
Cachew: Machine Learning Input Data Processing as a Service

Dan Graur
ETH Zurich

Damien Aymon
ETH Zurich

Dan Kluser
ETH Zurich

Tanguy Albrici
ETH Zurich

Chandramohan A. Thekkath
Google

Ana Klimovic
ETH Zurich

Abstract
Processing input data plays a vital role in ML training, im-

pacting accuracy, throughput, and cost. The input pipeline,
which is responsible for feeding data-hungry GPUs/TPUs
with training examples, is a common bottleneck. Alleviating
data stalls is critical yet challenging for users. While today’s
frameworks provide mechanisms to maximize input pipeline
throughput (e.g., distributing data processing on remote CPU
workers and/or reusing cached data transformations), leverag-
ing these mechanisms to jointly optimize training time and
cost is non-trivial. Users face two key challenges. First, ML
schedulers focus on GPU/TPU resources, leaving users on
their own to optimize multi-dimensional resource allocations
for data processing. Second, input pipelines often consume
excessive compute power to repeatedly transform the same
data. Deciding which source or transformed data to cache is
non-trivial: large datasets are expensive to store, the compute
time saved by caching is not always the bottleneck for end-to-
end training, and transformations may not be deterministic,
hence reusing transformed data can impact accuracy.

We propose Cachew, a fully-managed service for ML data
processing. Cachew dynamically scales distributed resources
for data processing to avoid stalls in training jobs. The ser-
vice also automatically applies caching when and where it is
performance/cost-effective to reuse preprocessed data within
and across jobs. Our key contributions are autoscaling and
autocaching policies, which leverage domain-specific met-
rics collected at data workers and training clients (rather than
generic resource utilization metrics) to minimize training
time and cost. Compared to scaling workers with Kubernetes,
Cachew’s policies reduce training time by up to 4.1× and
training cost by 1.1× to 3.8×.

1 Introduction

Input data processing is an essential part of machine learning
(ML) training. Transformations applied to input data before
it is fed to a model for training – such as extracting features,
sampling data from imbalanced classes, and randomly aug-
menting data – are key to achieving high accuracy [19,57,63].
Furthermore, the speed at which the input pipeline can ingest
data from storage, apply transformations on-the-fly, and load

Figure 1: Training jobs benefit differently when given more
CPU resources for input data processing per accelerator core.

transformed data to training nodes greatly impacts the time to
accuracy and the overall cost of model training.

While GPUs and TPUs used for training computations con-
tinue to provide more FLOPS, CPUs – which are responsible
for input data processing – are not keeping up. Hence, the
input pipeline is a common bottleneck in ML training [38].

Removing bottlenecks in the input pipeline can improve
end-to-end training time by over an order of magnitude and
greatly reduce costs [47, 48]. However, optimizing ML data
processing is non-trivial. Users face several key challenges.

First, allocating the right amount of CPU, memory, and
storage for input data processing, to optimize training time
and cost, is difficult. Users should allocate just enough re-
sources for the input pipeline to produce batches of data at
the throughput that the model can ingest data, which depends
on the model’s computational intensity and the hardware (#
of GPUs) allocated for training. As shown in Figure 1, each
model requires a different ratio of CPUs for data process-
ing and GPUs or TPUs for training. Hence, although ML
frameworks traditionally couple input data processing and
training such that the two stages execute on the same node, it
is becoming increasingly common to disaggregate data pro-
cessing, with systems like tf.data service [25] and Meta’s
Data PrePreprocessing (DPP) Service [69]. Disaggregation
enables customizing resource allocations per job. However,
today’s ML resource management systems focus on GPU allo-
cations [28,44,65], leaving users on their own to decide input



pipeline resource allocations that maximize performance and
minimize cost of training jobs. This is notoriously challenging
in the multi-dimensional resource setting of ML training [64].

Another major challenge is the significant amount of com-
pute and memory resources required for input data processing.
For example, when training deep recommender models with
petabytes of data, data ingestion can consume more power
than model training itself [69]. A promising approach to re-
duce data processing compute requirements is to memoize
the outputs of commonly executed data pipelines, since ML
training often involves redundant data accesses and transfor-
mations, both within and across jobs [34, 47, 48, 66]. Within a
job, it is common to iterate multiple times (i.e., epochs) over a
dataset. Across jobs, ML engineers typically experiment with
variations of models (e.g., hyperparameter tuning and model
search) while re-executing the same data pipeline.

ML data processing frameworks provide mechanisms for
reusing memoized data transformations, such as tf.data’s
cache and snapshot operators [22, 61, 62]. However, deter-
mining which (transformed) datasets are optimal to cache in
fast storage is non-trivial. Transformed datasets are costly to
store and slow to read if they are significantly larger in volume
than source data, which can occur after decompression and
data augmentations. Figure 2 shows that reusing memoized re-
sults stored on local SSDs of a training node does not always
improve epoch time, since local SSD bandwidth may saturate
when reading the larger transformed dataset. Even caching
source data on local SSDs does not always improve epoch
time compared to reading from cloud data lakes (e.g., we use
GCS [27]) since model training may be the bottleneck. If an
input pipeline applies random transformations to data each
epoch, the caching decision is further complicated as reusing
the transformed dataset from a single epoch can negatively
impact model training dynamics [16, 40].

In summary, ML data processing frameworks provide use-
ful mechanisms to alleviate data bottlenecks, such as distribut-
ing data processing on remote CPU workers and reusing
cached data transformations. However, today’s systems lack
policies that efficiently leverage these mechanisms to opti-
mize the overall performance and cost of ML training.

We propose Cachew, a fully-managed service for ML in-
put data processing. Inspired by the serverless computing
paradigm, which relieves developers from the burden of man-
aging virtual machines in the cloud [13, 55], Cachew relieves
ML users from the burden of managing compute, memory, and
storage infrastructure for ML input data processing. Cachew
consists of a centralized dispatcher, distributed input data
workers, and a disaggregated storage cluster that stores cached
datasets. We build Cachew on top of the tf.data frame-
work [48], extending its distributed service [25] to support
multi-tenancy, autoscaling, and autocaching. Cachew is open
source1 and compatible with the existing tf.data API.

1Cachew is available at: https://github.com/eth-easl/cachew

Figure 2: Caching source data or materializing data in local
storage does not always improve training throughput.

Our key contributions are the design and implementation
of autoscaling and autocaching policies for ML input data
processing. We show that traditional resource autoscaling ap-
proaches (e.g., in Kubernetes [1]), which are based on CPU
and memory utilization, are not sufficient to optimize training
time and cost. Instead, we base our policies on application-
specific metrics collected at input data workers and clients
while a job is running. The Cachew dispatcher leverages the
stateless nature of ML input data processing to adjust the
number of workers per job during runtime. By monitoring
batch time reported by clients, the dispatcher dynamically
finds the minimum number of workers (i.e., minimum cost)
that minimizes batch time (i.e., maximizes performance). By
monitoring per-worker throughput and the volume of data
produced by the input pipeline, the dispatcher also decides on
whether reading data from Cachew’s cluster cache is likely
to improve performance compared to reading and transform-
ing data from cloud data lakes on-the-fly. Cachew extends
the tf.data API with an autocache operator, which allows
users to specify up to which point in their input pipeline it is
acceptable to cache and reuse data from a training dynamics
perspective (e.g., before any random transformations).

We evaluate Cachew with microbenchmarks and three
popular ML models and data pipelines from the Tensor-
Flow Model Garden. We show that while the Kubernetes au-
toscaler under-provisons or over-provisions input data work-
ers, Cachew is able to identify the optimal number of data
workers to allocate for each job as well as the optimal caching
strategy at each autocache operator location in the input
pipeline to minimize training time and cost. We show that
compared to scaling workers with Kubernetes, Cachew’s poli-
cies reduce training cost by 1.1× to 3.8×.

2 ML Input Data Processing

We summarize the key characteristics of ML input data
pipelines (§ 2.1) and discuss why it is increasingly common
to disaggregate data processing from model training (§ 2.2).
§ 2.3 provides an overview of existing mechanisms for fast,
efficient input data pipeline execution.

https://github.com/eth-easl/cachew


2.1 ML Input Data Pipeline Characteristics

Reading input data from storage: The first step in ML input
data processing is reading source data. Deep learning input
pipelines typically read datasets that range from gigabytes to
petabytes in size, stored in low-cost distributed storage sys-
tems, such as cloud data lakes [48,68,69]. To avoid I/O bottle-
necks during training, it is common to cache input datasets in
more expensive, higher bandwidth storage systems [39, 47].

Transforming data: Before raw input data can be con-
sumed by a model, it must be preprocessed into elements that
the model can learn from. Common transformations include
decompressing data, parsing file formats, extracting features,
and batching elements. It is also common to add random-
ness to input data (e.g., randomly sampling, augmenting, and
shuffling elements) to improve model generalization [12].
Random data augmentations are critical for achieving state-
of-the-art accuracy in image classification [14, 15, 18, 21, 58],
object detection [19, 67], and speech recognition [49, 50].

Data transformations are generally executed on CPUs
rather than specialized hardware to better support user-defined
functions [48]. While some transformations can be applied
in offline batch processing jobs [6], many transformations
are applied on-the-fly during training for greater flexibility.
For instance, it is common to experiment with feature extrac-
tion, tune the batch size for a given GPU configuration, or
randomly augment data using different seeds across epochs.

