFT throughput
of LLMStation and chunked-training gradually becomes very
close, since chunked-training can use a larger chunk size. As
shown in Figure 9ii(d), the performance of LLMStation is
also limited under strict P99 TTFT SLOs since the prefilling
step can only be executed after the current decoding step is
finished. Therefore, the number of PEFT tasklets that can be
executed together is now limited by the time remaining in the

USENIX Association 2025 USENIX Annual Technical Conference 1647

0.4 0.8 1.2 1.6
PEFT throughput (sample/s)

(a) P99 TTFT

200

300

400

500

L
a

te
n

c
y
 (

m
s
)

0.4 0.8 1.2 1.6
PEFT throughput (sample/s)

(b) P99 TPOT

20

40

60

80

Inference only

FineInfer

vLLM + torchtune

chunked-training

LLMStation

Figure 10: P99 TTFT and P99 TPOT of running Llama-3.1-
8B on two RTX 3090 GPUs under real-world workloads and
varying PEFT throughput settings.

2.0 2.4 2.8 3.2
PEFT throughput (sample/s)

(a) P99 TTFT

200

300

400

500

L
a

te
n

c
y
 (

m
s
)

2.0 2.4 2.8 3.2
PEFT throughput (sample/s)

(b) P99 TPOT

20

40

60

80

Inference only

FineInfer

vLLM + torchtune

chunked-training

LLMStation

Figure 11: P99 TTFT and P99 TPOT of running Llama-3.1-
70B on eight H100 GPUs under real-world workloads and
varying PEFT throughput settings.

prefilling phase (rather than the decoding phase).
Case study of GPU utilization. We replayed a 3-minute

segment of trace from Figure 9ii(a) using Llama-70B on eight
H100 GPUs, with P99 TTFT and TPOT SLOs set to 500 ms
and 80 ms, respectively. As shown in Figure 9iii, LLMSta-
tion achieves high SM Active, Compute Warps in Flight,
and DRAM Write Bandwidth during most of the time. Fine-
Infer only achieves high utilization when inference request
loads are low since it cannot execute PEFT tasks when in-
ference tasks are running and vLLM + torchtune can not
utilize half of the GPU resources even when inference re-
quest loads are low since it cannot share the base model.
Chunked-training achieves high SM Active and DRAM Read
Bandwidth but low Compute Warps in Flight, reflecting
that it suffers from additional data movement overhead.

6.3 Throughput-Latency Tradeoff
In this section, we do not consider SLOs and use real-world
traces to explore how inference latency is affected under
varying PEFT throughput settings. For the experiment us-
ing two RTX 3090s to serve Llama-8B, we extracted an-
other trace from BurstGPT [57] with an average inference
request rate of 0.88 req/s. As shown in Figure 10, LLMSta-

0 8 16 32 40 80

Number of suspends
(a) Sequence length = 512

0.1

0.3

0.5

L
a

te
n

c
y
 (

s
)

0 8 16 32 40 80

Number of suspends
(b) Sequence length = 1024

0.1

0.3

0.5

Llama-8B
1 x RTX 3090

Llama-13B
2 x RTX 3090

Llama-70B
4 x H100

Figure 12: The time of backward pass with varying numbers
of suspends.

tion achieves up to 33.13×/52.64×/1.4× lower P99 TTFT
and 2.29×/362.49×/1.29× lower P99 TPOT than FineIn-
fer/vLLM + torchtune/chunked-training. FineInfer’s P99
TTFT is always higher than other variants because its schedul-
ing algorithm postpones the execution of prefilling phases to
obtain higher PEFT throughput. When the PEFT throughput
is 1.6, the P99 TTFT of inference requests even exceeds 8
seconds, which is unbearable for users. But its P99 TPOT is
up to 36% lower than LLMStation when PEFT throughput
is low. Both P99 TTFT and P99 TPOT of vLLM + torchtune
are higher than LLMStation because it underutilizes GPU
resources when no inference request is being processed and
needs to pay more at the expense of latency for inference
requests. The trend of latency variation for chunked train-
ing is similar to LLMStation, but slightly higher due to its
additional data movement overhead. For the experiment us-
ing eight H100 GPUs to serve Llama-70B, we use the same
real workload as in Section 6.2. As shown in Figure 11,
LLMStation achieves up to 180.48×/1.23× lower P99 TTFT
and 14.22×/1.24× lower P99 TPOT than FineInfer/chunked-
training. Similarly, FineInfer’s P99 TPOT is up to 28% lower
than LLMStation when PEFT throughput is low but its P99
TTFT exceeds 25 seconds when PEFT throughput is high. In
this experiment, if the PEFT throughput needed exceeds what
a server with four H100 GPUs can handle, vLLM + torchtune
is unable to perform LLM inference since we need to use all
eight H100 GPUs to deploy torchtune.

