
PCcheck: Persistent Concurrent Checkpointing for ML
Foteini Strati∗
ETH Zurich

Zurich, Switzerland
foteini.strati@inf.ethz.ch

Michal Friedman∗
ETH Zurich

Zurich, Switzerland
michal.friedman@inf.ethz.ch

Ana Klimovic
ETH Zurich

Zurich, Switzerland
aklimovic@ethz.ch

Abstract
Training large-scale machine learning (ML) models is expen-
sive and time-intensive, consuming many hardware accelera-
tors for days or weeks. As the scale of hardware deployments
and training time continue to grow, the probability of failures
also increases. The desire to use cheaper cloud resources,
such as spot VMs, to lower costs also dramatically increases
the frequency of failures. The standard approach to deal
with failures is to periodically pause training and checkpoint
model parameters to persistent storage. Unfortunately, to-
day’s checkpointing mechanisms introduce high overhead
when applied at high frequencies, yet frequent checkpointing
is necessary to avoid long recovery times.
We present a concurrent checkpointing mechanism, PC-

check, that allows frequent checkpointingwithminimal over-
head. Our framework supports persisting checkpoints to
SSD and persistent main memory (PMEM) for both single-
machine and distributed settings. PCcheck enables check-
pointing as frequently as every 10 iterations for detailed
monitoring and fast recovery times in case of failures, while
maintaining minimal (3%) overhead on training throughput.

CCS Concepts: • Computing methodologies→Machine
learning; • Computer systems organization → Depend-
able and fault-tolerant systems and networks.

Keywords: Fault Tolerant Training
ACM Reference Format:
Foteini Strati, Michal Friedman, and Ana Klimovic. 2025. PCcheck:
Persistent Concurrent Checkpointing for ML. In Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1 (ASPLOS
’25), March 30-April 3, 2025, Rotterdam, Netherlands.ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3669940.3707255

1 Introduction

Deep neural networks (DNNs) are the foundation for many
modern artificial intelligence (AI) applications [34, 37, 43, 73].
While DNNs offer high accuracy, these models are often
∗Equal Contribution

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03.
https://doi.org/10.1145/3669940.3707255

Figure 1. Performance impact of CheckFreq and Gemini
checkpointing for BLOOM-7B training on an A100-40GB
GPU cluster, without failures. The secondary y-axis and the
grey line show the recovery time when a failure occurs.

computationally intensive, time-consuming, and expensive
to train [72]. Large-scale DNNs can take several days or
even weeks to train across tens to thousands of hardware
accelerators, such as GPUs and TPUs [76].

The longer a training job executes and the more hardware
accelerators it uses, the higher the probability of the job
encountering failures. Failures include hardware, network,
and power failures, as well as software bugs and out-of-
memory issues, which commonly occur in production DNN
clusters [27, 40]. A study from Meta shows that 50% of ML
training jobs encounter a failure within less than 16 min-
utes of execution [28]. Microsoft reports a 45 minute mean
time between job failures in a multi-tenant GPU cluster [39].
Another common type of failure that a DNN job may experi-
ence is preemption. DNN cluster managers often schedule
lower priority jobs on spare resources and preempt jobs as
the load varies [31, 35, 58]. Similarly, for model training on
public clouds, it is increasingly common to use preemptible
(i.e., “spot”) virtual machines as they cost 60-90% less than
on-demand VMs [17, 66]. However, cloud providers can pre-
empt spot VMs on short notice, resulting in significantly
higher job failure rates [16, 53, 75]. For example, Thorpe et
al. [66] found that a GPU cluster of 64 spot VMs in AWS EC2
experienced 127 distinct preemption events in 24 hours.
The standard approach for dealing with failures or pre-

emptions in DNN jobs is to periodically checkpoint model
weights and optimizer state to persistent storage. After a fail-
ure occurs, the job resumes training from the state captured
in the most recent persistent checkpoint. To avoid long re-
training times after a failure, a training job should frequently
checkpoint its state. High frequency checkpointing is partic-
ularly crucial when training on unreliable resources, such as

811

https://orcid.org/0000-0003-3364-2109
https://orcid.org/0009-0003-5588-8617
https://orcid.org/0000-0001-8559-0529
https://doi.org/10.1145/3669940.3707255
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3669940.3707255
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3669940.3707255&domain=pdf&date_stamp=2025-03-30

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Foteini Strati, Michal Friedman, & Ana Klimovic

spot VMs. Although cloud providers may give a preemption
warning (e.g. 30 sec in Google Cloud and Azure [33, 49] or 2
min in AWS [18]), this grace period is often not enough time
to persist large models. For example, the OPT-1.3B model
has 16 GB of model and optimizer state, which takes 37 sec-
onds to persist to a 1TB-SSD on a a2-highgpu-1g VM in
Google Cloud (using torch.save and flush as CheckFreq
proposes [50]), exceeding the grace period.
Besides enabling failure recovery, frequent checkpoints

are also commonly used for debugging model training dy-
namics, such as accuracy divergence [48]. Training accuracy
may deviate from the anticipated trend due to unexpected
hardware or software behavior, which requires debugging
and re-training the model [38, 61]. Checkpoints help avoid
training from scratch, which is often prohibitively expensive.

Unfortunately, current periodic checkpointingmechanisms
introduce high overhead in DNN training jobs when ap-
plied at high frequency. Figure 1 shows training throughput
slowdown when using state-of-the-art mechanisms, Check-
Freq [50] and Gemini [68], while training the BLOOM-7B
model [71] compared to training the same model with no
checkpointing. CheckFreq optimizes checkpointing by over-
lapping the “snapshot” phase (copying weights to DRAM)
and the “persist” phase (flushing the checkpoint to durable
storage) with the training itself. Gemini optimizes check-
pointing by leveraging remote CPU memory instead of per-
sistent storage. However, both mechanisms still have more
than 10% overhead when checkpointing every 50 training
iterations or less. We find that a key reason for this overhead
is that these mechanisms handle only one checkpoint at a
time, so a checkpoint cannot be copied to DRAM (local or
remote) until the previous checkpoint has successfully been
persisted. This becomes a critical bottleneck when check-
pointing frequently.
Figure 2 shows training goodput1 for the BLOOM-7B

model assuming GPU resource availability from a GPU spot
VM trace collected by André et al. [16]. The trace captures
the preemptions experienced over a 16-hour time window
when requesting a cluster of 64 A100 GPUs on spot VMs in
Google Cloud. The training goodput depends on the check-
pointing overhead and the frequency of failures. We measure
how the goodput varies with different checkpoint intervals
compared to an ideal system that does not stall training while
saving checkpoints. The larger the checkpoint interval, the
less often we checkpoint and the more retraining needs to be
done to reconstruct the state after a failure, reducing good-
put. Due to CheckFreq’s and Gemini’s inability to handle
multiple concurrent checkpoints, they have high overhead
when checkpointing more frequently than every 50 itera-
tions as the next checkpoint must wait for the previous one
to finish. Overall, CheckFreq and Gemini achieve only up to

1Goodput is useful throughput, i.e., batches per second discounting batches
that are recomputations of previously executed batches after a failure.

Figure 2. Goodput as a function of checkpoint interval for
the BLOOM-7B model training on a spot GPU VM cluster
on Google Cloud.

66% and 58% of the ideal peak goodput for this trace of GPU
spot VM resource availability, respectively.
We propose PCcheck2, a framework for DNN training

that supports multiple concurrent checkpoints in parallel.
Concurrent checkpoints can help reduce idle GPU time and
increase checkpoint frequency, since training does not have
to wait for the previous checkpoint to finish, before initiating
a new one. However, naively issuing concurrent checkpoints
can increase CPU memory and storage overheads, as well
as PCIe and storage bandwidth contention, which could de-
grade training throughput. Hence, we design PCcheck to
carefully select the number of concurrent checkpoints and
minimize the time per checkpoint by optimizing the copy-
ing mechanism to persistent storage, pipelining GPU-CPU
snapshotting and persisting, and using multiple threads to
persist each checkpoint. This allows PCcheck to support far
more frequent checkpointing than prior systems, leading
to faster recovery times as fewer training iterations need
to be recomputed after a failure. We evaluate PCcheck on a
variety of models from vision and natural language domains,
using SSD and PMEM as two different storage medias. We
show that PCcheck allows for frequent checkpointing (e.g.
every 10 iterations) with minimal (3%) overheads on training
throughput. Moreover, PCcheck achieves up to 2.86× higher
goodput than state-of-the-art checkpointing systems and
close to ideal (see Figure 2) for DNN training on the GPU
spot VM trace, due to its ability to minimize stalls while
checkpointing frequently.

2 Background
2.1 Why Checkpoint?
Fault Tolerance. As DNN jobs commonly run on large
hardware deployments, several studies have shown that
these jobs are highly susceptible to failures and preemp-
tions [27, 28, 39, 40]. Job failures are even more common
when training DNN models on slack resources (e.g., using

2PCcheck is available at https://github.com/eth-easl/pccheck

812

https://github.com/eth-easl/pccheck

PCcheck: Persistent Concurrent Checkpointing for ML ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

T1 U1
C1

P1

T2 U2
C2

P2

GPU

SSD

T3 U3
C3

P3
DRAM

Figure 3. Traditional checkpointing in PyTorch [56] / Ten-
sorFlow [14]. 𝑇𝑥 and 𝑈𝑥 are the model training and update
steps for iteration 𝑥 . 𝐶𝑥 is the time to copy checkpoint state
from GPU to DRAM. 𝑃𝑥 is the time to persist state to storage.

T1 U1
C1

P1

T2 U2
C2

P2

GPU

SSD

T3 U3
C3

P3
DRAM

Figure 4. CheckFreq [50] overlaps training (𝑇𝑥+1) with copy-
ing (𝐶𝑥). Next checkpoint is copied when previous persisted.

spot VMs in public clouds or running low-priority jobs in
shared clusters). Thorpe et al. [66] show that a GPU cluster
of 64 spot VMs in AWS EC2 experienced 127 distinct preemp-
tion events over 24 hours. André et al. [16] monitor a cluster
of 64 A100 GPUs in GCP, and observe 26 preemptions over
3.5 hours. Checkpointing during training is essential to min-
imize retraining time [16, 17, 39, 53, 67]. As Figure 2 shows,
checkpointing frequently (e.g. ≤ 25 iterations in this case)
is vital to ensure high training throughput in environments
with high failure/preemption rates.

Monitoring and Debugging ML Models. Checkpoints
are also useful for monitoring and debugging DNN train-
ing. DNN accuracy can "derail" during training due to data
outliers, floating point overflows, exploding or vanishing
gradients [61], and logic hardware failures [38]. Hence, ML
practitioners need tools to efficiently and accurately monitor
and debug model state. Therefore, ML monitoring, visualiza-
tion, and debugging tools [15, 61, 63, 70] are widely used.

Most of these tools capture features such as model param-
eters, gradients, and evaluation metrics (loss, accuracy, etc.)
throughout training, persist them to storage, visualize them,
and enable various queries for debugging. Amazon Sage-
Maker Debugger [61] allows users to specify which tensors
to snapshot, and how often. Cockpit [63] captures model
parameters and gradients and visualizes them as histograms
for debugging. Pythia [20] provides frequent checkpoints
of large language models, for better observability and inter-
pretability. As these tools checkpoint large training states
from GPUs to persistent storage, they can significantly de-
grade training throughput [61]. The checkpoint mechanism
should be as lightweight as possible to avoid high overheads
when using these monitoring tools.

2.2 Checkpointing Mechanisms for DNN Training
Traditional checkpointing, as implemented in PyTorch [56],
TensorFlow [14] and MxNet [22] typically persists model
weights as shown in Figure 3. Training (𝑇) involves fetching
input data and computing forward and backward passes. The

update phase (𝑈) updates themodel weights. The weights are
then copied to the DRAM (𝐶) and persisted to the persistent
storage (𝑃). All these steps occur sequentially, meaning that
training stalls until the weights are persisted.