While some transformations (e.g., decompression and aug-
mentation) expand the volume of data read from storage, other
transformations (e.g., filtering and sampling) decrease the vol-
ume of data fed to a model. A study of ML input pipelines at
Google found that the ratio of data fed to a model versus the
data read from storage varies widely across jobs. For 75% of
jobs, data transformations reduced data volume [48].

Loading data to training nodes: The final step is to load
data to GPUs/TPUs for model training. To avoid data stalls,
the input pipeline must produce data at a throughput greater
than or equal to the rate at which the model can consume data.
The model’s data ingestion rate depends on the algorithmic in-
tensity of the training computations and the hardware FLOPS.
Feeding data-hungry accelerators requires high software par-
allelism and pipelining for data processing [38, 48].

Re-executing input pipelines: In large-scale production
and research deployments, ML input data pipelines are com-
monly re-executed. Within a job, each training epoch reads
and transforms the same input dataset. Across jobs, common
ML training workflows, such as neural architecture search
and hyperparameter tuning, involve feeding the same pre-
processed data to different variations of a model [34, 70]. At
Google, the top 10% most commonly executed input pipelines
accounted for 77% of all input pipeline executions and 72%
of CPU cycles used for ML input data processing [48]. Oth-
ers have also observed a sizeable opportunity to reuse data
processing within and across ML jobs [47, 66].

2.2 Why disaggregate input data processing?

ML input data processing and training consist of fundamen-
tally different types of computation (user-defined data trans-
formations vs. gradient updates) that primarily use different
resources (CPUs vs. GPUs/TPUs). Yet ML frameworks have
typically coupled these two stages, such that they run on the
same nodes. Tight coupling has two major drawbacks. First,
CPU/memory-intensive input pipelines can easily saturate
host resources and limit training throughput. Zhao et al. [69]
showed that loading data over the network from distributed
storage – even without performing data transformations on the
CPU – consumes significant CPU cycles and memory band-
width in production deployments, leaving scarce resources
available for transforming data on training nodes. Second,
the ratio of resources required for input data processing vs.
model training varies across jobs (as seen in Figure 1, where
we varied the CPU cores available using the Linux taskset
command). However, cloud providers typically limit the CPU
cores and memory capacity that can be provisioned per ac-
celerator on a virtual machine [9, 26]. The fixed ratio of CPU
cores and memory attached to accelerators often leads to
imbalanced usage (i.e., either idle accelerators or idle CPUs).

To improve resource utilization and avoid input data stalls,
it is increasingly common to disaggregate data processing
from model training [25, 69]. Disaggregation is a well-known
approach for improving resource allocation flexibility [23,36].
This flexibility can save cost, since users can distribute input
data processing across as many or as few CPU worker nodes
as needed to avoid data stalls, without provisioning additional
expensive GPUs/TPUs.

2.3 Existing Mechanisms

We describe key mechanisms in existing frameworks for effi-
cient input data processing. Users can define and execute ML
input data pipelines with a variety of data loading frameworks,
such as tf.data [48], PyTorch DataLoader [17], NVIDIA
DALI [29], and CoorDL [47]. We highlight the tf.data
framework, as its combination of state-of-the-art mechanisms
serve as a foundation for our work. tf.data’s programming
model allows users to build input pipelines by composing and
customizing operators. The framework runtime executes in-
put pipelines as dataflow graphs, applying static and dynamic
optimizations to improve performance.

Disaggregation: tf.data service supports executing input
pipelines in a distributed manner [11]. The service consists
of a centralized dispatcher and a number of remote input data
workers. Clients (i.e., training nodes) register input pipelines
defined in the tf.data API with the dispatcher, which shards
data processing across all workers in the service. Clients fetch
data directly from workers. The Data PreProcessing Service
at Meta is another example of a framework that disaggregates
input data processing [69]. In both frameworks, users are



responsible for managing the number of input data workers
and deciding per-job resource allocations.

Dataset Caching: The tf.data snapshot operator al-
lows users to cache the output of their input pipeline to disk,
and materialize the transformed data on a subsequent training
run [22]. This trades off I/O capacity and bandwidth to free up
CPU resources. Inserting the snapshot operator at the appro-
priate point in an input pipeline to optimize overall training
time and cost remains the user’s responsibility. The current
snapshot implementation does not coordinate between asyn-
chronous reads and writes from multiple nodes, making it
incompatible with tf.data service (hence, we implement
our own put and get operators, described in §5.1).

CoorDL [47] and OneAccess [34] reuse input pipeline out-
puts when jobs are scheduled in a coordinated manner (e.g.,
hyperparameter tuning). However, these frameworks do not
reuse data transformations across arbitrary ML jobs that can
be submitted asynchronously to a service over time. Revam-
per [40] allows users to partially reuse the outputs of random
transformations in input pipelines while minimizing the im-
pact on training dynamics. Quiver [39] implements distributed
caching for DNN training, but it is designed exclusively for
managing source data rather than transformed datasets.

Autotuning: tf.data’s runtime and Plumber [38], a tool
for diagnosing input data bottlenecks, can dynamically tune
software parallelism and memory buffer sizes to maximize
performance on a given training node [48]. However, this
tuning does not scale resources beyond a single node.

GPU Offloading: NVIDIA DALI supports offloading cer-
tain input data processing, such as image data augmentations,
to GPUs [29]. This is a viable option to alleviate CPU bottle-
necks but may lead to GPU resource contention among input
data transformation tasks and model training tasks. Users
therefore need to decide which input data transformations
should run on CPUs vs. GPUs.

3 ML Input Data Service Challenges

While many useful mechanisms for ML input data processing
exist, it remains challenging for users to leverage these mecha-
nisms to minimize end-to-end ML training time and cost. We
focus on two key challenges: scaling resources for data pro-
cessing (§ 3.1) and saving compute resources by selectively
caching (transformed) datasets (§ 3.2).

3.1 Autoscaling Challenges

Selecting the right amount of compute, memory, and stor-
age resources to provision for ML input data processing is
critical yet challenging for ML users. Under-provisioning re-
sources for data processing leads to data stalls, which leave
expensive hardware accelerators idle, increasing end-to-end
training time and cost. Over-provisioning resources for data

processing leads to extra costs without improving end-to-
end performance. The optimal resource allocation for data
processing depends on the compute intensity of data transfor-
mations in the input pipeline, the volume of data that must be
read for each training batch, and the rate at which the pipeline
must produce data to match model ingestion throughput.

Determining the right resource allocation for ML input data
processing is non-trivial as each model and input data pipeline
combination have unique requirements [69]. For example, in
Figure 1, we vary the amount of CPU cores allocated for input
data processing to show how many cores are needed to meet
model training throughput requirements in various jobs. To
process the COCO dataset [43] and train the RetinaNet [42]
model, 4 CPU cores per TPU accelerator core are sufficient,
whereas to process the ImageNet [21] dataset and train the
EfficientNetv2 [59] model, the user should provision 12 CPU
cores per TPU accelerator core to avoid input data stalls dur-
ing training. We also observe that scaling memory capacity
and bandwidth greatly impacts performance. Furthermore,
we find that training throughput does not scale linearly with
CPU and memory resources, making it difficult to model how
resource allocation affects performance.

3.2 Autocaching Challenges

Deciding which input data transformations to materialize and
reuse versus which transformations to execute online during
training is complex. At Google, where tf.data is heavily
used in research and production ML training jobs, only 19%
of jobs use any kind of caching operator [48]. Meanwhile, the
same study found that many jobs would benefit from caching.

Making caching decisions requires users to reason about
the cost of storing preprocessed data to save CPU cycles.
This trade-off depends on the compute intensity of the input
pipeline, the size of the materialized dataset, and the rela-
tive cost of CPU and storage resources. Transformed datasets
may be slow to read and costly to store if they are signifi-
cantly larger in volume than source data, which can occur
with decompression and data augmentations. Caching does
not always improve epoch time, in particular if reading source
data from cloud storage and transforming it on-the-fly is suf-
ficiently fast to saturate model ingestion throughput. Another
challenge is that caching and reusing the results of transfor-
mations which randomly permute data from one epoch will
remove this randomness across epochs. Reusing this trans-
formed data within a job can significantly impact training
dynamics. Prior work has shown that reusing random aug-
mentations across epochs in a job is plausible, but must be
done sparingly to avoid degrading model accuracy [16, 40].
For example, Revamper proposes caching partially augmented
data elements and mixing them with freshly-computed, fully-
augmented elements [40].

An over-arching challenge is to jointly optimize auto-
caching and autoscaling. Regardless of whether input data



workers are reading and transforming source data on-the-fly
from data lakes or reading transformed data from a cache,
we need to determine the right number of input data work-
ers and storage bandwidth to provision to maximize training
throughput while keeping costs low.

4 Cachew Design

We introduce Cachew, a multi-tenant service for ML input
data processing. To minimize end-to-end training time and
cost, Cachew jointly optimizes: 1) elastic, distributed resource
allocation for input data processing and 2) materialization of
data processing computations within and across jobs. Cachew
can be operated by an organization with multiple users that
asynchronously submit ML training jobs or by a public cloud
provider. With minimal extensions to the tf.data user API,
Cachew transparently manages resource allocation for data
processing, data caching, and network communication be-
tween Cachew clients and workers.

4.1 Service Architecture
Cachew consists of a centralized dispatcher, a dynamic num-
ber of input data workers, and a disaggregated storage cluster
for data caching, as shown in Figure 3.