6.4 LLMStation Autograd Engine and Sched-
uler Overheads

Now we study the overheads of the scheduler and Autograd.
Autograd engine. Llama-3.1-8B, Llama-2-13B and Llama-

70B have 32, 40 and 80 layers respectively, and we selectively
suspend and resume after each layer to evaluate the overhead
of context switch in this experiment. Figure 12 shows the
latency of the backward pass under different sequence lengths,
model sizes, and GPUs and varying numbers of suspends.
For single-GPU fine-tuning, our Autograd engine incurs less
than 0.5% additional latency thanks to the low overhead of

1648 2025 USENIX Annual Technical Conference USENIX Association

C++ stackless coroutines [2]. For multiple-GPU fine-tuning,
our Autograd engine incurs up to 18% additional latency.
We attribute this to the extra inter-GPU and inter-process
synchronization and a slight amplification in synchronization
overhead due to execution variability.

Scheduler. On an AMD EPYC 7313 16-Core processor,
the average latency of the planner and the latency predictor of
LLMStation scheduler is 18 microseconds per iteration, and
the average latency is less than 1 microsecond when profiling
results or cached runtime records are available since we need
not to call the latency predictor. For the latency predictor, we
train the prediction models with our profiling results from
RTX 3090 GPU servers and H100 GPU servers and test them
on A100 GPU servers. For Llama-3.1-8B and Llama-2-13B
with the rank of LoRA adapters set to 8, the overall average
Coefficients of Determination [7] (i.e., R2 score), are 0.73
and 0.69. The R2 score is the default score function for many
regression models in scikit-learn [47]. By definition, the score
ranges from −∞ and 1.0, with scores closer to 1 indicating
that the model explains a large portion of the variance.

6.5 Impact of Access Distribution and Sizes of
Adapters

The final set of experiments analyzes the impact of adapter
access distribution and adapter size on PEFT. We run Llama-
3.1-8B and the LoRA adapters on two RTX 3090 GPUs and
use the same real-world workload as in Section 6.3. For
the adapter access distribution experiment, we set the rank
of LoRA adapters to 32 and the number of LoRA adapters
to 8 and use three different access distributions: (1) None:
None of the LoRA adapter is accessed. (2) Skewed: 50%
of LoRA adapters are uniformly accessed. (3) Uniform:
All LoRA adapters are uniformly accessed. As shown in
Figure 13(left), LLMStation outperforms FineInfer/vLLM
+ torchtune/chunked-training by up to 2.98×/2.41×/1.74×.
The performance of all variants decreases slightly when the
percentage of accessed LoRA adapters increases from 0% to
50%. The performance of all variants drops to zero in the
uniform distribution, since serving inference requests alone
violates the P99 TTFT SLO.

For the adapter size experiment, we vary the rank of LoRA
adapters and set the number of LoRA adapters to 8 and the
percentage of accessed LoRA adapters to 50%. As shown in
Figure 13(right), LLMStation outperforms FineInfer/vLLM
+ torchtune/chunked-training by up to 2.98×/2.41×/1.73×.
The performance of all variants decreases slightly when
the rank of LoRA adapters increases from 8 to 32. The re-
sults of these two experiments match the observations from
Punica [18]. They found that as the rank of the LoRA adapter
increases, the performance is more sensitive to the access
distribution. When the rank equals to 32, the latency in their
distinct distribution (i.e., our uniform distribution) is up to
2.5× higher than in skew distribution.

None Skewed Uniform
LoRA adapter access distribution

0

1

2

3

P
E

F
T

 t
h

ro
u

g
h

p
u

t
(s

a
m

p
le

/s
)

8 16 32
LoRA rank

0

1

2

3

FineInfer

vLLM + torchtune

chunked-training

LLMStation

Figure 13: PEFT throughput with varying access distribution
to adapters (left) and varying sizes of adapters (right).