To reduce performance overheads, CheckFreq [50] pipelines
checkpointing to some extent, enabling training to continue
concurrently with the checkpoint itself, but allowing only
one checkpoint at a time. Once weights are copied to DRAM,
training resumes, until the next checkpoint. If the former
checkpoint has not persisted yet, the next one will wait. Fig-
ure 4 shows this process, assuming we checkpoint every iter-
ation. The second iteration’s copying waits until the previous
checkpoint is persisted, leaving the GPU idle. According to
Figure 1, the slowdown of CheckFreq on BLOOM-7B spans
of ranges from 15× to 1.05× when the checkpointing occurs
every 1 to 100 iterations, respectively.
GPM [55] targets persistent memory (PMEM) and is not

specific to ML training. GPM leverages NVIDIA’s unified
virtual memory (UVM) [11] between the GPU’s main mem-
ory and DRAM to copy data using GPU kernels rather than
the GPU’s dedicated copy engines. As we show in § 5, GPM
has significant overheads in DNN jobs as it stalls training
while persisting state (similar to Figure 3 but without the
intermediate DRAM copy).
DeepFreeze [54] reduces checkpoint overheads in dis-

tributed data parallel training, but focuses on CPU-only set-
tings, where training computations are much slower than
on GPUs. Hence, the system does not address the check-
point overheads that arise in modern DNN hardware envi-
ronments.

Gemini [68] proposed an alternative to checkpointing for
distributed training, by snapshotting the training state of
one machine to the CPU’s memory of other machines. Gem-
ini pipelines training state copies to a remote machine’s
GPU first and then its CPU during the forward/backward
pass. This process is interleaved with activation and gradient
exchange. Gemini assumes that the network will have low
latency and high bandwidth, thus the GPU-GPU transfer will
be fast. However this is not always the case. For example, on
GCP a2-highgpu-1g, the highest achievable network band-
width is 1.88 GB/sec [2]. As shown in § 5, although Gemini
avoids the slow disk bandwidth, it still performs poorly over
low-bandwidth networks.
Gupta et al. [36] propose just-in-time checkpointing. In

contrast to the previous related works based on periodic
checkpointing, this method transfers the training state from
GPU to persistent storage only upon detecting a failure. In
particular, healthy workers participating in collective opera-
tions detect a worker has failed, and then checkpoint their
GPU state in a persistent file. This technique assumes that the
contents of the failed worker are replicated (since large-scale
distributed training is commonly done with a combination
of data and pipeline parallelism [17, 66]), ensuring that the
model state is not lost upon a failure. The authors assert

813

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Foteini Strati, Michal Friedman, & Ana Klimovic

that simultaneous multi-node failures are extremely rare,
making this a valid assumption. However, this might not be
true when training over preemptible resources, where bulky
VM preemptions are very common [16, 66]. Since our work
targets environments where multi-node failures or preemp-
tions are common, we focus on periodic checkpointing in
the remainder of the paper, which ensures that training can
recover at every scenario.
Takeaway: Current checkpointing mechanisms have high

overhead when applied at high frequency in DNN training
on high-throughput accelerators, like GPUs. We identify that
the main overhead is due to checkpoints stalling until a pre-
vious checkpoint persists. To support high-frequency check-
points with minimum stalls during training, checkpointing
mechanisms need (but currently lack) support for efficiently
managing multiple concurrent checkpoints.

2.3 Hardware Architecture Factors
Checkpointing performance depends on several hardware
factors, such as the data copy engine and the storage media.

Data Copy Engines. GPUs consist of execution engines
(with multiple Streaming Multiprocessors (SM)), DMA copy
engines, and memory. Data is typically transferred using the
copy engines, which can potentially copy data in parallel
with kernel execution on the SMs [5]. Data can also be copied
with GPU kernels, as in GPM [55].

Storage Media. We consider both persistent non-volatile
memories (PMEM) and SSDs. Compared to SSD, PMEM
is byte–addressable, and has comparable access speeds to
DRAM. Upon a crash, only the PMEM’s content survives.
Moreover, the order in which data is written to the cachemay
differ from the order in which the content reaches PMEM,
leading to inconsistent states upon a failure. To address this
problem, a process can write-back a particular value, or issue
non-temporal stores, followed by a fence [74]. PMEM and
SSD can be accessed via memory mapping, and SSDs require
an explicit function call to ensure persistence (e.g., msync).
Although Intel recently discontinued its PMEM manufactur-
ing [13], PMEM technology can still be part of the memory
hierarchy through CXL [23]. Compute Express Link (CXL)
is a cache-coherent interconnect open interface based on the
PCIe channel. It is also byte-addressable and allows accesses
in a cache line granularity, while maintaining coherence
and consistency. Hence, our support for PMEM can also be
applicable for the upcoming CXL technology.

3 PCcheck Design
As discussed in § 2.2, systems like CheckFreq [50] and Gem-
ini [68] have high overhead when checkpointing frequently
because they stall training until the previous checkpoint per-
sists. Yet, checkpointing frequently is important for model
training quality monitoring and handling preemptions and
failures that often arise at scale. To avoid these stalls, we

GPU CPU

Orchestrator
Persistent
Manager

1

3

2

4
SSD/PMEMDRAM

VRAM

Concurrent Checkpoint 1 =

Concurrent Checkpoint 2 =

Latest Checkpoint =

Figure 5. System architecture

propose PCcheck, a framework that orchestrates multiple
concurrent checkpoints with low overhead, enabling effi-
cient fault-tolerance and debugging.While concurrent check-
points can help reduce idle GPU time and increase check-
point frequency, they also increase CPUmemory and storage
demands and contention, leading to potential performance
issues. PCcheck optimizes the number of concurrent check-
points and minimizes time per checkpoint using pipelining
techniques and multiple threads. These techniques enable
PCcheck to achieve faster and more frequent checkpoint-
ing than systems like CheckFreq [50], GPM [55], and Gem-
ini [68].
§ 3.1 describes PCcheck’s system architecture. § 3.2 de-

scribes the throughput-memory tradeoff introduced with
PCcheck. § 3.3 describes the hardware mechanisms we use
to optimize the data path from GPU to persistent storage.
Finally, in § 3.4 we show how we can tune PCcheck’s config-
uration parameters.

3.1 Overview
Figure 5 shows the PCcheck system architecture and the
checkpointing steps during DNN training. PCcheck’s orches-
trator coordinates ongoing checkpoints. PCcheck’s persis-
tent manager keeps track of the mmaped checkpoint ad-
dresses and uses multiple threads to copy checkpoint data
from DRAM to SSD or PMEM.
Life of a Checkpoint. In Step 1○ in Figure 5, the GPU

executes training iterations until it reaches the next check-
point. In Step 2○, the orchestrator initiates checkpointing
by first finding a free memory region for the checkpoint in
DRAM using a lock-free queue [52] that stores free addresses.
In Step 3○, the orchestrator triggers the GPU copy engines
to copy checkpoint state from GPU memory to DRAM in
chunks. In Step 4○, the orchestrator triggers the persistent
manager to persist the checkpoint chunks from DRAM to
storage using multiple threads. While chunks from a partic-
ular checkpoint may be scattered in DRAM, the orchestrator
ensures that all the checkpoint’s chunks are ordered and
written to consecutive addresses on persistent storage. The
persistent manager also keeps track of the latest fully per-
sisted checkpoint, which is used to recover from failures.

814

PCcheck: Persistent Concurrent Checkpointing for ML ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

T1 U1
C1

P1

T2 U2
C2

P2

GPU

SSD

T3 U3
C3

P3

DRAM

Figure 6. PCcheck algorithm over time, checkpointing every
iteration.𝑇𝑥 and𝑈𝑥 are the model training and model update
steps for iteration 𝑥 , respectively.𝐶𝑥 is the time to copy state
from GPU to DRAM. 𝑃𝑥 is the time to persist state to storage.

GPU T1 U1
C1,1

T2 U2

P1,1SSD

T3 U3
DRAM C1,2 C1,3 C2,1 C2,2 C2,3 C3,1 C3,2 C3,3

P1,2
P1,3

P2,1
P2,2

P2,3

P3,1
P3,2

P3,3

Figure 7. PCcheck with pipelining. Checkpoints are divided
into 3 chunks. PCcheck overlaps copying with persisting.

Users can tune configuration parameters (see Table 2). PC-
check provides a tool to optimize configuration parameters
for a given workload and hardware setup (see § 3.4).
Minimizing Checkpoint Stalls. Figure 6 depicts PC-

check’s concurrent checkpointing over time, assuming check-
pointing occurs every iteration. As soon as the GPU updates
the model weights (𝑈1), the orchestrator initiates a copy of
the checkpointed state to DRAM (𝐶1), while the GPU con-
tinues training the model for the next iteration (𝑇2). When
it is time to copy the next update (𝐶2), PCcheck does not
stall the copy even though the first checkpoint has not been
persisted yet (𝑃1). PCcheck’s support for multiple concur-
rent checkpoints is a key feature compared to CheckFreq
(see Figure 4) and Gemini [68]. PCcheck also reduces the
time it takes to persist a checkpoint (e.g., 𝑃1) compared to
other state-of-the-art techniques by parallelizing writes from
DRAM to persistent storage with multiple threads. The main
bottleneck now becomes the model weight update. The stall
between 𝑇2 and 𝑈2, could be eliminated by keeping an extra
copy of model weights in GPU memory. One copy of the
model weights can then be updated, such that the next train-
ing iteration can proceed (𝑇3), while the other copy of model
weights (from 𝑈1) remains intact as it is copied to DRAM.
However, since GPU memory is limited and expensive, we
find it is not worth consuming extra memory on the GPU to
avoid such stalls.
To further reduce stalls, PCcheck supports pipelining, as

shown in Figure 7. Instead of copying the entire updated
weights (e.g., all of 𝐶1 in Figure 6) and only then start per-
sisting the data, PCcheck can split the data into multiple
chunks (e.g., 3 chunks in Figure 7). By using chunks, it is also
possible to start overwriting the already-persisted chunks in
DRAM with the new weights on the GPU side.

Algorithm GPU Mem DRAM Storage
CheckFreq 𝑚 𝑚 2 ×𝑚

GPM 𝑚 0 2 ×𝑚
Gemini 𝑚 + buffer 𝑚 0
PCcheck 𝑚 𝑚 to 2 ×𝑚 (𝑁 + 1) ×𝑚

Table 1. Memory footprint, where𝑚 is checkpoint size and
𝑁 is the number of concurrent checkpoints.

Checkpointing for Distributed Training. In multi-
node training environments, PCcheck runs one orchestrator
per node. For pipeline parallel training, where the model is
split across nodes, each node checkpoints its model partition
independently. However, as multiple checkpoints take place
in parallel, PCcheck must ensure that the latest checkpointed
model partition in each persistent device corresponds to the
same iteration for all workers. This requires an extra coordi-
nation step between the orchestrators across all nodes, which
has negligible overhead compared to the actual training. The
same approach can also be followed with Fully Sharded Data
Parallelism [59], where each worker has its own model shard.
When a combination of data and pipeline parallelism is used,
the checkpoint state of each pipeline stage is partitioned
among the data parallel replicas of this stage, reducing the
overall checkpointing overhead. The different replicas also
coordinate to ensure that the latest persisted checkpoint
corresponds to the same iteration.

3.2 Throughput-Memory Tradeoff
Table 1 compares PCcheck’s memory and storage require-
ments to other systems. GPM, CheckFreq, and Gemini al-
low only one checkpoint at a time, so they do not require
space larger than one checkpoint size in DRAM. PCcheck can
leverage extra memory capacity to support concurrent check-
points more efficiently. In the pipelined version, the orches-
trator manages the checkpoint in chunks. Once a chunk is
persisted, it is freed and available for following chunk copies
from the GPU. However, when all CPU memory chunks are
occupied (not yet persisted), upcoming checkpoints need to
wait for free chunks in DRAM. Users can set the number of
DRAM chunks that PCcheck is free to use. In general, as we
will show in § 5.4.3, a larger number of DRAM chunks allows
PCcheck to minimize stalls. However, even with strict mem-
ory constraints, PCcheck leads to significant improvements
over the baselines.