Users register training nodes (i.e., clients) of ML training
jobs with the Cachew dispatcher. Clients provide a dataflow
graph representation of their input pipeline and a path to the
input data (§ 4.2). We assume input data resides in durable,
low-cost cloud storage, i.e., data lakes [68] such as S3 [56].

Input data workers are stateless components responsible
for producing batches of preprocessed data for clients. The
dispatcher dynamically adjusts the number of input data work-
ers for each job and divides each job’s input dataset (e.g., a
list of filenames) into independent partitions, called splits.
Workers pull new splits (e.g., indexes of the file list) from
the dispatcher when they are done processing previous splits.
Workers may read splits that correspond to source data which
they must transform on-the-fly by executing the job’s input
pipeline dataflow graph. Alternatively, splits may correspond
to files that contain already transformed (or partially trans-
formed) data in Cachew’s cache from previous executions of
the input pipeline.

The dispatcher maintains metadata about input pipeline
executions across jobs to make worker allocation and data
caching decisions. The scaling and caching policies (de-
scribed in § 4.3) and § 4.4) rely on the metrics listed in Table 1,
which the dispatcher aggregates in its metrics metadata store,
indexed by job ids, input pipeline hashes and job names. Since
there may be multiple workers and clients per job, metrics
are averaged across clients and workers of the same job. The
dispatcher also tracks which source and transformed datasets
are cached. The cache metadata store maintains the location
of cached datasets in Cachew’s cluster cache and is indexed

Figure 3: Cachew system architecture. Solid lines depict con-
trol logic and metadata communication. Dotted lines show
the flow of training data. Communication occurs via RPCs.

1 dataset = tf.data.TFRecordDataset(["file1", ...])

2 dataset = dataset.map(parse).filter(filter_func)

3 .autocache()

4 .map(rand_augment)

5 .shuffle().batch()

6 dataset = dataset.apply(distribute(dispatcherIP))

7 for element in dataset:

8 train_step(element)

Figure 4: User API to distribute tf.data input pipeline exe-
cution with Cachew. Users insert autocache to hint which
data is acceptable to cache/memoize and reuse within a job.

by various hashes of the input pipeline dataflow graph, which
we call fingerprints.

Clients fetch data from the workers that are assigned to
them by the dispatcher. Clients and workers periodically send
heartbeats to the dispatcher (by default every five seconds) to
maintain membership in the service and provide metrics.

Cachew’s cache cluster consists of high-bandwidth NVMe
SSD storage nodes, which are disaggregated from input data
workers. Hence, Cachew can scale storage independently,
based on data caching capacity and bandwidth requirements.
In addition to caching transformed datasets of frequently exe-
cuted input pipelines, Cachew can also cache source datasets,
to avoid I/O bottlenecks from cloud data lakes during training.

4.2 Cachew API

Cachew leverages the existing tf.data API for defining
ML input data pipelines [48]. Users define a pipeline by
chaining dataflow operators that can be parameterized with
user-defined functions (UDFs). Figure 4 shows an example
tf.data pipeline that reads input data from files, applies map
and filter operators with UDFs for parsing, filtering, and
randomly augmenting data, then shuffles and batches data.

Applying distribute in line 6 serializes the dataflow
graph and sends it to the service dispatcher to register the
job. If there are multiple training nodes in a job (i.e., for dis-



Source Name Description

Client
batch_time Time taken to get and process the last 100 batches

result_queue_size Avg. number of batches located in the prefetch buffer over the last 100 batches

Worker
active_time Avg. time per element spent in computation in the subtree rooted in the node

bytes_produced Total number of bytes produced by the node so far
num_elements Total number of elements produced by the node so far

Table 1: The set of metrics that are submitted by the workers and clients to the dispatcher via heartbeats.

tributed ML training), each node registers as a separate client
with the dispatcher and specifies an additional job_name pa-
rameter that is common across all clients of the same job. The
communication between clients and workers is abstracted
away from the python API. As shown in line 7, clients simply
iterate over the dataset to access a sequence of elements, as
if executing the input pipeline locally on the client.

Cachew introduces a new operator, autocache, which al-
lows users to specify point(s) in an input pipeline where model
training dynamics safely permit memoizing and reusing data
within a job. To avoid any impact on training accuracy, users
should apply autocache before any random data transforma-
tions in their pipeline (e.g., see line 3 of Figure 4). Users may
apply autocache in multiple locations in a pipeline. Cachew
will not always apply caching at an autocache operator; § 4.4
describes Cachew’s decision strategy. When autocache is
placed after a read operator (e.g., line 1), Cachew decides
whether caching source data in fast cluster storage improves
performance compared to reading source data from a low-
cost data lake. In §6, we evaluate Cachew with up to two
autocache operators per pipeline.

4.3 Autoscaling Policy

We describe how Cachew leverages the per-job client metrics
described in Table 1 to make worker scaling decisions.

Allocating workers for new jobs: The dispatcher starts
by executing each new job with a single worker. After the
client reports metrics from a configurable number of train-
ing batches, the dispatcher allocates a second worker for the
job and monitors the change in batch_time. We observe
that averaging metrics over 100 batches generally provides
a satisfactory level of noise smoothing. If batch_time de-
creases by more than a threshold (which we empirically set
to 3%) with the second worker, the dispatcher adds an ad-
ditional worker. The dispatcher continues adding workers
until a new worker improves batch_time by less than 3%, in
which case the scaling decision converges. The epoch time
(and hence batch time) plateaus when the workers can provide
data at sufficient throughput to saturate the model ingestion
rate (e.g., the red dotted line in Figure 6). The true plateau
occurs when the addition of a new worker leads to 0% change
in batch_time. However, we choose a slightly higher thresh-
old due to the noisy nature of metrics gathered at runtime.

This makes Cachew’s autoscaling policy more stable. We
observed that a 0% threshold would lead to unstable scaling
decisions, as the slightest noise could trigger the addition of
superfluous workers or the removal of essential workers from
the cluster. In order to reduce noise, it is possible to gather
the metrics over more batches, however this slows down the
scaling process. §6.2 shows a sensitivity study.

Re-scaling over time: Since metrics can be noisy, Cachew
periodically revisits the scaling decision each 10 new metrics
received from the client (i.e., every 1000 batches). Cachew
adds a worker if the current batch_time is significantly
higher than the value recorded at scaling convergence. To
detect if we are on the batch time plateau and can afford to
scale down, our intuition is that although batch time will be the
same, the result queue will build up if workers are able to pro-
vide data faster than the model can ingest it. Hence, Cachew
removes a worker if the current result_queue_size is sig-
nificantly (e.g., > 40%) higher than the size recorded at con-
vergence. Cachew continues removing workers as long as
the increase in batch_time is below the threshold. Clients
temporarily pause metric collection (e.g. 150 batches) when
they are notified that a worker has been added or removed for
their job. When the dispatcher de-allocates a worker from a
job, the worker processes any remaining splits, which clients
consume before the worker is removed. Hence, the model
sees all data in an epoch, regardless of scaling events.

We observed that in some cases, when the input dataset
consists of few files (e.g., the COCO dataset), the scaling
policy may not converge within an epoch because workers
may prefetch all dataset splits, leaving no splits for newly
added workers to process until the next epoch. Cachew detects
these scenarios and inserts an artificial epoch, which allows
workers to fetch data from the next epoch while other workers
process data from the current epoch. We do not introduce
artificial epochs if workers are writing to cache.

4.4 Autocaching Policy

When a new job is sent to Cachew, a hash of the entire input
pipeline is generated, which is then used to check if the given
pipeline has ever had some of its data cached. If yes, the
dispatcher extracts a hash for each autocache op. This is
done by traversing and hashing the input pipeline from its
source nodes up until the autocache node. Cachew checks its



Figure 5: Cachew autocaching policy calculation.

cache store against these hashes to find potential hits. Cachew
will choose to introduce caching at the autocache location
with the highest throughput. It should be noted that in such
cases, compute is not considered, as caching only occurs if
it was deemed better in terms of throughput than compute.
If the given pipeline has not got any of its data in cache, the
job enters profiling mode. This stage is equivalent to full
input pipeline computation, with the exception that scaling is
blocked to not skew any metrics relevant to the autocaching
decision. The relevant metrics are presented in the Worker
section of Table 1. Once the input pipeline has produced
a sufficient amount of batches (we observe 300 batches to
be enough) Cachew’s dispatcher produces the autocaching
decision.

To carry out the autocaching decision, for each autocache
operator, the dispatcher estimates the time it takes the pipeline
to produce N elements if caching were to be introduced at
the autocache location. The dispatcher compares these N-
element-times with the compute mode N-element-time (i.e.,
how long it takes to produce N elements if no caching is ap-
plied to the pipeline) and selects the option with the minimum
time. If caching is chosen, Cachew introduces caching at the
relevant autocache op location. Figure 5 shows the main
values inferred by the dispatcher for the autocaching deci-
sion. It should be noted that due to operations such as batch,
filter, or repeat, an autocache op sees M elements being
produced, where M ̸= N can be true.

