
DéjàVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

Foteini Strati 1 2 Sara McAllister 1 3 Amar Phanishayee 4 Jakub Tarnawski 4 Ana Klimovic 2

Abstract

Distributed LLM serving is costly and often un-
derutilizes hardware accelerators due to three key
challenges: bubbles in pipeline-parallel deploy-
ments caused by the bimodal latency of prompt
and token processing, GPU memory overprovi-
sioning, and long recovery times in case of fail-
ures. DéjàVu addresses all these challenges us-
ing a versatile and efficient KV cache streaming
library (DéjàVuLib). Using DéjàVuLib, we pro-
pose and implement efficient prompt-token disag-
gregation to reduce pipeline bubbles, microbatch
swapping for efficient GPU memory management,
and state replication for fault-tolerance. We high-
light the efficacy of these solutions on a range of
large models across cloud deployments.

1. Introduction
Large Language Models (LLMs) like GPT-3 (Brown et al.,
2020) are widely used in chatbots, code generation, and
text summarization. Two key trends in generative LLM
inference have changed the landscape of ML model serv-
ing. First, large model sizes, input sequence lengths, and
consequently large intermediate inference state lead to high
memory footprint for LLM inference. Figure 1 shows the
GPU memory required to serve various generative LLMs
with a 2K sequence length; their memory footprint greatly
exceeds the capacity of a single GPU, mandating paralleliza-
tion across many high-end GPUs (including tensor-model
and pipeline parallel execution). Second, for low latency
serving, these LLMs use a Key-Value Cache to store prior
computations as individual tokens are generated for each re-
quest (Yan et al., 2021; Pope et al., 2022; Kwon et al., 2023;
Sheng et al., 2023; Zhang et al., 2023). While ML inference
has been traditionally stateless, the use of KV cache makes
generative LLM inference stateful.

1MSR Project Fiddle Intern 2ETH Zurich 3Carnegie Mellon
University 4Microsoft Research. Correspondence to: Foteini Strati
<foteini.strati@inf.ethz.ch>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1 2 4 8 16 32 64 128
Batch size

0
200
400
600
800

1000
1200
1400

To
ta

l G
PU

 m
em

or
y 

 u
se

d 
(G

B)

OPT-13B
OPT-66B
BLOOM-176B

Figure 1. Memory footprint of serving various LLMs with 2K se-
quence length (input + generated tokens) and half precision (fp16).

Given these trends, we identify three key challenges in state-
ful, distributed LLM serving. First, we observe a substantial
latency discrepancy (up to 2 orders of magnitude) between
two phases of LLM serving, which leads to expensive GPU
underutilization. Prompt processing, also called the prefill
phase (Zhong et al., 2024), depends on the input size and is
compute bound. Meanwhile, token generation, also called
the decode phase, is memory bandwidth-bound and the time
to generate a token is nearly constant when using the KV
cache. Processing both prompts and tokens in the same
pipeline introduces pipeline bubbles, where GPUs idle.

Second, state-of-the-art LLM serving systems like Faster-
Transformer vastly overprovision the KV cache in pipeline
parallel configurations by allocating GPU memory for all
microbatches upfront (NVIDIA, 2023b). Since the KV
cache is only used by one microbatch at a time, there is an
opportunity to allocate GPU memory more efficiently.

Third, existing LLM serving systems do not efficiently han-
dle failures or preemptions, which often occur in large-scale
GPU deployments (Eisenman et al., 2022). Upon a fail-
ure, the LLM serving system crashes and stalls all in-flight
requests. When KV cache state is lost, current systems pro-
cess requests from scratch. These redundant computations
severely increase end-to-end request latency.

To address the above challenges for pipeline-parallel dis-
tributed inference, we propose DéjàVu, an efficient and fault-
tolerant LLM serving system based on KV cache streaming.
First, DéjàVu disaggregates prompt processing from token
generation and optimizes the number of machines for each

1



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

stage to satisfy GPU memory capacity constraints and avoid
GPU idle times. Second, to effectively use GPU mem-
ory capacity, DéjàVu swaps KV cache state per-microbatch
between the GPU and CPU, maximizing GPU memory allo-
cation for each microbatch being processed. Third, DéjàVu
replicates KV cache state to avoid losing state and employs
fast recovery mechanism to minimize lost work on failures.