PCcheck also consumes more space in the persistent stor-
age. PCcheck requires (𝑁 + 1) ⋅𝑚 to allow 𝑁 concurrent
checkpoints and guarantees at least one valid checkpoint at
any time. Since the state-of-the-art techniques allow only
one checkpoint at a time, 𝑁 = 1 and therefore, they require
2 ⋅𝑚 persistent storage. Gemini does not consume any space
in persistent storage but rather an extra buffer (32MB) on a
GPU since it copies the data to a remote GPU first.

815

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Foteini Strati, Michal Friedman, & Ana Klimovic

3.3 Data Copy Mechanisms
We now describe the hardware mechanisms PCcheck uses
to optimize data copying.
GPU to DRAM. To optimize the data copy bandwidth

from GPU to DRAM, we considered both GPU copy engines
and copy kernels, as used by GPM [55]). We also found that
the bandwidth depends on memory pinning and Direct Data
I/O (DDIO) configurations. Using copy engines with pinned
memory and DDIO enabled (such that I/O ends up in the last
level cache instead of DRAM) yields the highest performance.
Though copy engines have some initialization overhead, this
is negligible for GB-size checkpoints. Furthermore, copy
engines do not consume precious compute resources on the
GPU. When pinned memory3 is used, copy engines leverage
direct memory access (DMA) to copy data directly to DRAM,
without involving the CPU or GPU’s compute resources.

We considered using GPU copy engines to copy data di-
rectly to PMEM or using peer-to-peer (P2P) PCIe technolo-
gies such as GPUDirect Storage [4] for direct GPU-to-SSD
transfers. However, since PMEM and SSD bandwidth is lower
than DRAM, PCcheck achieves higher overall throughput by
overlapping fast GPU-to-DRAM copies with slower persis-
tent writes to storage. Furthermore, GPUDirect is not widely
available in the cloud or our on-premise machines.

DRAM to PMEM/SSD. PCcheck supports both SSD and
PMEM. The choice of storage influences the persistence
mechanisms, the optimal configuration of parallel writers,
and the number of concurrent checkpoints. We compare two
mechanisms for writing to PMEM: using non-temporal store
instructions (bypassing the cache) and using a clwb instruc-
tion, which writes back data from the cache to PMEM. Both
instructions require a fence for persistence. Since PCcheck
only writes data once without reading it back, bypassing
the cache with a non-temporal store instruction followed by
an sfence achieves higher bandwidth (4.01GB/sec on our
machine, whose specs are described in § 5.1) compared to the
clwb instruction approach (2.46GB/sec). This is consistent
with insights from prior work [74]. For SSD, PCcheck writes
to an mmapped memory region and persists using msync()
after every checkpointing write.

3.4 Configuring PCcheck
Table 2 lists PCcheck’s configuration, system parameters, and
user constraints. The user can choose configuration parame-
ters, while the system parameters depend on the platform.
Given user constraints, such as memory consumption and
acceptable checkpointing overhead, PCcheck optimizes the
configuration parameters for a given DNN training work-
load. Users can also override parameter values. § 5.4 shows
a sensitivity study for all the parameters.
The user defines the maximum DRAM (𝑀) and storage

size (𝑆) dedicated for checkpoints (𝑀 ≤ 𝑆), and a maximum

3memory that has been registered with cudaHostRegister()

slowdown 𝑞 due to checkpointing (𝑞 ≥ 1). Our goal is to find
the minimum checkpoint interval 𝑓 (in terms of training
iterations) so that the checkpoint overhead remains smaller
than 𝑞, while the recovery time in case of a failure is mini-
mized. To saturate the GPU-CPU bandwidth, the buffer size
(𝑏) should be large enough [55] and is chosen by the tool
based on𝑇𝐺 . In our setup, we empirically set it to 100-500 MB.
Similarly, the number of writer threads per checkpoint (𝑝)
is ideally 2 to 4. The number of chunks is 𝑐 = 𝑀

𝑏
, and the

number of concurrent checkpoints is 𝑁 ≤ 𝑆
𝑚
− 1 (note that

we might end up using less storage).
Assumingwe checkpoint every 𝑓 iterations , we have up to

𝑁 concurrent checkpoints, and the time towrite a checkpoint
(i.e. from the moment it started copying from GPU until is
persisted) is, at worst case (i.e. when all N checkpoints are
ongoing and there is maximum contention),𝑇𝑤 . Furthermore,
the total number of training iterations is 𝐴. For simplicity,
we assume that 𝑓 divides 𝐴. When there are no checkpoints,
the runtime is: 𝑟𝑢𝑛𝑡𝑖𝑚𝑒0 = 𝐴 ⋅ 𝑡 . However, when there is a
checkpoint every 𝑓 iterations, assuming 𝑁 = 1, the runtime
changes to:

𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 = 𝑓 ⋅ 𝑡 +max (𝑇𝑤, 𝑓 ⋅ 𝑡) ⋅ (𝐴
𝑓
− 1) +𝑇𝑤

where 𝐴
𝑓
− 1 represents the checkpoint interval between the

first and last checkpoint, and is multiplied by the maximum
time between running the next interval, 𝑓 ⋅ 𝑡 , and the check-
pointing time, 𝑇𝑤 . We take the maximum value since we
have only one concurrent checkpoint and it is written in
parallel with training. We add 𝑓 ⋅ 𝑡 and 𝑇𝑤 to represent the
first interval (before the first checkpoint has even started)
and the last interval that does not run with checkpointing
in parallel.
If 𝑁 > 1, we can extend the 𝑟𝑢𝑛𝑡𝑖𝑚𝑒1 to the following

(again, for simplicity, we assume 𝑁 ⋅ 𝑓 divides A):

𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 = 𝑓 ⋅ 𝑡 +max (𝑇𝑤, 𝑁 ⋅ 𝑓 ⋅ 𝑡) ⋅ (𝐴

𝑓 ⋅ 𝑁 − 1) +𝑇𝑤

The interesting case is when 𝑇𝑤 > 𝑁 ⋅ 𝑓 ⋅ 𝑡 (meaning that
training has to stall). In that case, we have:

𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 = 𝑓 ⋅ 𝑡 +𝑇𝑤 ⋅ 𝐴

𝑓 ⋅ 𝑁
Given a specific overhead 𝑞, we want 𝑟𝑢𝑛𝑡𝑖𝑚𝑒2 ≤ 𝑞 ⋅𝑟𝑢𝑛𝑡𝑖𝑚𝑒0:

𝑓 ⋅ 𝑡 +𝑇𝑤 ⋅ 𝐴

𝑓 ⋅ 𝑁 ≤ 𝑞 ⋅𝐴 ⋅ 𝑡 (1)

Since usually, 𝐴 is very large (i.e. training can span days),
we can ignore the 𝑓 ⋅ 𝑡 term in 1. Then, we have:

𝑇𝑤 ⋅ 𝐴

𝑓 ⋅ 𝑁 ≤ 𝑞 ⋅𝐴 ⋅ 𝑡 ⇒ 𝑓 ≥ 𝑇𝑤

𝑁 ⋅ 𝑞 ⋅ 𝑡 (2)

We note that a larger 𝑁 would theoretically lead to a shorter
waiting time of training. However, larger 𝑁 means more
concurrent checkpoints contending on the storage device

816

PCcheck: Persistent Concurrent Checkpointing for ML ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Configuration Parameters System/Model Parameters User Constraints
concurrent checkpoints (𝑁) GPU-CPU PCIe bandwidth (𝑇𝐺) Total DRAM size (𝑀)
parallel writer threads (𝑝) Storage bandwidth (𝑇𝑆) Total storage size (𝑆)
DRAM buffer size (𝑏) Iteration time (𝑡) Checkpoint overhead (𝑞)
chunks (𝑐) in DRAM Checkpoint size (𝑚) # iterations (𝐴)
Checkpoint interval (in iterations) (𝑓)

Table 2. Configuration and system parameters.

bandwidth, thus increasing 𝑇𝑤 . Our goal is to find the mini-
mum 𝑇𝑤

𝑁
, based on the fact that 𝑁 ≤ 𝑆

𝑚
− 1. 𝑇𝑤

𝑁
depends on

the checkpoint size𝑚, iteration time 𝑡 and the storage device
bandwidth 𝑇𝑠 . For example, if 𝑁 = 1, 𝑇𝑤 = 𝑚

𝑇𝑠
. Since𝑚 and 𝑡

are given, our tool empirically finds the best 𝑁 to minimize
𝑇𝑤
𝑁
. It initiates a checkpoint every 𝑡 seconds. It then varies 𝑁

in (︀1, 𝑆
𝑚
− 1⌋︀, measures𝑇𝑤 for each checkpoint, and finds the

optimal 𝑁 . In practice, we need to check only a few values
of 𝑁 , so this profiling round has negligible overhead to the
overall training. Once 𝑁 ∗ is fixed, the minimum checkpoint
interval 𝑓 ∗ is:

𝑓 ∗ = ⌈︂ 𝑇𝑤

𝑁 ∗ ⋅ 𝑞 ⋅ 𝑡 ⟩ (3)

The optimal checkpoint frequency might vary through-
out training due to contention for shared resources, such as
GPU-CPU PCIe bus, or disk bandwidth. For example, vision
model training is input-bound [51], and LLM training com-
monly offloads activations to CPU memory and disk [44].
This behavior might necessitate adapting the checkpoint
frequency during training. We plan to extend PCcheck by
monitoring training throughput and traffic between GPU,
CPU, and storage, and adapt (3) accordingly.

4 PCcheck Algorithm
We now describe the concurrent checkpointing algorithm in
detail, including the recovery procedure and its guarantees.

4.1 Persisting Checkpoints
The persistent manager tracks memory-mapped addresses
for writing checkpoints using an algorithm based on a global
counter and three classes - Check_meta, Data, and Queue.
The global counter advances with each new checkpoint re-
quest, ensuring the order among checkpoint requests. The
Check_meta class represents a single checkpoint’s metadata,
holding its counter and a pointer to its data. The Data class
contains the recorded checkpoint’s data. Queue is a lock-
free queue based on [52], holding available slots for storing
checkpoints, apart from the latest valid checkpoint.When the
orchestrator requests a new checkpoint slot, it dequeues an
element from the queue, indicating where the new data can
be recorded. Every time a checkpoint’s recording becomes
irrelevant, (i.e. a thread persists a more recent checkpoint),
PCcheck adds the address of the old checkpoint to the end of

the queue. The persistent manager keeps track of a pointer
to the latest persistent checkpoint.

PCcheck maintains the invariant that there is at least one
persistent checkpoint, which is the latest among the last𝑁+1
checkpoints, and cannot be overwritten. If there are only 𝑁

threads that update new checkpoints, the algorithm is lock-
free. Furthermore, we always guarantee that old checkpoints
will not interfere with newer ones by implementing it with
proper use of compare-and-swap (CAS) instructions and
comparing appropriate checkpoint counters.