Let the LastOp’s active_time be active_timeL,
an autocache’s active_time be active_timeA
and the bytes per element at an autocache op be
bA. Cachew employs a throughput model of Glus-
terFS, formally defined as gGFS : R>0 → R>0, which
can infer the read time of b bytes from cache.
Cachew initially computes the TotalComputeTime
= N × active_timeL. For each autocache op,
Cachew computes the PreAutocacheTime = M ×
active_timeA, and then obtains the PostAutocacheTime
= TotalComputeTime − PreAutocacheTime. Next,
Cachew computes ProjectedCacheReadTime = M
×gGFS(bA). Finally, the ProjectedTotalCacheTime =
ProjectedCacheReadTime + PostAutocacheTime is com-
puted. The ProjectedTotalCacheTime of each autocache
op and the initial TotalComputeTime are compared, and the

option with the lowest value is selected.
Once the decision is made, scaling is re-enabled. Scaling

is triggered when the execution policy of the input pipeline
changes (e.g. from putting to getting data from cache). When
this happens, the worker count of a job is set to 1, and the
autoscaling policy is applied by initially scaling up.

4.5 Multi-tenancy
Cachew supports multi-tenancy. Jobs submitted by different
clients are accepted by Cachew, whose dispatcher applies the
autoscale and autocache policies on each job. The jobs are
self contained, and the autoscale and autocache decisions are
independent of other jobs running in Cachew. To ensure such
decisions are correct, metrics from different jobs with identi-
cal input pipelines are stored in the metadata store separately
from one another using the job names. Moreover, to avoid
performance interference, Cachew assigns each workers to at
most one job at a time.

Our current prototype of Cachew assumes that tenants are
mutually trusted and have permission to access each other’s
data. Hence, Cachew shares cached datasets across jobs from
different tenants. In §7, we discuss how the implementation
can be extended to implement data access control.

4.6 Fault tolerance
Dispatcher: The dispatcher stores metadata in memory for
fast look-ups. To avoid being a single point of failure, the
dispatcher can journal its state to a durable directory, such
that no state is lost when the dispatcher is restarted. Journaling
is also supported in the vanilla tf.data service [25].

Workers: Our implementation builds on top of existing
single-node tf.data checkpointing mechanisms, extending
them to work in the distributed setting. Workers communi-
cate with the dispatcher via heartbeats. If a parametrizable
number of heartbeats are missed (we set this parameter to
2), the dispatcher considers the worker failed and initiates
a failover. The dispatcher reassigns pending tasks to a free
worker in the pool. The new worker recovers any progress
the failed worker had made on the pending tasks by reading
the latest checkpoint committed in remote storage. The new
worker recomputes batches between the latest checkpoint and
the time of failure, to make the new worker’s iterator state
match the old worker’s iterator state at the time of failure. The
client includes an incrementing index in its request which
the new worker uses as time of failure to fast forward to.
However, the new worker does not transmit the recomputed
batches to the client since repeating data elements in train-
ing epochs can harm model accuracy. For instance, Mohan
et al. observed a double-digit drop in Top-1 accuracy when
training a ResNet18 for 70 epochs on ImageNet-1k without
exactly-once semantics [46]. In contrast, Cachew guarantees
that clients see each batch of input data exactly once during



training, even in the face of failures. Furthermore, our fault-
tolerance mechanisms make it viable to run Cachew workers
on transient cloud resources (i.e., spot VMs) to reduce the
cost of using remote workers for data processing.

Storage nodes: Cachew’s distributed cache applies erasure
coding with configurable redundancy. By default, we config-
ure the storage layer to store data with sufficient redundancy
to handle up to 25% of nodes in the storage cluster failing at a
given time. If a storage node fails, the distributed file system
uses parity blocks to recover data.

5 Implementation

We implement Cachew on top of the tf.data ML data pro-
cessing framework [48], leveraging its familiar API and mech-
anisms for distributed data processing and dataflow graph
rewriting. We also add a scalable cluster cache to the vanilla
tf.data service and expose the autocache operator to users
in the API. We extend the tf.data service dispatcher with
metadata stores that manage client/worker metrics and loca-
tions of cached datasets to implement our scaling and caching
policies. Our implementation consists of approximately 9000
lines of C++ code and 500 lines of Python on top of the
open-source tf.data code base. Cachew is open-source.

We run the Cachew dispatcher and workers inside Docker
containers and use Kubernetes to elastically scale the deploy-
ment. All communication between clients, workers, and the
dispatcher is done over gRPC [24]. We use GlusterFS [53],
deployed on high-bandwidth NVMe SSD storage nodes, as
our distributed caching storage system. GlusterFS is highly
scalable, offers sufficient throughput to saturate NVMe SSD
bandwidth, and its consistent hashing data distribution policy
supports dynamically adding and removing storage nodes.
We configure GlusterFS with distributed dispersed volumes,
which use erasure coding for fault-tolerance [54].

5.1 Autocache Mechanisms
Graph rewrites: When a user registers a new job, Cachew’s
dispatcher inspects the input pipeline’s dataflow graph. Wher-
ever the pipeline contains an autocache op, Cachew gener-
ates two versions of the pipeline, in which the autocache
is replaced by a put op and a get op, respectively. The dis-
patcher transparently replaces autocache with graph rewrites
using the TensorFlow Grappler [60] optimization framework.
The dispatcher sends workers the correct version of the in-
put pipeline graph, which depends on the execution mode
selected by Cachew’s autocaching policy for the job.

The put and get ops: Cachew introduces put and get
ops which store and retrieve data to and from the cache.
These ops build on underlying mechanisms in the tf.data
snapshot op implementation, but are designed for multi
worker scenarios, where several different worker nodes can
concurrently write and/or read to the same cache location

without conflicts. To support asynchronous behaviour, the
put and get op implementations both leverage queues and
multi-threading. For the put op, data to be written to cache
is placed in a queue. Multiple threads greedily dequeue el-
ements and write them to cache. Each thread writes in its
own file, which is closed when the size exceeds 250MiB and
a new file is opened. The get op functions in the opposite
manner, where threads read from cache and place elements
in the queue. When downstream operations require data from
the get op, they dequeue elements. Each thread requests the
file paths to read from the dispatcher. Operations before the
get op are not executed since the output is read from cache.

Since the ops are asynchronous, reads and writes will be
performed out of order. Hence, cache reads and writes behave
as a sliding-window shuffle of size ws = s× n, where ws is
the window size, s is the number of elements per cache file
and n is the number of readers or writers.

Dealing with limited cache capacity: Our current pro-
totype assumes that Cachew’s cache capacity is unbounded
(i.e., there is always space in the cache for a put op to suc-
ceed). To operate Cachew with a limited cache size, we plan
to extend the dispatcher implementation to periodically evict
cached datasets that provide the least performance improve-
ment across jobs, as in prior caching systems like Nectar [30].

6 Evaluation

6.1 Methodology
Workloads: We evaluate Cachew with three popular ML mod-
els and their corresponding input data pipelines in TensorFlow
Model Garden [3]. ResNet-50 [31] is an image classification
model whose input pipeline consists of parsing raw TFRecord
files, converting images to float16 format, and applying a
random crop and horizontal flip [4]. We use ImageNet [21]
and observe that the data transformations increase the source
dataset by 2.6×. RetinaNet [42] is an object detection model
whose input pipeline consists of parsing TFRecords, convert-
ing images to float16, applying a random horizontal flip, and
a series of computationally-intensive operations that create
candidate anchors at five different scale levels [5]. We train
RetinaNet on the COCO [43] dataset and the data transfor-
mations increase the data volume by 32.6×. Finally, Sim-
CLRv2 [15] is a semi-supervised learning framework used
for visual representation learning model. Given a randomly
sampled mini-batch of images, each image is augmented twice
with a random crop, color distortion, and Gaussian blur, cre-
ating two views of the same example. The model learns rep-
resentations by maximizing agreement between differently
augmented views of the same data example [2]. We use Sim-
CLR for semi-supervised image classification on ImageNet.
The data transformations increase the data volume by 10.7×.

Baselines: We compare Cachew’s resource scaling pol-
icy with the Kubernetes Horizontal Pod Autoscaler (HPA)



(a) ResNet50 (b) RetinaNet (c) SimCLR

Figure 6: Scaling policy. Cachew selects the right number of workers to minimize epoch time and cost (orange markers).
Kubernetes Horizontal Pod Autoscaler does not select the optimal number of workers (blue markers), since it only scales based
on CPU usage and does not account for other potential input pipeline bottlenecks, e.g., memory and I/O bandwidth.

policy, which scales input data workers in the service based
on a 80% CPU resource utilization target per node [1]. We
measure the best-case epoch time for each model (i.e., model
ingestion rate) by running an infinitely fast input pipeline that
feeds synthetic data. Finally, we report the overhead of run-
ning tf.data pipelines on remote workers versus on training
nodes.

Execution modes: We consider two different placements
of the autocache operator in our input pipelines. We assume
the user inserts autocache near the beginning of the input
pipeline, immediately after a data read operator and before any
data transformation operators. We call this placement source
cache mode since it causes data workers to read source data
from Cachew’s cluster cache if the dispatcher decides to apply
caching at this point in the pipeline. We also assume the user
inserts autocache at the end of the input pipeline, after all
data transformations. We refer to this placement as full cache
mode, since input data workers will read fully transformed
data from the Cachew cluster cache if the dispatcher decides
to apply caching at this point in the pipeline. We compare
the performance of the source cache and full cache execution
modes with a compute mode, in which no data is reused in
the input pipeline, i.e., Cachew reads source data from cloud
storage and transforms data on-the-fly.