7 Discussion and Limitations

Operator-level suspend. LLMStation’s Autograd Engine is
natively able to suspend and resume between operators (i.e.,
nodes of the backward computation graph). Considering that
the backward computation graphs of LoRA fine-tuning on
Llama-3.1-8B and Llama-3.1-70B have about 4k and 10k
nodes respectively, the average latency per tasklet can be as
low as a few microseconds. Therefore, if the latency of each
layer in backpropagation is too high, LLMStation can switch
to a combination of iteration-level scheduling and operator-
level suspends. For the PEFT of ultra-long context LLMs
(i.e., millions of tokens), a potential solution is to integrate
LLMStation and chunked-training [40,44], which we leave
as future work.
Decoding SLO, TPOT and disaggregated LLM serv-
ing. TTFT and TPOT are common SLOs used in to-
day’s LLM serving. In our scheduling mechanism, the
definition of prefilling SLO is the same as TTFT, but
the definition of decoding SLO is slightly different from
TPOT. Decoding SLO is defined as the latency of each
decoding iteration while TPOT is defined as T POT =
(e2e_time−T T FT)/number_o f _generated_tokens, where
e2e_time represents the time between the arrival and comple-
tion of a request. They are identical in disaggregated LLM
serving systems, and only these systems can strictly meet the
TTFT and TPOT SLOs in theory, since there is no interference
between prefilling and decoding. For common monolithic de-
ployments, we need to set the decoding SLO slightly smaller
than the TPOT SLO. To transform the scheduling mechanism
into a TPOT-aware algorithm, one needs to continuously up-
date the respective TPOTs of all running inference requests
and make decisions based on them.
Parallelization. LLM serving typically parallelizes models
across different models via tensor model parallelism (TP) [49]
and pipeline model parallelism (PP) [40, 45]. Since tensor
model parallelism performs better in servers with NVlink
and most open source models can be accommodated by 8
GPUs on a single server, we consider only TP in the paper
and plan to incorporate PP into LLMStation in the future. Dy-

USENIX Association 2025 USENIX Annual Technical Conference 1649

namoLLM [50] observes that the most cost-beneficial tensor
parallelism strategy is different for workloads with different
request rates, request input lengths and output lengths. There-
fore, they adjust tensor parallelism every five minutes if it
is necessary since per adjustment might take up to several
seconds. The current implementation of LLMStation does not
consider workload-aware dynamic parallelization. We assume
that the parallelization is controlled by the inference worker
and the PEFT worker performs fine-tuning accordingly based
on the given settings.
Applicable models. Our approach can be seamlessly applied
to large auto-regressive vision, time-series, tabular, DNA, and
multimodal models that share similar memory-bound charac-
teristics of the decoding phase, as well as other workloads [28]
that have both compound-bound and memory-bound phases.
For models or workloads that are purely memory-bound or
compute-bound, the benefit will only come from the utiliza-
tion of idle GPU cycles of the fluctuating serving workloads.

8 Related Work

LLMStation builds upon many techniques from LLM serving
and tuning, GPU resource multiplexing and scheduling.

System optimizations for LLM serving. A flurry of opti-
mizations has been proposed recently to enhance LLM serv-
ing from various aspects. Orca [62] proposed continuous
batching that batching requests at the iteration level and in-
terleaving prefill and decoding phases to amortize data move-
ment overhead. vLLM [36] reduces memory fragmentation
in KV cache management with PagedAttention to maximize
throughput. Punica [18] and SLoRA [48] explored efficient
batch processing of requests for multiple PEFT models with
Segmented Gather Matrix-Vector Multiplication and Multi-
size Batched Gather Matrix-Vector Multiplication, respec-
tively. DeepSpeed-FastGen [27] and Sarathi-Serve [16] pro-
posed chunked prefill to batches prefilling and decoding re-
quests to improve GPU utilization. Our work adopts all the
above optimizations to improve serving performance, but fur-
ther focuses on improving GPU utilization without violating
SLOs by multiplexing GPU resources between LLM tuning
and serving and fine-grained scheduling.

GPU resource multiplexing. Beyond the works covered
in Section 2, a substantial body of research has also explored
GPU computation multiplexing [8, 24, 52] to improve GPU
utilization, which can also be divided into temporal multi-
plexing and spatial multiplexing. In addition, some studies
leverage software-hardware co-design to enable GPU memory
multiplexing [3, 55, 60].

Temporal multiplexing shares exclusive GPU cycles
by context-switching between multiple jobs. Time-Sliced
NVIDIA vGPU [8] schedules vGPUs to run in series. How-
ever, out-of-the-box solutions using temporal multiplexing
solutions with existing tuning frameworks and serving frame-
works suffer from significant context switching overhead.

Spatial sharing allows multiple processes to run on the
same GPU simultaneously, eliminating task switch overheads
and enhancing GPU utilization. NVIDIA MIG [3] provides
applications with exclusive access to a dedicated memory
space and streaming multiprocessor, which prevents fine-
tuning systems and serving systems from sharing the same
base model. However, this will sacrifice statistical perfor-
mance because they can only use smaller models due to mem-
ory constraints. Reef [24] and Orion [52] enable fine-grained
spatial multiplexing by padding kernels that have no per-
formance interference on each other together based on their
computation and memory access characteristics and then co-
execute them. Given that they can only see kernels that have
been submitted to the GPU work queue and do not consider
interference from interconnect (i.e., NVlink and PCIe), this
is a safe execution strategy that does not violate the SLOs.
However, they cannot maximize PEFT throughput due to
excessive constraints for co-execution. LLMStation is a user-
space solution for spatial-temporal GPU resource multiplex-
ing. The iteration-level multitasking scheduling mechanism
allows LLMStation to achieve fine-grained spatial multiplex-
ing and optimal co-execution plan since it has the information
of all kernels to be executed in the next iteration as well as
the SLO constraints.