Listing 1. Checkpoint Operation
1 void checkpoint (data) {
2 // check the last updated checkpoint
3 check_meta∗ last_check = ∗CHECK_ADDR;
4 // get a new counter for the current checkpoint
5 long curr_counter = atomic_add(&g_counter, 1);
6 // find free space to update the new checkpoint
7 int data_location = 0;
8 while (true) {
9 data_location = free_space.deq();
10 if (data_location != EMPTY) break;
11 }
12 // prepare thread parameters & update memory
13 threads[i] = new thread(&persist, &data);
14 for (int j = 0; j < num_threads; j++)
15 threads[j]−>join();
16 check_meta check = {data_location, curr_counter};
17 memcpy(cur_check, &check, sizeof(check_meta));
18 BARRIER(cur_check);
19 while (true) {
20 bool res=CAS(CHECK_ADDR, last_check, cur_check);
21 check_meta∗ check = ∗CHECK_ADDR;
22 if (res) { // success. Persist and enq old location
23 BARRIER(CHECK_ADDR);
24 int free = last_check.data_location;
25 free_space.enq(free);
26 } else if (check−>counter < curr_counter) { // retry
27 last_check = check;
28 continue;
29 } else { // more updated checkpoint was registered
30 BARRIER(CHECK_ADDR);
31 free_space.enq(data_location);
32 }
33 break;
34 }
35 return;
36 }

817

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Foteini Strati, Michal Friedman, & Ana Klimovic

Listing 1 contains the pseudo-code for the checkpoint
operation. For readability, we describe PCcheck’s simplified
non-pipelined version, depicted in Figure 6. The checkpoint
operation starts by finding the last persistent checkpoint
located in CHECK_ADDR (Line 3). Then, it gets a new counter
by calling atomic_addwith the global counter in Line 5. The
global counter helps in ordering all checkpoints.

In Lines 6–11, PCcheck finds space for persisting the cur-
rent ongoing snapshot, relying on the guarantee that the last
persistent checkpoint is not in the queue. Then, every thread
saves its part of the checkpoint in the persistent memory in
the persist function (Lines 12–13). In the PMEM version, ev-
ery thread must also call a fence() within the persist function.
The fence() is internal to each CPU, meaning that the main
thread, which spawned the threads (in the checkpoint oper-
ation), cannot call a fence to cover all data that was written
to PMEM. In the SSD version, however, the main thread can
call a single msync() with the checkpoint address and persist
the data, improving performance.

In Lines 16– 18, we persist the start address of the check-
point. We emphasize that the actual training state is per-
sisted only once per checkpoint, and the following proce-
dure refers to persisting the pointer to the latest checkpoint.
BARRIER refers to writing back the data to the persistent
storage with an adequate fence/sync instruction. For cor-
rectness, it is important to persist the entire data and the
checkpoint that points to this data before CHECK_ADDR is up-
dated. When the data is persisted, the current thread tries to
update CHECK_ADDR using a CAS instruction. Note that since
the current checkpoint is sampled (Line 3) before getting the
counter for the new checkpoint (Line 5), the CASing trial is
guaranteed to be legal. A trial is legal if the new checkpoint
which is trying to CAS has a bigger counter than the current
checkpoint. If the trial is successful, we persist the check-
point address and return the location of the older checkpoint
to the queue, as it is free to be reused. If it failed, there are
two potential reasons. First, another concurrent checkpoint
was concurrently recorded. If the value of the other con-
current checkpoint counter was higher, then we persist the
checkpoint’s address, return our location to the free queue
and exit (Lines 29–31). Otherwise, the other checkpoint is
outdated and should be updated. In this case, we retry to
record the newer checkpoint address and persist upon suc-
cess. BARRIER guarantees persistence, and we call it both
after updating the new checkpoint address or failing in this
update as a more updated checkpoint has been registered.
Once the operation is over, the most updated checkpoint is
registered and persisted.
Pipelining and Using Chunks. There are only a few

modifications to the described pseudocode when employing
pipelining and splitting the checkpoint into chunks. Specifi-
cally, when a new checkpoint is initialized, it gets an address
in the persistent device for writing, as shown in Lines 3-11.
Then, each chunk is copied to a free CPU buffer (from a CPU

buffer pool described in Section 3.1) and persisted to disk at
the appropriate offset from that checkpoint’s start address.
Once the last batch is copied and persisted, the thread respon-
sible for this batch will execute Lines 16-34 to update the
pointer to the latest checkpoint. While a checkpoint might
be chunked in DRAM, it is saved in contiguous space in the
persistent storage.

Checkpointing in Distributed Training. As described
in Section 3.1, when distributed checkpointing is enabled,
we have to make sure all peers have a globally consistent last
checkpoint. To achieve this, each peermaintains a peer_check
variable, representing the last globally consistent checkpoint.
After a successful CAS (Line 24), each peer sends its check-
point ID (curr_counter from Listing 1) to the peer with
rank 0 and waits. Once rank 0 has received the checkpoint
IDs from all peers, it notifies them to continue. Each peer
updates its local peer_check to the new value and contin-
ues with lines 25 and 26. In our experiments, all peers had
the same ordering of checkpoint IDs sent to rank 0. We are
working towards improving the robustness and efficiency of
this coordination mechanism for large-scale deployments.

4.2 Recovering with Checkpoints
CHECK_ADDR points to the last consistent checkpoint. To re-
cover, PCcheck loads the checkpoint that corresponds to
CHECK_ADDR from persistent storage into GPU memory with
the help of a persistent iterator, which logs data read loca-
tions. The DNN job then resumes training.

We estimate the recovery time of PCcheck as follows. We
assume each iteration takes time 𝑡 , the checkpoint frequency
is 𝑓 iterations, and we allow up to 𝑁 concurrent checkpoints,
written in parallel to training. The time to write a check-
point is 𝑇𝑤 (taking 𝑇𝑤

𝑡
iterations), and the time to load the

checkpoint to GPU is 𝑙 . PCcheck’s recovery time is:

0 ≤ 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 ≤ 𝑙 + 𝑓 ⋅ 𝑡 + 𝑡 ⋅𝑚𝑖𝑛(𝑁 ⋅ 𝑓 , 𝑇𝑤
𝑡
). (4)

if 𝑇𝑤 > 𝑁 ⋅ 𝑓 ⋅ 𝑡 , training will stall at iterations 𝑘 ⋅ (𝑁 + 1) ⋅ 𝑓 ,
i.e. ≤ (𝑁 + 1) ⋅ 𝑓 iterations need to be redone upon a failure.
If 𝑇𝑤 < 𝑁 , the number of lost iterations is bound by 𝑇𝑤 ,
meaning that in the worst case, 𝑓 + 𝑇𝑤

𝑡
iterations need to be

repeated upon a failure.
For reference, the recovery time of CheckFreq and Gemini

(which allow one checkpoint at a time to be persisted asyn-
chronously with training), is given by 0 ≤ 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 ≤ 𝑙+2⋅𝑓 ⋅𝑡
[50]. GPM [55] stalls training in order to persist each check-
point, thus 0 ≤ 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 ≤ 𝑙 + 𝑓 ⋅ 𝑡

5 Evaluation
We implemented PCcheck on top of PyTorch [56] and Deep-
speed [60].

818

PCcheck: Persistent Concurrent Checkpointing for ML ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

5.1 Setup
Platform.We evaluate PCcheck on a2-highgpu-1g VMs on
Google Cloud [32]. The VMs are equipped with an NVIDIA
A100-40GB GPU, with PCIe3x16. Each VM has an Intel Xeon
2.2GHz processor with 1 NUMA node and 12 vCPUs, and
85GB of DRAM. We attach a 1 TB SSD (pd-ssd) to each
VM. The contents of pd-ssd disks remain even after a VM
is preempted or crushed, and the disk can be reattached
to another VM [3]. We use Ubuntu 20.04, CUDA 12.1, and
PyTorch-2.1. We also evaluate our system on an Intel Optane
persistent main memory (PMEM) device with an NVIDIA
Titan RTX-24GB GPU, connected via PCIe3x8. For PMEM
experiments, we used a machine with an Intel Xeon Gold
6248R 3GHz processor with 2 NUMA nodes, each with 48
cores. It has 128GB of DRAM in total and 2 TB SSD. The ma-
chine has 4 NVDIMMs with 512GB in total. We run PMEM
in an AppDirect mode. The contents of the PMEM device
also remain intact after a GPU failure. We use Ubuntu 20.04
and CUDA 11.6.

Models.Weusemodels from the computer vision andNLP
domain. We chose batch sizes following prior work [8, 69].
Table 3 lists themodels, their checkpoint size, andmicrobatch
size on each machine type. For OPT-2.7B and BLOOM-7B,
we employ pipeline-parallel distributed training with 2 and
6 VMs respectively. The rest models are evaluated in single-
GPU setups. Similar to related work [17, 50], each checkpoint
includes model and optimizer state.
Baselines.We compare with CheckFreq [50], GPM [55]

and Gemini [68]. Gemini does not have an open-source
implementation, so we implemented it based on the pa-
per description. Since Gemini relies on distributed training
to replicate the training state, we evaluate it only in dis-
tributed setups. As GPM was designed to run on PMEM
only, we adjust it to run with an SSD as well. GPM uses
CUDA kernels to copy the checkpoint from GPU (instead of
cudaMemcpy), which we keep in the SSD version. We mmap
the file for checkpointing and use cudaHostRegister to al-
low access from GPU kernels. To persist a checkpoint, we
call cudaDeviceSynchronize (to make sure copying has fin-
ished) and msync themmaped file. We extend CheckFreq and
GPM (initially proposed for single-GPU training) to work
on distributed setups. We also compare to an ideal baseline,
which saves checkpoints with zero overhead. We run experi-
ments 3 times and report the average results. The standard
deviation was consistently less than 0.2.

5.2 Performance Results
5.2.1 PCcheck with SSD. Figure 8 shows the training
throughput when varying the checkpointing frequency. The
legend denotes the PCcheck configuration as 𝑁 -𝑝 , where 𝑁
is the number of concurrent checkpoints and 𝑝 is the number
of parallel threads per checkpoint. We use a DRAM size of
2𝑚, where𝑚 is the checkpoint size. We evaluate PCcheck

Model Dataset Batch size Batch size Checkpoint
in A100 in RTX size (GB)

VGG16 ImageNet 32 32 1.1
BERT SQuAD 3 3 4
TransformerXL WikiText 64 32 2.7
OPT-1.3B WikiText 1 - 16.2
OPT-2.7B WikiText 1 - 45
Bloom-7B WikiText 1 - 108

Table 3. Evaluated models. The checkpoint includes model
and optimizer state.

with the best configuration (determined by the profiling tool)
and show a sensitivity study in § 5.4.
In single-GPU settings, at high checkpoint frequencies,

CheckFreq has the highest overhead. For example, for the
VGG16 workload (Figure 8a), CheckFreq leads up to 57×
slowdown when checkpointing every iteration, and between
5.74×-1.19× slowdown when checkpointing every 10-100
iterations. Even though CheckFreq overlaps checkpointing
and training, it can only support one checkpoint at a time.
When the GPU tries to checkpoint before the previous check-
point finishes, it stalls the entire pipeline. For less frequent
checkpoints, and larger checkpoint sizes (i.e. BERT, OPT-
1.3B), GPM performs much worse since it stops the GPU en-
tirely for every checkpoint. Hence, GPM’s overhead becomes
more substantial than CheckFreq at a lower checkpointing
frequency.
PCcheck outperforms both CheckFreq and GPM since it

persists checkpoints with parallel workers and allows multi-
ple concurrent checkpoints to minimize stalls during train-
ing. Moreover, it considers all system bottlenecks to optimize
the data transfer. For example, in OPT-1.3 (Figure 8d), when
checkpointing every 50 iterations, PCcheck’s overhead is
1.02×, compared to 1.9× overhead for GPM and 1.17× for
CheckFreq. In a few cases, GPM outperforms CheckFreq,
when checkpointing every iteration (Figures 8a, 8d - 8f).
In such scenarios of very frequent checkpointing, the con-
current checkpointing mechanism introduced by PCcheck
offers limited benefits. Additionally, GPM directly copies to a
memory-mapped file, which in some cases, leads to improved
per-checkpoint-time, as will be discussed in 5.3. However,
the training throughput of all baselines when checkpointing
every iteration is very far from ideal, deeming these sce-
narios quite unrealistic. As checkpoint frequency decreases,
GPM struggles to match PCcheck, since it does not paral-
lelize checkpointing with training, and only keeps one active
checkpoint at a time. As a result, while PCcheck can check-
point every 10-25 iterations with minimal overheads, GPM’s
overheads remain significant at these frequencies.
We also experiment with a higher-end machine for OPT-

1.3B, using a Standard_NC40ads_H100_v5VM fromAzure [7]

819

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Foteini Strati, Michal Friedman, & Ana Klimovic

(a) VGG16 (b) Transformer-XL (c) BERT

(d) OPT-1.3B (e) OPT-2.7B (f) BLOOM-7B

Figure 8. Training throughput with checkpointing on SSD, A100, without failures. The horizontal black line represents the training
throughput without checkpoints.

with an H100 GPU, and a 3.5TB NVMe SSD. We observe simi-
lar patterns for PCcheck and the baselines, since the iteration
time was halved, and the disk bandwidth doubled.
In multi-GPU settings, we observe that Gemini signifi-

cantly degrades training throughput. Gemini transfers the
training state over the inter-machine network, avoiding the
slower persistent storage bandwidth. However, it uses only
one checkpoint at a time, meaning that the next checkpoint
cannot start until the previous one has finished, which causes
stalls when checkpointing frequently. Moreover, the inter-
machine network in our setup is not fast enough to hide the
checkpoint transfer time. The measured network bandwidth
in our a2-highgpu-1g VMs is 15 Gbps, which is commonly
seen in public cloud VMs [2]. Overall, Gemini leads to 1.62-
1.06× and 1.65-1.08× lower throughput for OPT-2.7B and
BLOOM-7B models respectively when checkpointing every
10-100 iterations. On the contrary, the slowdown of PCcheck
at these frequencies is < 1.05× and < 1.02× respectively.