Metrics: We measure epoch time, i.e. the time it takes to
train the model on a complete iteration of the dataset, for each
model while varying the number of input data workers and
execution modes. We also report total training time and cost
for the compute and source cache execution modes. For cost,
we consider the Cachew input data worker node costs, storage
resources, and the cost of training nodes used for the duration
of the job. We assume the cost of the dispatcher is amortized
across multiple users and jobs. Note that in our workloads,
we observed full caching decreases training accuracy due to
the presence of random transformations in the input pipelines.
In our evaluation, we focus on demonstrating that Cachew
can select the right execution mode to maximize throughput,
assuming the user has placed the autocache operator in a
location that is acceptable for their use-case. Prior studies

Figure 7: Cachew’s first scaling decisions in compute mode
relative to the value of the improvement threshold.

have explored the impact on training dynamics when reusing
randomly transformed data across epochs [16, 40].

Cluster hardware setup: We run our experiments on
Google Cloud. The dispatcher runs on a n2-standard-16 VM.
We train ResNet-50 on n1-standard-32 VMs with four Tesla
V100 GPUs. We train SimCLRv2 and RetinaNet models on
v3-8 TPU VMs since the reference implementations are de-
signed for training on TPUs. We use n2-standard-2 VMs with
two 375GB NVMe SSDs for the GlusterFS storage cluster.
The network bandwidth between the storage cluster, workers,
and clients is at least 16 Gb/s.

6.2 Cachew Autoscaling

We sweep the number of input data workers for the com-
pute, source cache, and full cache execution modes for each
model. Figure 6 plots epoch time as a function of the number
of data workers and shows the number of workers selected
by Cachew’s scaling policy in orange and Kubernetes’s scal-
ing policy in blue markers. The dotted red line shows the
minimum epoch time achievable with an infinitely fast input
pipeline. In all execution modes, Cachew finds the minimum
(or near minimum) number of data workers to avoid data stalls



Figure 8: Cachew’s autocaching policy selects the execution
mode that minimizes batch time.

in model training. In contrast, the Kubernetes Horizontal Pod
Autoscaler noticeably under or over-provisions data workers.
Kubernetes HPA performs poorly as it does not detect bottle-
necks besides CPU and memory capacity, such as memory
bandwidth bottlenecks and I/O bottlenecks that can limit in-
put pipeline throughput. For SimCLRv2, the input pipeline
is highly compute intensive, hence Kubernetes scales up to
24 data workers to maintain per-node CPU utilization at the
80% target. In contrast, Cachew’s scaling policy checks the
relative improvement in batch time and determines there are
diminishing returns to scaling beyond 16 workers in compute
mode and 13 workers in source cache mode.

Figure 7 shows Cachew’s scaling decision sensitivity to the
batch_time improvement threshold value, which we sweep
from 1% to 11%. We include decisions that are suboptimal,
which Cachew may later correct in the training process. Both
ResNet50 and RetinaNet are robust to this threshold, as the
addition of a worker yields clear epoch time benefits (see
Figures 6a and 6b), thus the value of the threshold can be
quite large. For SimCLR, the addition of a new worker does
not always yield significant benefits to the epoch time (see
Figure 6c). Consequently, for such a model, lower thresholds
are more suitable. The downside of a lower threshold is that
the autoscaling policy becomes more susceptible to noise in
the metrics. This is visible in Figure 7, as the variance of
the decision increases, and outlier decisions become more
common. Cachew triggers rescaling in such cases, and even-
tually converges to the right decision. Gathering metrics over
multiple batches can help alleviate noise.

6.3 Cachew Autocaching

To evaluate Cachew’s caching policy, we run the service with
an input pipeline in which we carefully control and simulate
compute intensity. The input pipeline consists of reading
input data from storage (56GB), increasing the size of data
elements by 2.5×, and sleeping for a controlled duration of
time to simulate applying a time-consuming data processing

Figure 9: RetinaNet training timeline for the first 4 epochs.
Cachew picks the right caching mode and number of workers.

operation. Figure 8 plots the time it takes to process a batch of
elements as a function of the injected processing time, for the
three different execution modes we consider. The experiment
is designed such that the compute, source cache, and full cache
execution modes are each optimal in a particular regime and
verify that Cachew makes the optimal choice.

At low data processing intensity, reading data from the
cloud data lake (GCS) is an I/O bottleneck and Cachew recog-
nizes the service should store and read source data from the
cluster cache. When sleep exceeds 350ms, Cachew recognizes
that data processing intensity is high enough that GCS I/O is
no longer the bottleneck. Reading and transforming data on-
the-fly from GCS (i.e., compute mode) becomes optimal until
400ms. When source cache mode reaches a similar through-
put as compute mode (as in the 350-400ms regime), Cachew
prefers compute mode as it saves storage costs. When sleep
time exceeds 400ms, storing and reading the transformed
dataset from cache minimizes batch time compared to other
modes. Cachew chooses full caching in this regime.

6.4 Autocaching & Autoscaling over Time

We demonstrate how Cachew jointly optimizes elastic scal-
ing and caching to maximize epoch time and cost. Figure 9
plots the scaling and caching decisions that Cachew makes
over time. As an example, we show the first four epochs of
RetinaNet training, where we place two autocache ops: one
after the reading ops, and one at the end of the input pipeline.
The red curve shows the number of workers used for the job
and orange vertical lines show when Cachew makes a scaling
decision. Cachew starts by processing the pipeline in compute
mode with a single worker (highlighted in yellow), first block-
ing scaling and profiling the worker. During the single-worker
profiling phase, Cachew collects metrics to make a caching
policy decision and decides on caching at the end of the input
pipeline. This decision takes place at the time marked by the
green vertical dashed line. The caching decision is applied
at the end of the first epoch, when we enter the put epoch



(a) ResNet50 (b) RetinaNet (c) SimCLR

Figure 10: Total training cost (and training time) for Cachew vs. Kubernetes HPA worker scaling policy decisions.

(highlighted in blue) which writes the dataset to the cluster
cache and takes longer as a result. Due to prefetching, splits
are exhausted in the first two epochs before the autoscale com-
pletes. The other two epochs presented are in cache get mode
(highlighted in green). In the third epoch, Cachew scales the
number of workers up to 5, where no more improvements
are observed. At this point Cachew removes the superfluous
worker and converges to 4 workers. Cachew will continue
to run the pipeline in get mode with 4 workers for the re-
maining epochs, and only adjust this number if input pipeline
characteristics evolve, requiring less or more workers.

6.5 End-to-end performance and cost
6.5.1 Time to Accuracy and Training Cost

Figure 10 shows the total training cost (bars on y-axis) and
total training time (annotations) for the input data worker con-
figurations that Kubernetes and Cachew select in the compute
and source cache execution modes. As we saw in Figure 6,
Kubernetes under-provisions input data workers for ResNet-
50 compute mode, while Cachew picks the optimal worker
count, allowing it to reduce training time by 4.1× and cost
by 3.8×. For SimCLR, Kubernetes over-provisions workers,
slightly reducing training time but Cachew still saves overall
cost by 12-20% by optimizing the number of workers based
on its relative improvement threshold in the scaling policy.

6.5.2 Service Overhead

We compare the performance and resource overhead of run-
ning tf.data pipelines with the service versus locally on
training nodes. The service requires additional CPU resources
to achieve the same input pipeline throughput, due to the extra
network hop (i.e., gRPCs) between data workers and training
nodes. Since local tf.data workers fetch source data over
the network and transform data on the training node, whereas
Cachew clients fetch transformed data over the network, the
service overhead also depends on the difference between the
source and transformed dataset sizes. In our experiments, we
find that the service should provision 30% to 50% more CPU

Figure 11: Multi-tenancy: Cachew detects cache hits across
jobs while scaling workers for each job separately.

cores compared to the CPU cores we observe being heav-
ily utilized when running the same input pipeline locally on
training nodes. Note that this overhead is not an artifact of
Cachew’s scaling or caching policies, but rather a measure-
ment of the overhead Cachew inherits from the distributed
data processing mechanisms in tf.data service [25]. Data
marshaling is known to consume significant cycles in data-
centers [35]. Networking overheads can be reduced (e.g., by
using RDMA), though this is not the focus of our work. The
cost of using extra CPUs for data processing is justified as
it allows keeping expensive GPUs/TPUs highly utilized and
reducing end-to-end training time (see Figure 10).

6.6 Multi-tenancy

We show that Cachew can optimize input data processing
across jobs. We run two jobs with the ResNet input data
pipeline but different model ingestion rates (simulated with
different sleep times in the dataset iteration loop on the
clients). The second job has double the ingestion rate of the
first. We again place autocache ops after reading the data
and at the end of the input pipeline. Figure 11 shows how the
batch processing time varies over time for each job as Cachew
makes its scaling and execution mode decisions. The red



curve shows the first job’s number of workers over time. The
epoch boundaries are highlighted by the red dotted vertical
lines. This job progresses through a compute epoch (yellow
highlight) with profiling, a put epoch (blue highlight), where
it caches the data of the autocache at the end of the input
pipeline and a get stage (green highlight), which consists of
two get epochs. The job ultimately converges to two workers.

We show that the dispatcher detects a cache hit after the first
job has written to cache and selects the cache get execution
mode for the second job in all of its four epochs. The epochs
are separated by blue dotted vertical lines. The blue curve
shows the number of workers for the second job over time.
As this job has double the ingestion rate requirements of the
first job, it converges to four workers.