Co-locating tuning and serving. Recent studies [17, 31]
have pointed out the emergent requirements and benefits of
co-locating LLM tuning and inference tasks. Several pio-
neers [26, 44] proposed approaches that multiplex GPU re-
sources for this specific application scenario and are the most
relevant works to LLMStation. Since they have been covered
in Section 2, we do not repeat them here.

GPU cluster scheduling. Numerous cluster-level GPU re-
source allocation and management frameworks [20,30,58,59]
have been proposed in recent years to improve resource uti-
lization for GPU clusters. AntMan [59], Gandiva [58], and
Lucid [30] observe the fluctuating resource demands of deep
learning (DL) training jobs and explore opportunities for shar-
ing GPUs across multiple training jobs. GSLICE [20] co-
locates DL inference jobs by apportioning the GPU% among
them with MPS according to their throughput and latency
at varying GPU%. The resource allocation granularity of
these frameworks is coarser than LLMStation, and they do
not consider the base model multiplexing and specific op-
timizations between fine-tuning and serving tasks for three
reasons. Firstly, unlike LLM workloads, the input size of the
inference workload of general DL models is relatively con-
sistent and only one iteration is performed for each request.
Therefore, for this relatively stable workload, coarse-grained
resource allocation is sufficient. Secondly, the training of gen-
eral DL models is less expensive or time-consuming so there
is no need to reuse base models for fine-tuning or serving.
Thirdly, the inference of general DL models is less memory-
bound so the benefits from co-executing tuning and serving
of them would be limited. Given the growing requirements

1650 2025 USENIX Annual Technical Conference USENIX Association

in tuning and serving LLMs, applying the optimizations in
LLMStation to cluster-level scheduling would be interesting
and viable future work.

Systems using coroutines. Much recent work has devised
cooperative scheduling to improve the utilization of computa-
tion resources. CoroBase [25] models transactions as corou-
tines, thus enabling overlapping data fetching and computa-
tion within transactions. LuisaRender [66] proposes a GPU
coroutine model for flexible splitting and scheduling of so-
phisticated rendering tasks. NVIDIA [28] leverages Boost [9]
coroutines to overlap the processing of multiple molecular
dynamics simulations, improving GPU utilization without
complex code restructuring.

9 Conclusion

We highlighted the gap between resource multiplexing and
its adoption in existing systems for LLM workloads. Prior
approaches often underutilize GPU resources due to dedi-
cated service and solutions for colocating LLM serving and
other tasks were not ready. To fill this gap, we proposed LLM-
Station, a flexible spatial-temporal multiplexing and schedul-
ing system concurrent LLM fine-tuning and inference. LLM-
Station achieves high performance via a new iteration-level
multitasking scheduling algorithm, an Autograd engine that
enables lightweight context switch via stackless coroutine,
and an inference engine that merges memory-bound opera-
tion in inference and computation-bound operation in PEFT.
Evaluation results show that LLMStation can achieve 1.38–
14.77× higher PEFT throughput than highly-optimized base-
lines while meeting inference latency SLOs.

Acknowledgments

We would like to thank Timothy Roscoe and Shivaram
Venkataraman for their valuable discussions. We also thank
the anonymous reviewers from the Program Committee and
the Artifact Evaluation Committee of USENIX ATC ’25, as
well as our shepherd, Ashish Panwar, for their insightful re-
views and feedback.

References

[1] Nvidia multi-process service. https://docs.nvidia.
com/deploy/mps/index.html, 2013.

[2] Technical specification — c++ extensions for coroutines.
https://www.iso.org/standard/73008.html,
2017.

[3] Nvidia multi-instance gpu. https://www.nvidia.c
om/en-us/technologies/multi-instance-gpu/,
2020.

[4] Hugging face nanotron. https://github.com/huggi
ngface/nanotron, 2023.

[5] Hugging face peft. https://github.com/huggingfa
ce/peft, 2023.

[6] Sharegpt. https://sharegpt.com/, 2023.

[7] Coefficient of determination. https://en.wikiped
ia.org/wiki/Coefficient_of_determination,
2024.

[8] Time-sliced nvidia vgpu internal architecture. https:
//docs.nvidia.com/ai-enterprise/3.3/user-g
uide/index.html#architecture-internal-gri
d-vgpu-time-sliced, 2024.