5.2.2 Recovery Times. At low checkpoint frequency, re-
covery time increases, reaching 80 seconds for OPT-1.3B
when checkpointing every 100 iterations (Figure 8d). In this
setting, CheckFreq has 5% overhead. With the same training
throughput, PCcheck checkpoints every 50 iterations and
recovers in 50 seconds. For BLOOM-7B (Figure 8f), PCcheck
can recover in 26 seconds with 5% overhead, while Check-
Freq and Gemini incur similar overhead and recover in 250
seconds.

5.2.3 Goodput with Spot Instances. The ultimate met-
ric of interest is training goodput (useful throughput) in a
real DNN cluster prone to failures or preemptions. In elastic
distributed DNN training frameworks, such as Varuna [17],
whenever any worker fails or gets preempted, all workers
resume from the latest checkpoint. We compare goodput
for PCcheck, CheckFreq, GPM, and Gemini assuming GPU
availability based on the resource preemption trace collected
by André et al. [16] in a Google Cloud A100 GPU spot in-
stance cluster. We replay the resource preemption trace as
follows: whenever a change in the allocated resources oc-
curs (i.e. a VM is preempted or retrieved), the system stops
and rolls back to the previous checkpoint. Thus, given the
total training time 𝑇 , the number of failures 𝑟 , the aver-
age checkpoint interval 𝑓 , and the average iteration time 𝑡
(which includes checkpoint overheads), we compute how
much time is spent doing useful work (goodput) and recov-
ering. We use the average recovery time from 4.2 for each
baseline, excluding the time needed to reattach a pd-ssd
disk to a VM (which is around 5.5 sec, and similar for all
baselines except Gemini that relies on DRAM copies.) The
time spent making progress is 𝑝𝑟𝑜𝑔 = 𝑇 − 𝑟𝑒𝑐 . During that
time, the model has made progress on 𝑠𝑒𝑒𝑛𝐵𝑎𝑡𝑐ℎ𝑒𝑠 = 𝑝𝑟𝑜𝑔

𝑡

batches, thus 𝑔𝑜𝑜𝑑𝑝𝑢𝑡 = 𝑠𝑒𝑒𝑛𝐵𝑎𝑡𝑐ℎ𝑒𝑠
𝑇

.
Figure 9 shows goodput for the above resource availabil-

ity simulation. Due to high resource preemptions in spot
instance clusters, it is optimal to checkpoint every 10 − 25

820

PCcheck: Persistent Concurrent Checkpointing for ML ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

(a) VGG16 (b) Transformer-XL (c) BERT

(d) OPT-1.3B (e) OPT-2.7B (f) BLOOM-7B

Figure 9. Goodput when replaying a Google Cloud A100 GPU resource preemption trace [16]. Higher is better.

iterations to avoid long recovery times. When checkpoint-
ing every iteration, most time is spent checkpointing, re-
sulting in high overhead. Conversely, when checkpointing
infrequently, most time is spent redoing lost work. Thus,
frequent checkpoints are necessary, and PCcheck enables
such fine-grained checkpointing.

For a fixed checkpoint frequency, the goodput depends on
two key factors: 1) the training throughput in the absence of
failures, and 2) the amount of lost work per failure. PCcheck
improves training throughput by introducing concurrent
checkpointing. However, when multiple checkpoints are in
progress simultaneously, the training may need to roll back
more iterations (impacting factor 2). Thus, the overall good-
put depends on the balance between training throughput
and lost work. For instance, in Figure 9d, PCcheck achieves
1.77× higher goodput than CheckFreq, when checkpoint-
ing every 10 iterations. Without failures, (Figure 8d), the
throughput of PCcheck and CheckFreq, is 0.5 iters/sec, and
0.256 iters/sec respectively, meaning that for the whole du-
ration of the trace, PCcheck would have completed 6137
iterations, while CheckFreq would have completed 3404 iter-
ations. When taking failures and average rollback iterations
into account, PCcheck and CheckFreq will need to redo 550
and 257 iterations, respectively. Thus, the effective number of
iterations (which reflects goodput) is 5587 and 3147 iterations
for PCcheck and CheckFreq respectively.
This can be generalized when comparing PCcheck with

other baselines that do not support concurrent checkpoint-
ing. In all cases, PCcheck greatly outperforms the other base-
lines, approaching the ideal upper bound. VGG16 (Figure 9a)
has the smallest iteration time (60 ms) and its checkpoint
size is 1.1 GB, meaning that the checkpoint overhead is quite
high and the recovery time is low. This explains why all

baselines have low goodput at frequent checkpointing. Nev-
ertheless, PCcheck still performs similarly to the ideal case,
starting from a checkpoint frequency of 100. In all the other
cases, we notice that as the size of the checkpoint grows, and
the iteration time decreases, the gap between PCcheck and
the other baselines increases. Looking at each checkpoint
frequency individually, and taking the ratio between PC-
check’s goodput and the baselines’ goodput, PCcheck gets
up to 1.75×, 2.86×, and 2.75× higher goodput than GPM,
CheckFreq, and Gemini, respectively. Alternatively, if, for
each model, we consider the peak goodput of each base-
line across all checkpoint frequencies, and compare it with
PCcheck’s peak goodput for that specific model, PCcheck
has up to 1.27×, 1.25×, and 1.44× higher goodput than GPM,
CheckFreq, and Gemini, respectively.

We also experimented with higher numbers of concurrent
checkpoints and observed slight decreases in goodput, since
more concurrent checkpoints do not always translate to
higher throughput, due to storage bandwidth limitations
(see Sections 4 and 5.4). PCcheck picks a modest number of
concurrent checkpoints (2-4) that achieves high throughput
and goodput while accounting for scalability limitations.

5.2.4 PCcheckwith PMEM. In Figure 10, we evaluate PC-
check’s impact on training throughputwhen using PMEM for
checkpointing BERT (the largest model fit in this machine).
Since the GPU on this machine has lower compute capability
than the A100 GPU, the training throughput is decreased.
Furthermore, the PMEM bandwidth is higher than the SSD’s,
thus the checkpointing overhead is lower. CheckFreq and
GPM also perform better than in the SSD setup. Nevertheless,
PCcheck still outperforms both in all checkpoint frequen-
cies. By checkpointing every 10 iterations instead of 100

821

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Foteini Strati, Michal Friedman, & Ana Klimovic

Figure 10. Checkpointing overhead for the BERT model when
using an Intel Optane PMEM device.

Figure 11. Time to persist 1 checkpoint, with varying sizes,
SSD, A100. y-axis is log scale.

iterations, as CheckFreq, the recovery time decreases by 10×,
while keeping the same overhead.

5.3 Microbenchmarks
Figure 11 shows the time to write a checkpoint of various
sizes using SSD, or over the network in Gemini’s case. Gemini
has the lowest time per checkpoint since it does not write
to storage. However, as only one checkpoint is allowed at a
time, training performance is significantly degraded (§ 5.2).
PCcheck optimizes the entire copying path, outperforming
CheckFreq and GPM by up to 1.9×. PCcheck uses GPU copy
engines to move data to DRAM, employs multiple threads
to copy the data, and persists in a pipelined manner, fully
saturating the persistent storage device.

5.4 Sensitivity Study
As Table 2 shows, the key factors that affect PCcheck’s per-
formance are 1) the number of concurrent checkpoints, 2)
the number of parallel threads per checkpoint, 3) the chunk
size, and 4) the amount of DRAM used for checkpointing.
We now examine the impact of these factors in PCcheck’s
performance. We show results for the SSD setup, but results
with PMEM show similar trends.

5.4.1 Concurrent Checkpoints. Figure 12 demonstrates
the slowdown compared to no checkpointing with varying
frequencies and number of concurrent checkpoints for VGG-
16. Even though VGG-16 has relatively small checkpointing
size, using more than one checkpoint is consistently better.
We generally do not need more than 4 checkpoints at a

Figure 12. Slowdown over no checkpointing, VGG-16, vary-
ing frequencies and the number of concurrent checkpoints.

Figure 13. Slowdown over no checkpointing, OPT-350M,
with a fixed checkpoint frequency of 10 iterations, varying
the number of parallel threads per checkpoint.

time, as they already saturate the SSD bandwidth, and more
threads start competing for resources.

5.4.2 Parallel threads per checkpoint. Figure 13 demon-
strates the slowdown compared to no checkpointing for
OPT-350M at a fixed checkpoint frequency of 10 iterations,
while varying the number of parallel threads per checkpoint.
Using 3 threads (instead of 1) leads to 1.36×, 1.16×, 1.13×
improvement when having 1, 2, 3 concurrent checkpoints
respectively. Thus, the benefit of having multiple parallel
checkpoints is significant, but decreases as the number of
concurrent checkpoints increases, due to extra contention for
storage bandwidth. This is taken into account when PCcheck
configures the parameters to use (Section 3.4). We observe
similar effects for both SSD and PMEM, since both devices
can employ low-to-moderate levels of parallelism [74].

5.4.3 Chunk size andDRAMbuffer size. Figure 14 shows
how the training throughput of the OPT-1.3B model changes
for varying sizes of the DRAM buffer and pipeline chunks.
We observe that pipelining leads to slightly higher through-
put compared to the non-pipelined case, although the differ-
ences are quite small. Moreover, although we use a DRAM
buffer size of 2 ⋅𝑚 for our experiments, reducing this size
does not greatly affect performance. Using a DRAM buffer
size of𝑚 adds only up to 7% overhead compared to using a
buffer of 2 ⋅𝑚, thus PCcheck can safely be used under tight
memory constraints.

822

PCcheck: Persistent Concurrent Checkpointing for ML ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Figure 14. PCcheck throughput of OPT-1.3B, checkpointing
every 15 iterations. X-axis varies the DRAM size for check-
pointing.𝑚 is the checkpoint size. 𝑝𝑥 denotes the pipelined
version of PCcheck, splitting the checkpoint into 𝑥 chunks.

6 Related Work
Checkpointing in HPC and Other Domains. Checkpoint-
ing is a well-known technique in various domains such as
distributed systems [21, 29, 42, 65], HPC [26, 30, 41], and
databases [46, 62, 77]. These works focus on recovering ef-
ficiently and reducing checkpoint latency and bandwidth.
PCcheck provides an efficient checkpointing mechanism tai-
lored for DNN training supporting both PMEMs and SSDs.