7 Discussion

Data access control: Our current prototype of Cachew as-
sumes that clients have permission to access each other’s data
(e.g., tenants are all members of the same organization). The
implementation can be extended with Access Control Lists
(ACLs) to prevent unauthorized access to the data. Workers
can check/set permissions before reading/writing datasets. If
a job attempts to read from a dataset for which the client does
not have read permission, the worker’s request will fail and
the client will get a permission error.

Model training dynamics: Though reusing the output of
random data augmentations can negatively impact model ac-
curacy, prior works have found that negative impacts can be
mitigated by tuning the extent to which caching is applied
in an input pipeline. Choi et al. showed that reusing data af-
ter random transformations has a small negative impact on
the final accuracy trained models, reaching highly compet-
itive out-of-sample error rates with fewer non-cached data
instances than a model with no echoing [16]. Revamper [40]
demonstrated that partially caching random transformations,
while leaving some to be applied after reading from cache,
has negligible accuracy penalties, as long as the downstream
random transformations provide sufficient sample diversity.
Hence, a good rule of thumb is to cache expensive random
transformations, while applying highly diverse and inexpen-
sive random transformations after the cache. For instance, in
tasks such as image classification, inexpensive random trans-
formations, such as random crop and flip, generally provide
sufficient sample diversity [40].

Leveraging local resources on training nodes: Although
our autoscaling policy has focused on leveraging remote CPU
workers for data processing, tf.data service also supports
running data processing on local workers, which execute on
client training nodes. Adapting Cachew’s autoscaling policy
to leverage a mix of local and remote workers would ensure
that the extra cost of remote workers is only incurred if the
CPU/memory resources for data processing on client training
nodes are not sufficient to avoid data stalls.

8 Related Work

§ 2.3 discussed existing mechanisms in input data frameworks,
which serve as the foundation for Cachew’s autoscaling and
autocaching policies. We discuss other related work below.

Automated resource provisioning: Cluster management
systems aim to automate resource allocation decisions, which
are notoriously difficult for users [8, 20, 37, 45]. Generic clus-
ter managers treat workloads as black boxes, making them
unsuitable for jointly optimizing data caching and resource
scaling decisions. Cachew is able to jointly optimize caching
and scaling by using metrics that are tailored to the ML in-
put data processing domain. Several resource management
systems have been developed specifically for deep learning
jobs [28, 44, 65]. However, they assume GPUs are the domi-
nant resource for ML training, whereas recent work has shown
that allocating resources for input data processing is equally
important yet not well addressed by existing systems [64].

Caching vs. recomputing intermediate data: Caching
data and memoizing data transformations is a common tech-
nique [10,41,52]. Trade-offs of caching vs. recomputing data
arise in various contexts [7, 32, 33, 51]. We draw particular
inspiration from Nectar [30], a datacenter-scale caching sys-
tem that treats computations and their intermediate results as
interchangeable. We address ML-specific challenges, where
estimating the benefit of caching on training time is non-trivial
since the model may be the bottleneck or the (transformed)
dataset may be prohibitilely large to cache. We also jointly
optimize caching and resource scaling.

9 Conclusion

We proposed Cachew, a system architecture, to enable input
data processing as a service for machine learning. To avoid
input data stalls while minimizing cost, Cachew dynamically
scales distributed data processing resources to match the rate
at which each job’s training nodes can ingest data, while
avoiding over-provisioning. Cachew leverages its centralized
view of data processing pipelines across mutually trusted
jobs to reduce the overall compute power required for data
processing, by transparently reusing (transformed) datasets
within and across jobs when performance and cost efficient.

Acknowledgements

We thank our anonymous reviewers and shepherd for their
valuable comments. We acknowledge Jiří Šimša, Andrew Au-
dibert, Gustavo Alonso, Petros Maniatis, Paul Barham, and
Julia Bazińska for discussions that helped strengthen this
work. We also thank Oto Mraz for his help with artifact evalu-
ation. We are grateful for access to the Google TPU Research
Cloud and generous support from a Google Research Award.



References

[1] Kubernetes Horizontal Pod Autoscaler. https:
//kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/, 2021.

[2] SimCLR reference code. https://github.com/
google-research/simclr, 2021.

[3] TensorFlow Model Garden. https://github.com/
tensorflow/models, 2021.

[4] TF Model Garden: ResNet50 reference code.
https://github.com/tensorflow/models/
tree/master/official/vision/image_
classification/resnet, 2021.

[5] TF Model Garden: RetinaNet reference code.
https://github.com/tensorflow/models/tree/
master/official/legacy/detection, 2021.

[6] Data preprocessing for machine learning:
options and recommendations. https:
//cloud.google.com/architecture/
data-preprocessing-for-ml-with-tf-transform-pt1,
2022.

[7] Sanjay Agrawal, Surajit Chaudhuri, and Vivek
Narasayya. Automated selection of materialized views
and indexes in sql databases. In In Proceedings of
VLDB ’00, pages 496–505, 2000.

[8] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
CherryPick: Adaptively unearthing the best cloud con-
figurations for big data analytics. In USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 469–482, Boston, MA, 2017.

[9] Amazon Web Services. AWS EC2 Instance Types.
https://aws.amazon.com/ec2/instance-types/,
2021.

[10] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew
Warfield, Dhruba Borthakur, Srikanth Kandula, Scott
Shenker, and Ion Stoica. Pacman: Coordinated memory
caching for parallel jobs. In Proc. of Symposium on
Networked Systems Design and Implementation (NSDI
12), pages 267–280, 2012.

[11] Andrew Audibert and Rohan Jain. tf.data Service RFC.
https://github.com/tensorflow/community/
blob/master/rfcs/20200113-tf-data-service.
md, 2019.

[12] Leon Bottou. Curiously Fast Convergence of some
Stochastic Gradient Descent Algorithms. In Proceed-
ings of the Symposium on Learning and Data Science,
2009.

[13] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and
Aleksander Slominski. The rise of serverless computing.
Commun. ACM, 62(12):44–54, 2019.

[14] Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In Hal Daumé III and
Aarti Singh, editors, Proc. of the 37th International Con-
ference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pages 1597–1607.
PMLR, 13–18 Jul 2020.

[15] Ting Chen, Simon Kornblith, Kevin Swersky, Moham-
mad Norouzi, and Geoffrey E Hinton. Big self-
supervised models are strong semi-supervised learners.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-
can, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 33, pages
22243–22255. Curran Associates, Inc., 2020.

[16] Dami Choi, Alexandre Passos, Christopher J. Shallue,
and George E. Dahl. Faster Neural Network Training
with Data Echoing, 2019.

[17] Torch Contributors. PyTorch Docs: torch.utils.data.
https://pytorch.org/docs/stable/data.html,
2021.

[18] Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay
Vasudevan, and Quoc V. Le. Autoaugment: Learning
augmentation strategies from data. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR,
pages 113–123, 2019.

[19] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, ed-
itors, Advances in Neural Information Processing Sys-
tems, pages 18613–18624, 2020.

[20] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster management.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 127–144, 2014.

[21] Jia Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of CVPR, 2009.

[22] Frank Chen and Rohan Jain. tf.data Snapshot RFC.
https://github.com/tensorflow/community/
blob/master/rfcs/20200107-tf-data-snapshot.
md, 2020.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/google-research/simclr
https://github.com/google-research/simclr
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models/tree/master/official/vision/image_classification/resnet
https://github.com/tensorflow/models/tree/master/official/vision/image_classification/resnet
https://github.com/tensorflow/models/tree/master/official/vision/image_classification/resnet
https://github.com/tensorflow/models/tree/master/official/legacy/detection
https://github.com/tensorflow/models/tree/master/official/legacy/detection
https://cloud.google.com/architecture/data-preprocessing-for-ml-with-tf-transform-pt1
https://cloud.google.com/architecture/data-preprocessing-for-ml-with-tf-transform-pt1
https://cloud.google.com/architecture/data-preprocessing-for-ml-with-tf-transform-pt1
https://aws.amazon.com/ec2/instance-types/
https://github.com/tensorflow/community/blob/master/rfcs/20200113-tf-data-service.md
https://github.com/tensorflow/community/blob/master/rfcs/20200113-tf-data-service.md
https://github.com/tensorflow/community/blob/master/rfcs/20200113-tf-data-service.md
https://pytorch.org/docs/stable/data.html
https://github.com/tensorflow/community/blob/master/rfcs/20200107-tf-data-snapshot.md
https://github.com/tensorflow/community/blob/master/rfcs/20200107-tf-data-snapshot.md
https://github.com/tensorflow/community/blob/master/rfcs/20200107-tf-data-snapshot.md


[23] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
249–264, November 2016.

[24] Google. gRPC: a high performance, open source univer-
sal RPC framework. https://grpc.io/, 2021.

[25] Google. Module: tf.data.experimental.service.
https://www.tensorflow.org/api_docs/python/
tf/data/experimental/service, 2021.

[26] Google Cloud. Cloud TPU pricing. https://cloud.
google.com/tpu/pricing, 2021.

[27] Google Cloud. Google Cloud Storage. https://cloud.
google.com/storage, 2021.

[28] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu,
and Chuanxiong Guo. Tiresias: A GPU cluster manager
for distributed deep learning. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 485–500, February 2019.