[9] Boost c++ libraries. https://www.boost.org/doc/
libs/latest/libs/coroutine/doc/html/index.
html, 2025.

[10] Customize a model with fine-tuning. https://learn.
microsoft.com/en-us/azure/ai-services/open
ai/how-to/fine-tuning?tabs=azure-openai&pi
vots=programming-language-studio, 2025.

[11] Dataset guide. https://docs.unsloth.ai/basics
/datasets-guide, 2025.

[12] Nvidia project digits. https://nvidianews.nvidia.
com/news/nvidia-puts-grace-blackwell-on-e
very-desk-and-at-every-ai-developers-finge
rtips, 2025.

[13] Understanding fine-tuning. https://www.databric
ks.com/glossary/fine-tuning, 2025.

[14] What is an ai pc? https://www.intel.com/cont
ent/www/us/en/products/docs/processors/cor
e-ultra/ai-pc.html, 2025.

[15] Divyanshu Aggarwal, Sankarshan Damle, Navin Goyal,
Satya Lokam, and Sunayana Sitaram. Exploring contin-
ual fine-tuning for enhancing language ability in large
language model. In NeurIPS 2024 Workshop on Scal-
able Continual Learning for Lifelong Foundation Mod-
els.

[16] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree
Mohan, Nipun Kwatra, Bhargav S. Gulavani, Alexey Tu-
manov, and Ramachandran Ramjee. Taming throughput-
latency tradeoff in LLM inference with sarathi-serve. In
18th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2024, Santa Clara, CA, USA,
July 10-12, 2024, pages 117–134. USENIX Association,
2024.

USENIX Association 2025 USENIX Annual Technical Conference 1651

https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://www.iso.org/standard/73008.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://github.com/huggingface/nanotron
https://github.com/huggingface/nanotron
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://sharegpt.com/
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://docs.nvidia.com/ai-enterprise/3.3/user-guide/index.html#architecture-internal-grid-vgpu-time-sliced
https://docs.nvidia.com/ai-enterprise/3.3/user-guide/index.html#architecture-internal-grid-vgpu-time-sliced
https://docs.nvidia.com/ai-enterprise/3.3/user-guide/index.html#architecture-internal-grid-vgpu-time-sliced
https://docs.nvidia.com/ai-enterprise/3.3/user-guide/index.html#architecture-internal-grid-vgpu-time-sliced
https://www.boost.org/doc/libs/latest/libs/coroutine/doc/html/index.html
https://www.boost.org/doc/libs/latest/libs/coroutine/doc/html/index.html
https://www.boost.org/doc/libs/latest/libs/coroutine/doc/html/index.html
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=azure-openai&pivots=programming-language-studio
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=azure-openai&pivots=programming-language-studio
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=azure-openai&pivots=programming-language-studio
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=azure-openai&pivots=programming-language-studio
https://docs.unsloth.ai/basics/datasets-guide
https://docs.unsloth.ai/basics/datasets-guide
https://nvidianews.nvidia.com/news/nvidia-puts-grace-blackwell-on-every-desk-and-at-every-ai-developers-fingertips
https://nvidianews.nvidia.com/news/nvidia-puts-grace-blackwell-on-every-desk-and-at-every-ai-developers-fingertips
https://nvidianews.nvidia.com/news/nvidia-puts-grace-blackwell-on-every-desk-and-at-every-ai-developers-fingertips
https://nvidianews.nvidia.com/news/nvidia-puts-grace-blackwell-on-every-desk-and-at-every-ai-developers-fingertips
https://www.databricks.com/glossary/fine-tuning
https://www.databricks.com/glossary/fine-tuning
https://www.intel.com/content/www/us/en/products/docs/processors/core-ultra/ai-pc.html
https://www.intel.com/content/www/us/en/products/docs/processors/core-ultra/ai-pc.html
https://www.intel.com/content/www/us/en/products/docs/processors/core-ultra/ai-pc.html

[17] Jiaxuan Chen. Comparative analysis and optimization
of lora adapter co-serving for large language models.
In Proceedings of the 25th International Middleware
Conference: Demos, Posters and Doctoral Symposium,
Middleware 2024, Hong Kong, SAR, China, December
2-6, 2024, pages 27–28. ACM, 2024.

[18] Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis
Ceze, and Arvind Krishnamurthy. Punica: Multi-tenant
lora serving. In Proceedings of the Seventh Annual Con-
ference on Machine Learning and Systems, MLSys 2024,
Santa Clara, CA, USA, May 13-16, 2024. mlsys.org,
2024.