Checkpointing RecommendationModels. Several sys-
tems focus on checkpointing large recommendation models.
Check-N-Run [28] proposes differential checkpointing (i.e.,
leveraging the fact that only a small part of the recommenda-
tion model is updated each iteration), quantization, and asyn-
chronous checkpointing. CPR [45], following SCAR [57]’s
paradigm, proposes partial recovery, which restores the train-
ing state only for the failed node. These techniques are or-
thogonal to PCcheck.
Transferring Data from GPU to Storage. GPUDirect

storage [4] allows NVIDIA GPUs to access PCIe storage
devices without involving the CPU. FlashNeuron [19] uses
GPUDirect to offload a part of the training state to an NVMe
device, enabling training larger models with larger batch
sizes than what can fit on a single GPU. Unified Virtual Mem-
ory [11] allows applications to access data both on the GPU
and CPU, regardless of whether they run on GPU or CPU.
Several works [47, 55] have extended UVM to include per-
sistent memory devices. GPM [55] extends UVM to include
the PMEM region, to allow for fine-grained persistence of
GPU-accelerated applications. DRAGON [47] uses UVMwith
PMEM to increase the amount of available memory. Despite
UVM’s advantages in providing an improved programming
experience through unified memory access, our experiments
suggest that having an intermediate buffer in DRAM for
copying data is beneficial for the checkpoint throughput.

7 Conclusion
PCcheck is a framework for orchestrating multiple check-
points on persistent storage during DNN training. While
prior DNN checkpointing systems support one checkpoint

at a time and hence stall training at high checkpoint frequen-
cies, PCcheck avoids these stalls by efficiently managing
multiple concurrent checkpoints. Thus, PCcheck enables
fast, frequent checkpointing, which is critical for dealing
with common preemptions and failures in large-scale DNN
hardware clusters as well as for fine-grained model train-
ing monitoring. PCcheck achieves up to 2.86× higher DNN
training goodput in preemptible cloud VM environments
compared to state-of-the-art checkpointing systems.

8 Acknowledgements
We thank the anonymous reviewers from ASPLOS’25 and
our shepherd, Sam Ainsworth, for their valuable feedback.
We also thank the anonymous reviewers from ASPLOS’24
and ATC’24 for their valuable comments on earlier versions
of the paper. We thank Xindi Zuo for her technical contribu-
tion early stages of the project and her work on non-volatile
memory support. We thank Daniel Schwyn, Dimitris Kout-
soukos, and Dario Korolija for their technical advice. Foteini
Strati is supported by the Swiss National Science Foundation
(Project Number 200021_204620).

References
[1] [n. d.]. A2 machine series, Google Cloud. https://cloud.google.com/

compute/docs/gpus#a100-gpus. Accessed: 2024-10-24.
[2] [n. d.]. GCP Network Bandwidth. https://cloud.google.com/compute/

docs/network-bandwidth. Accessed: 2023-07-23.
[3] [n. d.]. Google Cloud Persistent Disk Types. https://cloud.google.com/

compute/docs/disks#disk-types. Accessed: 2024-10-24.
[4] [n. d.]. GPUDirect Storage: A Direct Path Between Storage and GPU

Memory. https://developer.nvidia.com/blog/gpudirect-storage/. Ac-
cessed: 2023-08-05.

[5] [n. d.]. How to Overlap Data Transfers in CUDA C/C++. https://
developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/. Ac-
cessed: 2024-06-20.

[6] [n. d.]. Hugging Face. https://huggingface.co/. Accessed: 2023-07-23.
[7] [n. d.]. NCads H100 v5-series. https://learn.microsoft.com/en-us/

azure/virtual-machines/ncads-h100-v5. Accessed: 2024-06-20.
[8] [n. d.]. NVIDIA Deep Learning Examples. https://github.com/NVIDIA/

DeepLearningExamples. Accessed: 2023-07-23.
[9] [n. d.]. The Stanford Question Answering Dataset. https://rajpurkar.

github.io/SQuAD-explorer/. Accessed: 2024-10-24.
[10] [n. d.]. Torchvision. https://github.com/pytorch/vision. Accessed:

2023-07-23.
[11] [n. d.]. Unified Memory for CUDA Beginners. https://developer.nvidia.

com/blog/unified-memory-cuda-beginners/. Accessed: 2023-08-06.
[12] [n. d.]. Wikitext. https://developer.ibm.com/exchanges/data/all/

wikitext-103/. Accessed: 2024-10-24.
[13] 2022. Discontinuation of Intel Optane. Accessed: 2023-08-10.
[14] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16)
(Savannah, GA, USA). USENIX Association, USA, 265–283.

[15] Arize AI. 2022. The ML Observability Platform for Practitioners. https:
//arize.com/. Accessed: 2023-08-10.

823

https://cloud.google.com/compute/docs/gpus##a100-gpus
https://cloud.google.com/compute/docs/gpus##a100-gpus
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/compute/docs/disks##disk-types
https://cloud.google.com/compute/docs/disks##disk-types
https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/
https://huggingface.co/
https://learn.microsoft.com/en-us/azure/virtual-machines/ncads-h100-v5
https://learn.microsoft.com/en-us/azure/virtual-machines/ncads-h100-v5
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/pytorch/vision
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.ibm.com/exchanges/data/all/wikitext-103/
https://developer.ibm.com/exchanges/data/all/wikitext-103/
https://arize.com/
https://arize.com/

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Foteini Strati, Michal Friedman, & Ana Klimovic

[16] Joel André, Foteini Strati, and Ana Klimovic. 2022. Exploring Learning
Rate Scaling Rules for DistributedML Training on Transient Resources.
In Proceedings of the 3rd International Workshop on Distributed Machine
Learning (Rome, Italy) (DistributedML ’22). Association for Computing
Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3565010.
3569067

[17] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ram-
jee, and Nipun Kwatra. 2022. Varuna: Scalable, Low-Cost Training of
Massive Deep Learning Models. In Proceedings of the Seventeenth Eu-
ropean Conference on Computer Systems (Rennes, France) (EuroSys ’22).
Association for Computing Machinery, New York, NY, USA, 472–487.
https://doi.org/10.1145/3492321.3519584

[18] AWS. [n. d.]. AWS Spot Instance interruption notices.
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-
instance-termination-notices.html. Accessed: 2024-06-16.

[19] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son, Shine Kim, Hak-
beom Jang, Tae Jun Ham, and Jae W. Lee. 2021. FlashNeuron: SSD-
Enabled Large-Batch Training of Very Deep Neural Networks. In
19th USENIX Conference on File and Storage Technologies (FAST 21).
USENIX Association, 387–401. https://www.usenix.org/conference/
fast21/presentation/bae

[20] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley,
Kyle O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu
Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron, Lin-
tang Sutawika, and Oskar van der Wal. 2023. Pythia: A Suite for
Analyzing Large Language Models Across Training and Scaling.
arXiv:2304.01373 [cs.CL]

[21] K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots:
Determining Global States of Distributed Systems. ACMTrans. Comput.
Syst. 3, 1 (feb 1985), 63–75. https://doi.org/10.1145/214451.214456

[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie
Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang.
2015. MXNet: A Flexible and Efficient Machine Learning Library
for Heterogeneous Distributed Systems. CoRR abs/1512.01274 (2015).
arXiv:1512.01274 http://arxiv.org/abs/1512.01274

[23] CXL. 2022. Compute Express Link.
[24] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le,

and Ruslan Salakhutdinov. 2019. Transformer-XL: Attentive Language
Models Beyond a Fixed-Length Context. arXiv:1901.02860 [cs.LG]

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805 [cs.CL]

[26] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman P.
Jouppi. 2011. Hybrid Checkpointing Using Emerging Nonvolatile
Memories for Future Exascale Systems. ACMTrans. Archit. Code Optim.,
Article 6 (2011), 29 pages. https://doi.org/10.1145/1970386.1970387

[27] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, and Angela Fan et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783

[28] Assaf Eisenman, Kiran KumarMatam, Steven Ingram, DheevatsaMudi-
gere, Raghuraman Krishnamoorthi, Murali Annavaram, Krishnakumar
Nair, and Misha Smelyanskiy. 2022. Check-N-Run: A Checkpointing
System for Training Recommendation Models. In 19th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 22).
USENIX Association, Renton, WA, 929–943. https://www.usenix.org/
conference/nsdi22/presentation/eisenman

[29] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. 2002. A Survey of Rollback-Recovery Protocols in Message-
Passing Systems. ACM Comput. Surv. 34, 3 (sep 2002), 375–408. https:
//doi.org/10.1145/568522.568525

[30] Shen Gao, Bingsheng He, and Jianliang Xu. 2015. Real-Time In-
Memory Checkpointing for Future Hybrid Memory Systems. In Pro-
ceedings of the 29th ACM on International Conference on Supercomputing
(Newport Beach, California, USA) (ICS ’15). Association for Computing

Machinery, New York, NY, USA, 263–272. https://doi.org/10.1145/
2751205.2751212

[31] Wei Gao, Zhisheng Ye, Peng Sun, Yonggang Wen, and Tianwei Zhang.
2021. Chronus: A Novel Deadline-Aware Scheduler for Deep Learn-
ing Training Jobs. In Proceedings of the ACM Symposium on Cloud
Computing (Seattle, WA, USA) (SoCC ’21). Association for Computing
Machinery, New York, NY, USA, 609–623. https://doi.org/10.1145/
3472883.3486978

[32] Google. [n. d.]. Google Cloud GPUs. https://cloud.google.com/
compute/docs/gpus. Accessed: 2023-08-06.

[33] Google. [n. d.]. Google Cloud Spot VMs. https://cloud.google.com/spot-
vms. Accessed: 2023-08-10.

[34] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. 2013.
Speech Recognition with Deep Recurrent Neural Networks. CoRR
abs/1303.5778 (2013). arXiv:1303.5778 http://arxiv.org/abs/1303.5778

[35] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019.
Tiresias: A GPU Cluster Manager for Distributed Deep Learning.
In 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19). USENIX Association, Boston, MA, 485–500.
https://www.usenix.org/conference/nsdi19/presentation/gu

[36] Tanmaey Gupta, Sanjeev Krishnan, Rituraj Kumar, Abhishek Vi-
jeev, Bhargav Gulavani, Nipun Kwatra, Ramachandran Ramjee, and
Muthian Sivathanu. 2024. Just-In-Time Checkpointing: Low Cost Er-
ror Recovery from Deep Learning Training Failures. In Proceedings of
the Nineteenth European Conference on Computer Systems (<conf-loc>,
<city>Athens</city>, <country>Greece</country>, </conf-loc>) (Eu-
roSys ’24). Association for Computing Machinery, New York, NY, USA,
1110–1125. https://doi.org/10.1145/3627703.3650085

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016. IEEE Computer Society, 770–778. https:
//doi.org/10.1109/CVPR.2016.90

[38] Yi He, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju,
Nishant Patil, and Yanjing Li. 2023. Understanding and Mitigating
Hardware Failures in Deep Learning Training Systems. In Proceedings
of the 50th Annual International Symposium on Computer Architecture
(Orlando, FL, USA) (ISCA ’23). Association for Computing Machinery,
New York, NY, USA, Article 70, 16 pages. https://doi.org/10.1145/
3579371.3589105

[39] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale
Multi-Tenant GPU Clusters for DNN Training Workloads. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Asso-
ciation, Renton, WA, 947–960. https://www.usenix.org/conference/
atc19/presentation/jeon

[40] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen,
Zhi Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia,
Sun He, Hongmin Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou,
Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei, Zhang Zhang,
Pengfei Nie, Leqi Zou, Sida Zhao, Liang Xiang, Zherui Liu, Zhe Li,
Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. 2024. MegaScale: Scaling
Large Language Model Training to More Than 10,000 GPUs. In 21st
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24). USENIX Association, Santa Clara, CA, 745–760. https:
//www.usenix.org/conference/nsdi24/presentation/jiang-ziheng