[29] Joaquin Anton Guirao, Krzysztof Łęcki, Janusz Lisiecki,
Serge Panev, Michał Szołucha, Albert Wolant, and
Michał Zientkiewicz. Fast AI Data Preprocessing with
NVIDIA DALI. https://devblogs.nvidia.com/
fast-ai-data-preprocessing-with-nvidia-dali,
2019.

[30] Pradeep Kumar Gunda, Lenin Ravindranath, Chan-
dramohan A Thekkath, Yuan Yu, and Li Zhuang. Nectar:
Automatic management of data and computation in dat-
acenters. In Proc. of Symposium on Operating Systems
Design and Implementation (OSDI 10), 2010.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of CVPR, pages 770–778. IEEE Computer
Society, 2016.

[32] Allan Heydon, Roy Levin, and Yuan Yu. Caching func-
tion calls using precise dependencies. In Proc. of
Programming Language Design and Implementation
(PLDI’00), page 311–320, 2000.

[33] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and
Hiren Patel. Selecting subexpressions to materialize at
datacenter scale. Proc. VLDB Endow., 11(7):800–812,
March 2018.

[34] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phan-
ishayee, and Shivaram Venkataraman. The case for
unifying data loading in machine learning clusters. In

11th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 19), Renton, WA, July 2019. USENIX
Association.

[35] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a warehouse-scale
computer. In Proc. of the 42nd Annual International
Symposium on Computer Architecture, ISCA ’15, page
158–169, New York, NY, USA, 2015. Association for
Computing Machinery.

[36] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu
John, and Sanjeev Kumar. Flash storage disaggregation.
In Proc. of European Conference on Computer Systems,
EuroSys ’16, pages 29:1–29:15, 2016.

[37] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Se-
lecta: Heterogeneous cloud storage configuration for
data analytics. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18), pages 759–773, Boston, MA,
July 2018. USENIX Association.

[38] Michael Kuchnik, Ana Klimovic, Jiri Simsa, Virginia
Smith, and George Amvrosiadis. Plumber: Diagnos-
ing and removing performance bottlenecks in machine
learning data pipelines. In Proc. of Machine Learning
and Systems, volume 4, pages 33–51, 2022.

[39] Abhishek Vijaya Kumar and Muthian Sivathanu. Quiver:
An informed storage cache for deep learning. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 283–296, Santa Clara, CA, February
2020. USENIX Association.

[40] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyunggeun Lee,
Hwarim Hyun, Ahnjae Shin, and Byung-Gon Chun. Re-
furbish your training data: Reusing partially augmented
samples for faster deep neural network training. In
USENIX Annual Technical Conference (ATC’21), pages
537–550, 2021.

[41] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker,
and Ion Stoica. Tachyon: Reliable, memory speed stor-
age for cluster computing frameworks. In Proceedings
of the ACM Symposium on Cloud Computing, SOCC
’14, page 1–15, 2014.

[42] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. Focal loss for dense object detection.
In IEEE International Conference on Computer Vision
(ICCV), pages 2999–3007, 2017.

[43] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects
in context. In Proceedings of ECCV, 2014.

https://grpc.io/
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://cloud.google.com/tpu/pricing
https://cloud.google.com/tpu/pricing
https://cloud.google.com/storage
https://cloud.google.com/storage
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali


[44] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and effi-
cient GPU cluster scheduling. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 289–304, February 2020.

[45] Ashraf Mahgoub, Alexander Michaelson Medoff,
Rakesh Kumar, Subrata Mitra, Ana Klimovic, Somali
Chaterji, and Saurabh Bagchi. OPTIMUSCLOUD: Het-
erogeneous configuration optimization for distributed
databases in the cloud. In USENIX Annual Technical
Conference (USENIX ATC 20), pages 189–203, 2020.

[46] Jayashree Mohan, Amar Phanishayee, and Vijay Chi-
dambaram. CheckFreq: Frequent, Fine-Grained DNN
checkpointing. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), pages 203–216.
USENIX Association, February 2021.

[47] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala,
and Vijay Chidambaram. Analyzing and mitigating data
stalls in DNN training. In VLDB 2021, January 2021.

[48] Derek G. Murray, Jiri Simsa, Ana Klimovic, and Ihor
Indyk. tf.data: A machine learning data processing
framework. In VLDB 2021, volume 14, 2021.

[49] Daniel S. Park and William Chan. SpecAugment: A
New Data Augmentation Method for Automatic Speech
Recognition. https://ai.googleblog.com/2019/
04/specaugment-new-data-augmentation.html,
2019.

[50] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le.
Specaugment: A simple data augmentation method for
automatic speech recognition. Interspeech 2019, Sep
2019.

[51] Lana Ramjit, Matteo Interlandi, Eugene Wu, and Ravi
Netravali. Acorn: Aggressive result caching in dis-
tributed data processing frameworks. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC’19,
page 206–219, 2019.

[52] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. Ec-cache: Load-
balanced, low-latency cluster caching with online era-
sure coding. In Proc. of Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), pages 401–
417, 2016.

[53] Red Hat. Gluster: scalable data filesystem. https:
//www.gluster.org/, 2021.

[54] Red Hat. Setting up GlusterFS Volumes. https:
//docs.gluster.org/en/v3/Administrator%
20Guide/Setting%20Up%20Volumes/, 2021.

[55] Johann Schleier-Smith, Vikram Sreekanti, Anurag
Khandelwal, Joao Carreira, Neeraja J. Yadwadkar,
Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson. What serverless computing is and
should become: The next phase of cloud computing.
Commun. ACM, 64(5):76–84, April 2021.

[56] Amazon Web Services. Amazon Simple Storage Ser-
vice. https://aws.amazon.com/s3, 2021.

[57] Connor Shorten and Taghi M. Khoshgoftaar. A survey
on image data augmentation for deep learning. J. Big
Data, 6:60, 2019.

[58] Patrice Y. Simard, Dave Steinkraus, and John C. Platt.
Best practices for convolutional neural networks applied
to visual document analysis. In Proceedings of ICDAR,
page 958. IEEE Computer Society, 2003.

[59] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller
models and faster training. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139, pages
10096–10106. PMLR, 2021.

[60] TensorFlow. TensorFlow Graph Optimizations. https:
//research.google/pubs/pub48051.pdf, 2019.

[61] Tensorflow. Better performance with the tf.data
API. https://www.tensorflow.org/guide/data_
performance#caching, 2021.

[62] Tensorflow. tf.data.experimental.snapshot.
https://www.tensorflow.org/api_docs/python/
tf/data/experimental/snapshot, 2021.

[63] Jason Van Hulse, Taghi M. Khoshgoftaar, and Amri
Napolitano. Experimental perspectives on learning from
imbalanced data. In Proceedings of the 24th Interna-
tional Conference on Machine Learning, ICML ’07,
page 935–942, 2007.

[64] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Liping Zhang Yong Li, Wei Lin,
and Yu Ding. MLaaS in the wild: Workload analysis
and scheduling in Large-Scale heterogeneous GPU clus-
ters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), April 2022.

[65] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 595–610, October 2018.

https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html
https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html
https://www.gluster.org/
https://www.gluster.org/
https://docs.gluster.org/en/v3/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/v3/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/v3/Administrator%20Guide/Setting%20Up%20Volumes/
https://aws.amazon.com/s3
https://research.google/pubs/pub48051.pdf
https://research.google/pubs/pub48051.pdf
https://www.tensorflow.org/guide/data_performance#caching
https://www.tensorflow.org/guide/data_performance#caching
https://www.tensorflow.org/api_docs/python/tf/data/experimental/snapshot
https://www.tensorflow.org/api_docs/python/tf/data/experimental/snapshot


[66] Doris Xin, Litian Ma, Jialin Liu, Stephen Macke,
Shuchen Song, and Aditya Parameswaran. Helix: Ac-
celerating human-in-the-loop machine learning. Proc.
VLDB Endow., 11(12):1958–1961, August 2018.

[67] Sangdoo Yun, Dongyoon Han, Seong Joon Oh,
Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cut-
mix: Regularization strategy to train strong classifiers
with localizable features. In International Conference
on Computer Vision (ICCV), 2019.

[68] Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael
Armbrust. Lakehouse: A new generation of open plat-
forms that unify data warehousing and advanced ana-
lytics. In 11th Conference on Innovative Data Systems
Research, CIDR 2021, 2021.

[69] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik,
Satadru Pan, Mustafa Ozdal, Rakesh Komuravelli, Jerry
Pan, Tianshu Bao, Haowei Lu, Sundaram Narayanan,
Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-
Jean Wu, Christos Kozyrakis, and Parik Pol. Under-
standing data storage and ingestion for large-scale deep
recommendation model training: Industrial product. In
Proc. of the 49th Annual International Symposium on
Computer Architecture, ISCA ’22, page 1042–1057,
2022.

[70] Barret Zoph and Quoc V. Le. Neural architecture search
with reinforcement learning. In Proceedings of ICLR,
2017.



A Artifact Evaluation README

A.1 Abstract
The artifact consists of the source code of Cachew2, the
Cachew client binaries3, as well as scripts for building wheel
files and Docker images. We also provide reference scripts
for deploying GCE VMs for evaluation and for running the
some representative experiments4. Do note that these scripts
might not work as they depend on resources that might not
be public. In these cases, experiment VMs will have to be
manually set up.