[19] Mostafa Dehghani, Basil Mustafa, Josip Djolonga,
Jonathan Heek, Matthias Minderer, Mathilde Caron,
Andreas Steiner, Joan Puigcerver, Robert Geirhos,
Ibrahim M. Alabdulmohsin, Avital Oliver, Piotr
Padlewski, Alexey A. Gritsenko, Mario Lucic, and Neil
Houlsby. Patch n’ pack: Navit, a vision transformer for
any aspect ratio and resolution. In Advances in Neu-
ral Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023.

[20] Aditya Dhakal, Sameer G. Kulkarni, and K. K. Ramakr-
ishnan. GSLICE: controlled spatial sharing of gpus for a
scalable inference platform. In SoCC ’20: ACM Sympo-
sium on Cloud Computing, Virtual Event, USA, October
19-21, 2020, pages 492–506. ACM, 2020.

[21] Jiangfei Duan, Runyu Lu, Haojie Duanmu, Xiuhong
Li, Xingcheng Zhang, Dahua Lin, Ion Stoica, and Hao
Zhang. Muxserve: Flexible spatial-temporal multiplex-
ing for multiple LLM serving. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024, Vi-
enna, Austria, July 21-27, 2024. OpenReview.net, 2024.

[22] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi
Mitra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurélien Rodriguez,
Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte
Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chun-
yang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus
Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle

Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire
Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra,
Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana
Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee,
Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu,
Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe,
Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Up-
asani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, and et al. The llama 3 herd of models. CoRR,
abs/2407.21783, 2024.

[23] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving dnns like clockwork: Performance pre-
dictability from the bottom up. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI 2020, Virtual Event, November 4-6, 2020, pages
443–462. USENIX Association, 2020.

[24] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
gpu-accelerated DNN inferences. In 16th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion, OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022,
pages 539–558. USENIX Association, 2022.

[25] Yongjun He, Jiacheng Lu, and Tianzheng Wang.
Corobase: Coroutine-oriented main-memory database
engine. Proc. VLDB Endow., 14(3):431–444, 2020.

[26] Yongjun He, Yao Lu, and Gustavo Alonso. Deferred
continuous batching in resource-efficient large language
model serving. In Proceedings of the 4th Workshop
on Machine Learning and Systems, EuroMLSys 2024,
Athens, Greece, 22 April 2024, pages 98–106. ACM,
2024.

[27] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Am-
mar Ahmad Awan, Jeff Rasley, Samyam Rajbhandari,
Reza Yazdani Aminabadi, Heyang Qin, Arash Bakhtiari,
Lev Kurilenko, and Yuxiong He. Deepspeed-fastgen:
High-throughput text generation for llms via MII and
deepspeed-inference. CoRR, abs/2401.08671, 2024.

[28] Michelle Horton. Optimizing drug discovery with cuda
graphs, coroutines, and gpu workflows. https://deve
loper.nvidia.com/blog/optimizing-drug-dis
covery-with-cuda-graphs-coroutines-and-gpu
-workflows/, 2024.

[29] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and

1652 2025 USENIX Annual Technical Conference USENIX Association

https://developer.nvidia.com/blog/optimizing-drug-discovery-with-cuda-graphs-coroutines-and-gpu-workflows/
https://developer.nvidia.com/blog/optimizing-drug-discovery-with-cuda-graphs-coroutines-and-gpu-workflows/
https://developer.nvidia.com/blog/optimizing-drug-discovery-with-cuda-graphs-coroutines-and-gpu-workflows/
https://developer.nvidia.com/blog/optimizing-drug-discovery-with-cuda-graphs-coroutines-and-gpu-workflows/

Weizhu Chen. Lora: Low-rank adaptation of large lan-
guage models. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022.

[30] Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen,
and Tianwei Zhang. Lucid: A non-intrusive, scalable
and interpretable scheduler for deep learning training
jobs. In Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, ASPLOS 2023,
Vancouver, BC, Canada, March 25-29, 2023, pages 457–
472. ACM, 2023.

[31] Yuyang Huang, Yuhan Liu, Haryadi S. Gunawi, Beibin
Li, and Changho Hwang. Alchemist: Towards the design
of efficient online continual learning system. CoRR,
abs/2503.01066, 2025.

[32] Saki Imai, Rina Nakazawa, Marcelo Amaral, Sunyanan
Choochotkaew, and Tatsuhiro Chiba. Predicting llm
inference latency: A roofline-driven ml method. In
Workshop on ML for Systems at NeurIPS, 2024.

[33] Aditya K. Kamath, Ramya Prabhu, Jayashree Mohan, Si-
mon Peter, Ramachandran Ramjee, and Ashish Panwar.
Pod-attention: Unlocking full prefill-decode overlap for
faster LLM inference. In Lieven Eeckhout, Georgios
Smaragdakis, Katai Liang, Adrian Sampson, Martha A.
Kim, and Christopher J. Rossbach, editors, Proceedings
of the 30th ACM International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, Volume 2, ASPLOS 2025, Rotterdam,
Netherlands, 30 March 2025 - 3 April 2025, pages 897–
912. ACM, 2025.