[41] Sudarsun Kannan, Naila Farooqui, Ada Gavrilovska, and Karsten
Schwan. 2014. HeteroCheckpoint: Efficient Checkpointing for
Accelerator-Based Systems. In 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. 738–743. https:
//doi.org/10.1109/DSN.2014.76

[42] R. Koo and S. Toueg. 1987. Checkpointing and Rollback-Recovery for
Distributed Systems. IEEE Transactions on Software Engineering SE-13,

824

https://doi.org/10.1145/3565010.3569067
https://doi.org/10.1145/3565010.3569067
https://doi.org/10.1145/3492321.3519584
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-instance-termination-notices.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-instance-termination-notices.html
https://www.usenix.org/conference/fast21/presentation/bae
https://www.usenix.org/conference/fast21/presentation/bae
https://arxiv.org/abs/2304.01373
https://doi.org/10.1145/214451.214456
https://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/1970386.1970387
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://www.usenix.org/conference/nsdi22/presentation/eisenman
https://www.usenix.org/conference/nsdi22/presentation/eisenman
https://doi.org/10.1145/568522.568525
https://doi.org/10.1145/568522.568525
https://doi.org/10.1145/2751205.2751212
https://doi.org/10.1145/2751205.2751212
https://doi.org/10.1145/3472883.3486978
https://doi.org/10.1145/3472883.3486978
https://cloud.google.com/compute/docs/gpus
https://cloud.google.com/compute/docs/gpus
https://cloud.google.com/spot-vms
https://cloud.google.com/spot-vms
https://arxiv.org/abs/1303.5778
http://arxiv.org/abs/1303.5778
https://www.usenix.org/conference/nsdi19/presentation/gu
https://doi.org/10.1145/3627703.3650085
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3579371.3589105
https://doi.org/10.1145/3579371.3589105
https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://doi.org/10.1109/DSN.2014.76
https://doi.org/10.1109/DSN.2014.76

PCcheck: Persistent Concurrent Checkpointing for ML ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

1 (1987), 23–31. https://doi.org/10.1109/TSE.1987.232562
[43] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learn-

ing. Nature 521, 7553 (2015), 436–444. https://doi.org/10.1038/
nature14539

[44] Youjie Li, Amar Phanishayee, Derek Murray, Jakub Tarnawski, and
Nam Sung Kim. 2022. Harmony: overcoming the hurdles of GPU
memory capacity to train massive DNN models on commodity servers.
Proc. VLDB Endow. 15, 11 (jul 2022), 2747–2760. https://doi.org/10.
14778/3551793.3551828

[45] Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jeffrey, Vikram
Saraph, Bor-Yiing Su, Caroline Trippel, Jiyan Yang, Mike Rabbat, Bran-
don Lucia, and Carole-Jean Wu. 2020. CPR: Understanding and Im-
proving Failure Tolerant Training for Deep Learning Recommendation
with Partial Recovery. arXiv:2011.02999 [cs.LG]

[46] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stone-
braker. 2014. Rethinking main memory OLTP recovery. In 2014
IEEE 30th International Conference on Data Engineering. 604–615.
https://doi.org/10.1109/ICDE.2014.6816685

[47] Pak Markthub, Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and
Satoshi Matsuoka. 2018. DRAGON: Breaking GPU Memory Capacity
Limits with Direct NVM Access. In SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
414–426. https://doi.org/10.1109/SC.2018.00035

[48] Meta. 2022. Democratizing access to large-scale language models
with OPT-175B. https://ai.facebook.com/blog/democratizing-access-
to-large-scale-language-models-with-opt-175b/.

[49] Microsoft. [n. d.]. Azure Spot Virtual Machines. https://learn.microsoft.
com/en-us/azure/virtual-machines/spot-vms. Accessed: 2023-08-10.

[50] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021.
CheckFreq: Frequent, Fine-Grained DNN Checkpointing. In 19th
USENIX Conference on File and Storage Technologies, FAST 2021, Febru-
ary 23-25, 2021. USENIX Association, 203–216. https://www.usenix.
org/conference/fast21/presentation/mohan

[51] Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay
Chidambaram. 2022. Looking Beyond GPUs for DNN Scheduling
on Multi-Tenant Clusters. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 579–596. https://www.usenix.org/conference/osdi22/
presentation/mohan

[52] Adam Morrison and Yehuda Afek. 2013. Fast Concurrent Queues for
X86 Processors. In Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (Shenzhen, China)
(PPoPP ’13). Association for Computing Machinery, New York, NY,
USA, 103–112. https://doi.org/10.1145/2442516.2442527

[53] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar
Phanishayee, and Matei Zaharia. 2020. Analysis and Exploitation of
Dynamic Pricing in the Public Cloud for ML Training. In Workshop on
Distributed Infrastructure, Systems, Programming, and AI.

[54] Bogdan Nicolae, Jiali Li, Justin M. Wozniak, George Bosilca, Matthieu
Dorier, and Franck Cappello. 2020. DeepFreeze: Towards Scalable
Asynchronous Checkpointing of Deep Learning Models. In 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID). 172–181. https://doi.org/10.1109/CCGrid49817.
2020.00-76

[55] Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. 2022. GPM:
Leveraging Persistent Memory from a GPU. In Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’22). Association for Computing Machinery, New York, NY, USA,
142–156. https://doi.org/10.1145/3503222.3507758

[56] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An

Imperative Style, High-Performance Deep Learning Library. Curran
Associates Inc., Red Hook, NY, USA.

[57] Aurick Qiao, Bryon Aragam, Bingjing Zhang, and Eric Xing. 2018.
Fault Tolerance in Iterative-Convergent Machine Learning. CoRR
abs/1810.07354. arXiv:1810.07354 http://arxiv.org/abs/1810.07354

[58] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie
Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.
Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-
Optimized Deep Learning. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association,
1–18. https://www.usenix.org/conference/osdi21/presentation/qiao

[59] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong
He. 2020. ZeRO: Memory Optimizations Toward Training Tril-
lion Parameter Models. ArXiv. https://www.microsoft.com/en-
us/research/publication/zero-memory-optimizations-toward-
training-trillion-parameter-models/

[60] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong
He. 2020. DeepSpeed: System Optimizations Enable Training Deep
Learning Models with Over 100 Billion Parameters. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining (Virtual Event, CA, USA) (KDD ’20). Asso-
ciation for Computing Machinery, New York, NY, USA, 3505–3506.
https://doi.org/10.1145/3394486.3406703

[61] Nathalie Rauschmayr, Vikas Kumar, Rahul Huilgol, Andrea Olgiati,
Satadal Bhattacharjee, Nihal Harish, Vandana Kannan, Amol Lele,
Anirudh Acharya, Jared Nielsen, Lakshmi Ramakrishnan, Ishan Bhatt,
Kohen Chia, Neelesh Dodda, Zhihan Li, Jiacheng Gu, Miyoung Choi,
Balajee Nagarajan, Jeffrey Geevarghese, Denis Davydenko, Sifei Li,
Lu Huang, Edward Kim, Tyler Hill, and Krishnaram Kenthapadi.
2021. Amazon SageMaker Debugger: A System for Real-Time In-
sights into Machine Learning Model Training. In Proceedings of Ma-
chine Learning and Systems, A. Smola, A. Dimakis, and I. Stoica
(Eds.), Vol. 3. 770–782. https://proceedings.mlsys.org/paper/2021/
file/d1f491a404d6854880943e5c3cd9ca25-Paper.pdf

[62] Kun Ren, Thaddeus Diamond, Daniel J. Abadi, andAlexander Thomson.
2016. Low-Overhead Asynchronous Checkpointing in Main-Memory
Database Systems. In Proceedings of the 2016 International Conference
on Management of Data (San Francisco, California, USA) (SIGMOD ’16).
Association for ComputingMachinery, New York, NY, USA, 1539–1551.
https://doi.org/10.1145/2882903.2915966

[63] Frank Schneider, Felix Dangel, and Philipp Hennig. 2021. Cockpit: A
Practical Debugging Tool for the Training of Deep Neural Networks.
https://doi.org/10.48550/ARXIV.2102.06604

[64] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. In International
Conference on Learning Representations.

[65] Rob Strom and Shaula Yemini. 1985. Optimistic Recovery in Distributed
Systems. ACM Trans. Comput. Syst. 3, 3 (aug 1985), 204–226. https:
//doi.org/10.1145/3959.3962

[66] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao
Jia, Minjia Zhang, Ravi Netravali, and Guoqing Harry Xu. 2023. Bam-
boo: Making Preemptible Instances Resilient for Affordable Training
of Large DNNs. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). USENIX Association, 497–513.
https://www.usenix.org/conference/nsdi23/presentation/thorpe

[67] Marcel Wagenländer, Luo Mai, Guo Li, and Peter Pietzuch. 2020. Spot-
nik: Designing Distributed Machine Learning for Transient Cloud
Resources. In 12th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 20). USENIX Association. https://www.usenix.org/
conference/hotcloud20/presentation/wagenl{ä}nder

[68] ZhuangWang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, T. S. Eu-
gene Ng, and Yida Wang. 2023. GEMINI: Fast Failure Recovery in Dis-
tributed Training with In-Memory Checkpoints. In Proceedings of the
29th Symposium on Operating Systems Principles (Koblenz, Germany)

825

https://doi.org/10.1109/TSE.1987.232562
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.14778/3551793.3551828
https://doi.org/10.14778/3551793.3551828
https://arxiv.org/abs/2011.02999
https://doi.org/10.1109/ICDE.2014.6816685
https://doi.org/10.1109/SC.2018.00035
https://ai.facebook.com/blog/democratizing-access-to-large-scale-language-models-with-opt-175b/
https://ai.facebook.com/blog/democratizing-access-to-large-scale-language-models-with-opt-175b/
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://www.usenix.org/conference/fast21/presentation/mohan
https://www.usenix.org/conference/fast21/presentation/mohan
https://www.usenix.org/conference/osdi22/presentation/mohan
https://www.usenix.org/conference/osdi22/presentation/mohan
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1109/CCGrid49817.2020.00-76
https://doi.org/10.1109/CCGrid49817.2020.00-76
https://doi.org/10.1145/3503222.3507758
https://arxiv.org/abs/1810.07354
http://arxiv.org/abs/1810.07354
https://www.usenix.org/conference/osdi21/presentation/qiao
https://www.microsoft.com/en-us/research/publication/zero-memory-optimizations-toward-training-trillion-parameter-models/
https://www.microsoft.com/en-us/research/publication/zero-memory-optimizations-toward-training-trillion-parameter-models/
https://www.microsoft.com/en-us/research/publication/zero-memory-optimizations-toward-training-trillion-parameter-models/
https://doi.org/10.1145/3394486.3406703
https://proceedings.mlsys.org/paper/2021/file/d1f491a404d6854880943e5c3cd9ca25-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/d1f491a404d6854880943e5c3cd9ca25-Paper.pdf
https://doi.org/10.1145/2882903.2915966
https://doi.org/10.48550/ARXIV.2102.06604
https://doi.org/10.1145/3959.3962
https://doi.org/10.1145/3959.3962
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://www.usenix.org/conference/hotcloud20/presentation/wagenl{�}nder
https://www.usenix.org/conference/hotcloud20/presentation/wagenl{�}nder

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Foteini Strati, Michal Friedman, & Ana Klimovic

(SOSP ’23). Association for Computing Machinery, New York, NY, USA,
364–381. https://doi.org/10.1145/3600006.3613145

[69] Zhuang Wang, Haibin Lin, Yibo Zhu, and T. S. Eugene Ng. 2023. Hi-
Speed DNN Training with Espresso: Unleashing the Full Potential of
Gradient Compression with Near-Optimal Usage Strategies. In Proceed-
ings of the Eighteenth European Conference on Computer Systems (Rome,
Italy) (EuroSys ’23). Association for Computing Machinery, New York,
NY, USA, 867–882. https://doi.org/10.1145/3552326.3567505

[70] Weights and Biases. 2022. The AI developer platform. https://wandb.
ai/site. Accessed: 2023-08-10.