The evaluation focuses on reproducing key experiments
and their respective results which demonstrate how the main
contributions of Cachew work:

• Autoscaling (Figure 6a, compute curve): show how in-
put pipeline resources affect training time, how Cachew’s
autoscaling policy finds the right number of workers
automatically, and how the Kubernetes Horizontal Pod
Autoscaler fails to find the right scale.

• Autocaching (Figure 8): Show how Cachew’s auto-
caching policy behaves under various execution sce-
narios, and how the most efficient execution mode is
selected by Cachew.

• Multi-tenancy with autoscaling and autocaching (Fig-
ure 11): Show how Cachew behaves in multi-worker
scenarios, selecting the most efficient execution mode,
as well as the right scale for each job. Furthermore this
experiment should also show how caching can be used
in cross-job settings.

A.2 Artifact check-list
The artifact with the components listed below is available at:
https://github.com/eth-easl/cachew_experiments.

• System to deploy: Cachew service (dispatcher, input data
workers, remote cache cluster)

• Algorithms to evaluate: Cachew’s autoscaling and auto-
caching policies

• Workloads to run:

– Figure 6a: ResNet50 model and its open-source
canonical input pipeline.

– Figure 8: Synthetic input pipeline

– Figure 11: Canonical ResNet50 input pipeline

• Binary: Cachew Docker image for workers and dis-
patcher, Cachew wheel file for client, GCE VM image.

2https://github.com/eth-easl/cachew
3gs://cachew-builds/tensorflow-2.8.0-cp39-cp39-linux_x86_64.whl
4https://github.com/eth-easl/cachew_experiments

• Model: ResNet50 and its canonical input pipeline

• Data Sets: ImageNet 2012 (stored in GCS bucket)

• Output: CSV files with metrics, text-based logs, and plots
to compare with figures in the paper.

• Experiments: Experiments and deployment are fully
scripted. See §A.4.

• Publicly available?: yes

• Code licenses: Apache 2.0

• Data licenses: ImageNet 3-Clause License

• Archived (provide DOI)? 10.5281/zenodo.6543943

A.3 Prerequisites
Hardware dependencies: The experiments require a cluster
of x86 CPU servers with hardware virtualization support, with
4 Nvidia V100 GPUs on one of the servers. We recommend
(and our scripts assume that you are) conducting experiments
on Google Cloud. Some of the VM deployment scripts might
not work out of the box as they can require access to resources
which are no longer private. In this case, the scripts will either
have to be modified or the deployment will have to be done
manually.

Software dependencies: Our scripts make extensive use
of the gcloud CLI tool. As a consequence, this tool is a pre-
requisite for setting up VMs and running experiments. Please
follow this tutorial to install it. We additionally make use of
the gsutil tool. To install it, please follow this tutorial. We also
suggest to use Python 3.9 with PyEnv as a means to install and
manage multiple python versions and virtual environments.
The software requirements for the Google Cloud service de-
ployment are installed on the VM images we provide.

Estimated time and cost: The estimated time needed to
prepare the workflow is 30 minutes. The estimated execution
time of experiments is approx. 15 hours in total. We pro-
vide an estimated breakdown of the time and cost for each
experiment5.

A.4 Instructions
Detailed instructions are provided in the artifact repos-
itory README. The evaluator will need to git clone

https://github.com/eth-easl/cachew_experiments.git lo-
cally, then use the scripts provided in the deploy folder to
spin up a VM, and later tear it down. Once the VM is spun up,
one needs to ssh into the VM and use the scripts in the rel-
evant experiment directory. Once the experiment is finished,
the VM can be torn down. Note that as mentioned before,
some of the scripts might not work due to private dependen-
cies. In such cases, use the scripts as reference.

5Time and cost estimate sheet: https://tinyurl.com/52mwtccn

https://github.com/eth-easl/cachew_experiments
https://github.com/eth-easl/cachew
gs://cachew-builds/tensorflow-2.8.0-cp39-cp39-linux_x86_64.whl
https://github.com/eth-easl/cachew_experiments
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/storage/docs/gsutil_install
https://github.com/pyenv/pyenv
https://github.com/eth-easl/cachew_experiments#software-prerequisites-for-full-service-deployment
https://github.com/eth-easl/cachew_experiments/blob/main/README.md
https://github.com/eth-easl/cachew_experiments/blob/main/README.md
https://docs.google.com/spreadsheets/d/1rEDdn2CCyz6irt_nthHyWYOcPwZ-f35vp71Efps5sYs/edit?usp=sharing


A.4.1 Getting Started

Please see the artifact repository Getting Started section of the
README for instructions on how to write a simple Cachew
input data pipeline and execute it locally.

A.4.2 Reproducing Experiment Results

We provide scripts to automate the deployment, execution,
and result plotting for the three key experiments listed in
§A.1. See the Artifact Evaluation section of the README
for instructions to run the scripts. Please follow the following
steps for each experiment:

1. Deploy a VM for artifact evaluation using
deploy/deploy.sh <vm-name> <gpu-count>

2. Use the gcloud compute ssh <vm-name> command
to ssh into the VM

3. Use cd ${HOME}/cachew_experiments/experiments/<ename>

where <ename> is the experiment name, and follow the
README there and the associated scripts to run the
experiments.

4. Use gcloud compute scp to collect whatever resource
you find relevant after the experiment is done.

5. Exit the ssh session, and tear down the VM using the
deploy/terminate.sh script.

For Figure 6a (compute curve) experiment, which required
4 GPUs, see the experiments/autoscaling directory. For
Figure 8, see the experiments/autocaching directory. For
Figure 11, see the experiments/multi-tenancy directory.

A.5 Evaluation and Expected Results
Each of the three experiments produces a plot which should
be comparable with the associated plot in the paper.

A.5.1 Experiment Metrics

• Figure 6a: Epoch time in seconds, number of workers
chosen by Cachew’s autoscale policy and number of
workers chosen by Kubernetes HPA

• Figure 8: Batch time, Cachew’s autocache policy deci-
sions

• Figure 11: Epoch time, autocache policy decision, au-
toscale policy decision

A.5.2 Expected Results and Possible Variations

• Figure 6a: Epoch time can vary depending on cloud
conditions. Decay may or may not be more or less ag-
gressive due to this. Consequently, autoscale decision
might vary around 4 workers (at most ±1 worker). While
it is rare, it can happen that the Kubernetes HPA scaling
also changes from one worker to two.

• Figure 8: Epoch times might vary due to cloud condi-
tions. Shape of curves should still be the same (although
compute might change as it depends heavily on GCS).
Note that the points on the curves, and Cachew’s de-
cisions are recorded separately (i.e. in different runs).
Consequently, conditions might change, and metrics
could potentially vary leading Cachew to make a seem-
ingly ’wrong’ decision at points where the three options
have similar throughput. Otherwise, Cachew decision
expected to follow lowest batch time option.

• Figure 11: Job 1’s first two epochs are not always ex-
pected to converge during autoscale phase (as Cachew
prefers to move to next epoch in those compute modes),
but it could happen at 3 workers (both epochs). Job 1’s
third epoch expected to converge around 2 workers. Job
2 is expected to converge around 4 workers. Epoch times
for Job 1 should be around [366s, 363s, 266s, 253s] while
for Job 2 around 158s initially then around 129s in the
later epochs. The expected sequence of execution modes
for Job 1 is [PROFILE, PUT, GET] and for Job 2 is only
GET. Both jobs can have epoch extensions towards the
end of a run. A reasonable amount of variability in the
worker count (±1 worker) and epoch times is expected.
This experiment is expected to be the relatively volatile,
and emphasis should be placed on epoch time conver-
gence and the autocache decisions. On rare occasions
the autoscaling decisions can converge to a wrong scale
due to the short and synthetic nature of the experiment
and the implicit noise this causes on the scaling metrics.
As this is a short job, Cachew cannot correct the scale in
good time. We have also recently identified a bug caused
by the merge with the recent TensorFlow 2.8 codebase
which affects our cache store. More detailed informa-
tion regarding this experiment’s expected outcome and
variability can be found in its README.

A.5.3 Experiment customization

It should be possible to modify some of the parameters per-
taining to each experiment. For instance, for the Figure 6a
experiment, it is possible to change the number of workers
across which clusters are deployed. These parameters can be
changed in the experiment scripts themselves or for some as
command line parameters. Please see the experiment scripts
for further details.

https://github.com/eth-easl/cachew_experiments#getting-started
https://github.com/eth-easl/cachew_experiments#getting-started
https://github.com/eth-easl/cachew_experiments#artifact-evaluation

	Introduction
	ML Input Data Processing
	ML Input Data Pipeline Characteristics
	Why disaggregate input data processing?
	Existing Mechanisms

	ML Input Data Service Challenges
	Autoscaling Challenges
	Autocaching Challenges

	Cachew Design
	Service Architecture
	Cachew API
	Autoscaling Policy
	Autocaching Policy
	Multi-tenancy
	Fault tolerance

	Implementation
	Autocache Mechanisms

	Evaluation
	Methodology
	Cachew Autoscaling
	Cachew Autocaching
	Autocaching & Autoscaling over Time
	End-to-end performance and cost
	Time to Accuracy and Training Cost
	Service Overhead

	Multi-tenancy

	Discussion
	Related Work
	Conclusion
	Artifact Evaluation README
	Abstract
	Artifact check-list
	Prerequisites
	Instructions
	Getting Started
	Reproducing Experiment Results

	Evaluation and Expected Results
	Experiment Metrics
	Expected Results and Possible Variations
	Experiment customization