[34] Mario Michael Krell, Matej Kosec, Sergio P Perez,
and Andrew Fitzgibbon. Efficient sequence packing
without cross-contamination: Accelerating large lan-
guage models without impacting performance. CoRR,
abs/2107.02027, 2021.

[35] Achintya Kundu, Rhui Dih Lee, Laura Wynter,
Raghu Kiran Ganti, and Mayank Mishra. Enhancing
training efficiency using packing with flash attention.
CoRR, abs/2407.09105, 2024.

[36] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory manage-
ment for large language model serving with pagedatten-
tion. In Proceedings of the 29th Symposium on Operat-
ing Systems Principles, SOSP 2023, Koblenz, Germany,
October 23-26, 2023, pages 611–626. ACM, 2023.

[37] Brian Lester, Rami Al-Rfou, and Noah Constant. The
power of scale for parameter-efficient prompt tuning.

In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pages 3045–3059. Association for
Computational Linguistics, 2021.

[38] Haoyang Li, Fangcheng Fu, Sheng Lin, Hao Ge, Xu-
anyu Wang, Jiawen Niu, Jie Jiang, and Bin Cui. De-
mystifying workload imbalances in large transformer
model training over variable-length sequences. CoRR,
abs/2412.07894, 2024.

[39] Xiang Lisa Li and Percy Liang. Prefix-tuning: Op-
timizing continuous prompts for generation. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021, pages 4582–4597. As-
sociation for Computational Linguistics, 2021.

[40] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang
Zhuo, Hao Zhang, Dawn Song, and Ion Stoica. Terapipe:
Token-level pipeline parallelism for training large-scale
language models. In Marina Meila and Tong Zhang, ed-
itors, Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 6543–6552. PMLR, 2021.

[41] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
Few-shot parameter-efficient fine-tuning is better and
cheaper than in-context learning. In Advances in Neu-
ral Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

[42] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. P-tuning: Prompt
tuning can be comparable to fine-tuning across scales
and tasks. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume
2: Short Papers), ACL 2022, Dublin, Ireland, May 22-
27, 2022, pages 61–68. Association for Computational
Linguistics, 2022.

[43] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and
efficient GPU cluster scheduling. In 17th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020, pages 289–304. USENIX Association, 2020.

USENIX Association 2025 USENIX Annual Technical Conference 1653

[44] Xupeng Miao, Gabriele Oliaro, Xinhao Cheng, Mengdi
Wu, Colin Unger, and Zhihao Jia. Flexllm: A sys-
tem for co-serving large language model inference and
parameter-efficient finetuning. CoRR, abs/2402.18789,
2024.

[45] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream: gen-
eralized pipeline parallelism for DNN training. In Pro-
ceedings of the 27th ACM Symposium on Operating Sys-
tems Principles, SOSP 2019, Huntsville, ON, Canada,
October 27-30, 2019, pages 1–15. ACM, 2019.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Z. Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neu-
ral Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 8024–8035, 2019.

[47] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake VanderPlas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot,
and Edouard Duchesnay. Scikit-learn: Machine learning
in python. J. Mach. Learn. Res., 12:2825–2830, 2011.

[48] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper,
Nicholas Lee, Shuo Yang, Christopher Chou, Banghua
Zhu, Lianmin Zheng, Kurt Keutzer, Joseph Gonzalez,
and Ion Stoica. Slora: Scalable serving of thousands of
lora adapters. In Proceedings of the Seventh Annual Con-
ference on Machine Learning and Systems, MLSys 2024,
Santa Clara, CA, USA, May 13-16, 2024. mlsys.org,
2024.

[49] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, abs/1909.08053,
2019.

[50] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Tor-
rellas, and Esha Choukse. Dynamollm: Designing LLM
inference clusters for performance and energy efficiency.
In IEEE International Symposium on High Performance
Computer Architecture, HPCA 2025, Las Vegas, NV,
USA, March 1-5, 2025, pages 1348–1362. IEEE, 2025.

[51] Charla Stracener, Maroun Touma, and Praneet
Adusumilli. Foundation models at the edge.
https://www.ibm.com/think/insights/edg
e-ai-strategy, 2023.

[52] Foteini Strati, Xianzhe Ma, and Ana Klimovic. Orion:
Interference-aware, fine-grained GPU sharing for ML
applications. In Proceedings of the Nineteenth Euro-
pean Conference on Computer Systems, EuroSys 2024,
Athens, Greece, April 22-25, 2024, pages 1075–1092.
ACM, 2024.