[71] BigScienceWorkshop, :, Teven Le Scao, Angela Fan, Christopher Akiki,
Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexan-
dra Sasha Luccioni, François Yvon, Matthias Gallé, and Jonathan Tow
et al. 2023. BLOOM: A 176B-Parameter Open-Access Multilingual
Language Model. arXiv:2211.05100 [cs.CL] https://arxiv.org/abs/2211.
05100

[72] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, New-
sha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James
Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anas-
tasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Ben-
jamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian Balandat,
Joe Spisak, Ravi Jain, Mike Rabbat, and Kim Hazelwood. 2021. Sustain-
able AI: Environmental Implications, Challenges and Opportunities.
(2021). arXiv:2111.00364 [cs.LG] https://arxiv.org/abs/2111.00364

[73] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s Neural
Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR (2016). arXiv:1609.08144 http://arxiv.org/
abs/1609.08144

[74] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. 2020. An Empirical Guide to the Behavior and Use
of Scalable Persistent Memory. In 18th USENIX Conference on File and
Storage Technologies (FAST 20). USENIX Association, Santa Clara, CA,
169–182. https://www.usenix.org/conference/fast20/presentation/
yang

[75] Binhang Yuan, Yongjun He, Jared Quincy Davis, Tianyi Zhang, Tri
Dao, Beidi Chen, Percy Liang, Christopher Re, and Ce Zhang. 2023.
Decentralized Training of Foundation Models in Heterogeneous Envi-
ronments. arXiv:2206.01288 [cs.DC]

[76] Susan Zhang, Stephen Roller, NamanGoyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria
Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. 2022. OPT: Open Pre-trained Transformer Language
Models. arXiv:2205.01068 [cs.CL]

[77] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014.
Fast Databases with Fast Durability and Recovery Through Multicore
Parallelism. In 11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14). USENIX Association, Broomfield,
CO, 465–477. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/zheng_wenting

A Artifact Appendix
A.1 Abstract
The artifact consists of the source code of PCcheck4, bench-
marks for deployment and evaluation, scripts and instruc-
tions for reproducing the key results of the paper, in compar-
ison with related work, microbenchmarks, and sensitivity
study.

The evaluation focuses on reproducing key results from
the paper:
● Figure 8: Effect on training throughput, and compari-
son with baselines, when varying the checkpoint fre-
quency. To reduce evaluation hours and costs, we focus
on one model.
● Figure 9: Effect on goodput, and comparison with
baselines, when varying the checkpoint frequency,
given a preemption trace. To reduce evaluation hours
and costs, we focus on one model.
● Figure 11:Microbenchmarks, showing the end-to-end
time to persist a checkpoint for different baselines.
● Figure 12: Sensitivity analysis, varying the number
of concurrent checkpoints.

A.2 Artifact check-list (meta-information)
● Algorithm: The paper proposes PCcheck, a framework
for fine-grained checkpointing of ML applications. Part of
PCcheck is an algorithm that enables multiple checkpoints
to be on-they-fly concurrently (described in section 4.1).
● Program: We evaluate PCcheck using benchmarks from
TorchVision [10], the NVIDIA DeepLearning repo [8] and
HuggingFace [6]. All benchmarks are public. We provide
instructions for setting up in our repo.
● Compilation: To compile PCcheck we used GCC-9.4, and
CUDA-12.1.
● Model: For our evaluation, we used VGG-16 [64] (138M
params), Transformer-XL [24] (192M params), BERT [25]
(345M params), various sizes of OPT [76] (350M, 1.3B, 2.7B
params), and BLOOM [71] (7B params). All models are open-
source. We provide instructions to download all models in
our repo. As part of the artifact evaluation process, we focus
on Transformer and OPT.
● Data set: We use SQUAD [9] and WikiText [12]. Both
datasets are downloaded automatically with our scripts pro-
vided in this link.
● Run-time environment: For our evaluation, we used
Ubuntu 20.04. We used GCC-9.4, Python 3.9.18, NVIDIA
Driver 530.30.02, and CUDA 12.1. We provide instructions
here (they need sudo access).
● Hardware: Weused a2-highgpu-1g VMs fromGoogle Cloud
Platform [1]. Each VM has an A100-40GB GPU attached, 1TB
of pd-ssd, 12 vCPUs, and 85 GB of DRAM.
● Execution: To get more accurate measurements, we rec-
ommend solo access to the machine. PCcheck uses thread
pinning to specific cores for higher performance. To replicate
all of the experiments, 6 hours are needed on average
● Metrics: We report training throughput, goodput and rela-
tive slowdown. The scripts included in our repo automati-
cally collect these metrics.
● Output: For each graph, we generate a .csv file contain-
ing the results, and we provide the scripts to generate the
corresponding plot.

4https://github.com/eth-easl/pccheck

826

https://doi.org/10.1145/3600006.3613145
https://doi.org/10.1145/3552326.3567505
https://wandb.ai/site
https://wandb.ai/site
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2111.00364
https://arxiv.org/abs/2111.00364
https://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://arxiv.org/abs/2206.01288
https://arxiv.org/abs/2205.01068
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_wenting
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_wenting
https://github.com/eth-easl/pccheck/blob/master/setup_models_and_datasets.sh
https://github.com/eth-easl/pccheck/blob/master/install_preq_at_vm.sh
https://github.com/eth-easl/pccheck/tree/master/artifact_evaluation
https://github.com/eth-easl/pccheck

PCcheck: Persistent Concurrent Checkpointing for ML ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

● Experiments: Our README contains instructions on how
to prepare experiments and reproduce results. We provide
instructions on how to install and run a basic test. To re-
produce results, a user needs to download the appropriate
models and datasets with our setup_models_and_datasets.sh
script. Each Figure in the paper corresponds to a script that
runs the experiments and generates the plots.
● How much disk space required (approximately)?: We
recommend at least 1TB of SSD.We used pd-ssd from Google
Cloud for our evaluation.
● How much time is needed to complete experiments
(approximately)?: 6 hours. We provide a breakdown in out
README
● Publicly available?: The artifact will be publicly available.
● Code licenses (if publicly available)?: Our repo is using
the MIT License.
● Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
14054822

A.3 Description
A.3.1 How to access. The artifact is available in https:
//github.com/eth-easl/pccheck and can be cloned from there.
The DOI for the artifact is https://doi.org/10.5281/zenodo.
14054822.

A.3.2 Hardware dependencies. The artifact has been
tested on GCP machines with the following specifications:
● a2-highgpu-1g (12 vCPUs, 85GB of DRAM) with 1
A100-40GB GPU attached.
● 1TB pd-ssd attached.

We have started with a VM of these configurations using
the ubuntu-2004-focal-v20240830 image from GCP, and
installed all dependencies using our install script.

A.3.3 Software dependencies. We use Ubuntu 20.04 and
the following packages:
● GCC-9.4
● Python 3.9
● NVIDIA Driver 565.57.01
● CUDA 12.1
● NVIDIA Apex

Furthermore, we use the following Python packages:
● Torch 2.1
● Deepspeed 0.12.6
● Torchvision 0.14.1
● HF accelerate 0.20.3

All dependencies can be installed with our install script.

A.3.4 Data sets. Weuse SQUADandWikiText. Both datasets
are downloaded automatically with our scripts provided here

A.3.5 Models. We used VGG-16 [64] (138M params),
Transformer-XL [24] (192Mparams), BERT [25] (345Mparams),
various sizes of OPT [76] (350M, 1.3B, 2.7B params), and
BLOOM [71] (7B params). All models are open-source. We
provide instructions on how to download all models in our
repo.

A.4 Installation
As a first step, the user needs to set up an environment with
the necessary dependencies. We provide a GCP image, with
all software dependencies preinstalled. We also provide the
exact commands in the install_preq_at_vm.sh script on how
to install all dependencies from scratch.
Next, the user needs to download the PCcheck repo, and

install PCcheck (and build the other baselines) using our
install.sh script.
The user can run a simple example by executing our

test_simple.sh script. This runs a few training iterations of
the VGG-16 model, using PCcheck to checkpoint every 50
iterations.

We provide full instructions in our README.

A.5 Experiment workflow
To replicate the results from our paper, these steps need to
be followed:

1. Download the required models and datasets using the
setup_models_and_datasets.sh script.

2. For each Figure, we provide scripts to run the appro-
priate experiments, collect the results, and generate
plots. The user needs to run the respective script for
each plot.

These steps are documented in our README.

A.6 Evaluation and expected results
We first show how PCcheck performs compared to baselines
under various checkpoint frequencies.
● Figure 8 shows the training throughput of PCcheck un-
der various checkpoint frequencies for different mod-
els, and compares it with baselines such as Check-
Freq [50] and GPM [55]. To reduce evaluation time
and costs, we focus on 8b. Overall, PCcheck allows
checkpointing at more frequent intervals compared to
the baselines, with minimal impact on throughput.
● Figure 9 shows the goodput for PCcheck and the rest
baselines for a given preemption trace. Again, we focus
on 9b. Since PCcheck allowsmore frequent checkpoint-
ing than the baselines, it also leads to higher goodput.

We then run some basic microbenchmarks as depicted in
Figure 11, where we plot the end-to-end time to copy and
persist a checkpoint for various baselines. We omit Gemini
due to the complexity of the setup.

Finally, we conduct a sensitivity study, analyzing the fac-
tors that affect PCcheck’s performance. We focus on Figure
12. This figure depicts the slowdown in training throughput
for the VGG-16 model, under various checkpoint frequen-
cies, when varying the number of concurrent checkpoints.
We observe that no more than 4 concurrent checkpoints are
needed at a time, due to SSD bandwidth saturation.

827

https://github.com/eth-easl/pccheck/tree/master/artifact_evaluation##setup
https://github.com/eth-easl/pccheck/blob/master/setup_models_and_datasets.sh
https://github.com/eth-easl/pccheck/tree/master/artifact_evaluation##reproducing-paper-results
https://doi.org/10.5281/zenodo.14054822
https://doi.org/10.5281/zenodo.14054822
https://github.com/eth-easl/pccheck
https://github.com/eth-easl/pccheck
https://doi.org/10.5281/zenodo.14054822
https://doi.org/10.5281/zenodo.14054822
https://github.com/eth-easl/pccheck/blob/master/install_preq_at_vm.sh
https://github.com/eth-easl/pccheck/blob/master/install_preq_at_vm.sh
https://github.com/eth-easl/ml-nvm/blob/fot/cleanup/setup_models_and_datasets.sh
https://github.com/eth-easl/pccheck/blob/master/install_preq_at_vm.sh
https://github.com/eth-easl/pccheck/blob/master/install.sh
https://github.com/eth-easl/pccheck/blob/master/artifact_evaluation/test_simple.sh
https://github.com/eth-easl/pccheck/tree/master/artifact_evaluation##setup
https://github.com/eth-easl/pccheck/blob/master/setup_models_and_datasets.sh
https://github.com/eth-easl/pccheck/tree/master/artifact_evaluation##reproducing-paper-results

	Abstract
	1 Introduction
	2 Background
	2.1 Why Checkpoint?
	2.2 Checkpointing Mechanisms for DNN Training
	2.3 Hardware Architecture Factors

	3 PCcheck Design
	3.1 Overview
	3.2 Throughput-Memory Tradeoff
	3.3 Data Copy Mechanisms
	3.4 Configuring PCcheck

	4 PCcheck Algorithm
	4.1 Persisting Checkpoints
	4.2 Recovering with Checkpoints

	5 Evaluation
	5.1 Setup
	5.2 Performance Results
	5.3 Microbenchmarks
	5.4 Sensitivity Study

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