[53] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Stanford alpaca: An
instruction-following llama model. https://gith
ub.com/tatsu-lab/stanford_alpaca, 2023.

[54] torchtune maintainers and contributors. torchtune: Py-
torch’s finetuning library, April 2024.

[55] Nandita Vijaykumar, Kevin Hsieh, Gennady Pekhi-
menko, Samira Manabi Khan, Ashish Shrestha, Saugata
Ghose, Adwait Jog, Phillip B. Gibbons, and Onur Mutlu.
Zorua: A holistic approach to resource virtualization in
gpus. In 49th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO 2016, Taipei, Tai-
wan, October 15-19, 2016, pages 15:1–15:14. IEEE
Computer Society, 2016.

[56] Shuhe Wang, Guoyin Wang, Jiwei Li, Eduard H. Hovy,
and Chen Guo. Packing analysis: Packing is more ap-
propriate for large models or datasets in supervised fine-
tuning. CoRR, abs/2410.08081, 2024.

[57] Yuxin Wang, Yuhan Chen, Zeyu Li, Xueze Kang, Yuchu
Fang, Yeju Zhou, Yang Zheng, Zhenheng Tang, Xin He,
Rui Guo, Xin Wang, Qiang Wang, Amelie Chi Zhou,
and Xiaowen Chu. Burstgpt: A real-world workload
dataset to optimize llm serving systems, 2024.

[58] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October 8-
10, 2018, pages 595–610. USENIX Association, 2018.

[59] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. Antman: Dynamic scaling on GPU clus-
ters for deep learning. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020, pages 533–
548. USENIX Association, 2020.

1654 2025 USENIX Annual Technical Conference USENIX Association

https://www.ibm.com/think/insights/edge-ai-strategy
https://www.ibm.com/think/insights/edge-ai-strategy
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

[60] Yi Yang, Ping Xiang, Mike Mantor, Norm Rubin, and
Huiyang Zhou. Shared memory multiplexing: a novel
way to improve GPGPU throughput. In International
Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, Minneapolis, MN, USA - Septem-
ber 19 - 23, 2012, pages 283–292. ACM, 2012.

[61] Xiaozhe Yao, Qinghao Hu, and Ana Klimovic. Deltazip:
Efficient serving of multiple full-model-tuned llms. In
Proceedings of the Twentieth European Conference
on Computer Systems, EuroSys 2025, Rotterdam, The
Netherlands, 30 March 2025 - 3 April 2025, pages 110–
127. ACM, 2025.

[62] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for transformer-based generative mod-
els. In 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2022, Carlsbad, CA,
USA, July 11-13, 2022, pages 521–538. USENIX Asso-
ciation, 2022.

[63] Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang,
Tri Dao, Beidi Chen, Percy Liang, Christopher Ré, and
Ce Zhang. Decentralized training of foundation mod-
els in heterogeneous environments. In Sanmi Koyejo,
S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information
Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9,
2022, 2022.

[64] Zijian Zhang. Understanding gpu architecture implica-
tions on llm serving workloads. Master’s thesis, ETH
Zurich, 2024.

[65] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuo-
han Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E.
Gonzalez, and Ion Stoica. Judging llm-as-a-judge with
mt-bench and chatbot arena. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023.

[66] Shaokun Zheng, Xin Chen, Zhong Shi, Ling-Qi Yan,
and Kun Xu. GPU coroutines for flexible splitting and
scheduling of rendering tasks. ACM Trans. Graph.,
43(6):281:1–281:24, 2024.

A Artifact Appendix

The artifact is publicly available at https://github.com
/llm-db/llmstation/tree/atc25-artifact. Details

regarding software and hardware requirements, installation,
and experiment workflows can be found in the README.md
file.

USENIX Association 2025 USENIX Annual Technical Conference 1655

https://github.com/llm-db/llmstation/tree/atc25-artifact
https://github.com/llm-db/llmstation/tree/atc25-artifact

	Introduction
	Background and Motivation
	Parameter-Efficient Fine-Tuning
	LLM Inference
	Resource Multiplexing in LLM Workloads
	Opportunities
	Challenges

	LLMStation Overview
	LLMStation Scheduler
	Scheduling Strategy
	Planner and Latency Predictor

	LLMStation Engines
	Autograd Engine
	Inference and Fusion Engines

	Evaluation
	Experimental Setup
	End-to-End Comparison
	Throughput-Latency Tradeoff
	LLMStation Autograd Engine and Scheduler Overheads
	Impact of Access Distribution and Sizes of Adapters

	Discussion and Limitations
	Related Work
	Conclusion
	Artifact Appendix