The core component in DéjàVu that enables all these opti-
mizations is an efficient and versatile KV cache streaming
library, DéjàVuLib. We build DéjàVuLib as a modular set of
primitives that enable fast streaming for diverse configura-
tions, such as streaming between local or remote machines
and for a variety of different KV cache structures.

We evaluate DéjàVu under different use cases. In pipeline
parallel configurations without failures, DéjàVu improves
LLM serving throughput by up to 2× compared to Faster-
Transformer. We show that DéjàVu’s microbatch swapping
can improve throughput by up to 1.8× by accommodating
larger batch size for models that already fit in the given
deployment. This enables serving even larger models that
might not fit using existing state-of-the-art LLM systems. In
the presence of system failures, DéjàVu reduces microbatch
latency by 1.54× compared to non-fault-tolerant systems.
DéjàVu is available at https://github.com/msr-fiddle/dejavu.

2. Background and Motivation
2.1. Generative LLM inference

Generative LLM inference involves two phases: prompt
processing (or prefill) and autoregessive token generation
(or decode). In the prompt processing phase, the model
processes a user-defined sentence (i.e., prompt) provided
as input and generates a new token. During autoregressive
token generation, which spans multiple steps, the model
generates new tokens one by one, using the token generated
at step i as input for step i+ 1. This continues until a pre-
specified number of tokens or until the special EOS token is
generated.

A crucial component of an autoregressive LLM is the at-
tention mechanism. Upon each step of token generation,
each attention layer applies transformations to the input, to
extract the query, key, and value vectors. At each genera-
tion step i, the attention mechanism computes the attention
score and token probability using the query vector at posi-
tion i, and the key and value vectors at positions [0, i− 1].
Thus, the computations and output at each step depend on
the keys and values of the generated tokens at the previous
steps. To avoid recomputing the key and value vectors of all
processed tokens at each step, LLM inference frameworks
store the vectors in the KV cache (Ott et al., 2019; Yan et al.,
2021; Pope et al., 2022).

OPT-13B OPT-66B BLOOM-176B
Models

100

101

102

103

104

Ti
m

e(
m

s)

Prompt Processing Average Per-Token Generation

Figure 2. Prompt processing and average per-token generation time
on A100 GPUs, using FasterTransformer (with batch size 8 and
prompt size 1000). Y-axis is in log scale.

During prompt processing, the key and value vectors of
all tokens in the prompt are generated, populating the KV
cache. Since all prompt tokens are known, computations
during prompt processing use matrix-matrix multiplications
and tend to be compute-bound. At each subsequent token
generation step, the KV vectors for the newly generated
token are appended in the KV cache. This phase is memory-
bandwidth-bound (Jin et al., 2023).

The KV cache size depends on the number of layers, hid-
den units per layer, floating point precision, batch size, and
sequence length tokens (Sheng et al., 2023). Larger mod-
els, batch sizes, or longer generated sequences lead to a
larger KV cache memory footprint. Most LLM inference
frameworks preallocate GPU memory for the KV cache
for performance and often overprovision for the model’s
maximum supported sequence length (NVIDIA, 2023b).
vLLM (Kwon et al., 2023) proposes PagedAttention to dy-
namically allocate GPU memory for the KV cache.

As LLM serving requires 100s of GB of GPU memory
(Figure 1), LLM inference is distributed across multiple
GPUs, with pipeline and tensor parallelism. Tensor paral-
lelism requires very fast interconnects limiting it to single-
node boundaries (Narayanan et al., 2021; Jiang et al., 2024);
pipeline parallelism is additionally required for cross-node
scaling1. With pipeline parallelism, model layers are split
across stages, with adjacent stages exchanging activations,
and multiple micro-batches used to keep all stages busy.

2.2. Challenges of distributed LLM serving

2.2.1. BIMODAL PROMPT VS. TOKEN-GEN LATENCY

The first challenge in LLM serving comes from the disparity
between prompt processing and token generation. Since the
number of tokens processed during prompt processing is as
large as the input sequence length, the prompt processing

1In this paper, we always use a combination of parallelization
schemes: tensor-model parallel within a stage (multiple GPUs on
a single server) and pipeline parallel across stages (servers)

2

https://github.com/msr-fiddle/dejavu


DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

(a) Baseline

(b) Baseline, with request 3 stopping earlier than the rest (at 3A)

Figure 3. LLM serving with a 4-stage pipeline. A stage is a machine with n GPUs running a set of layers with tensor model parallelism.
Px shows prompt processing of microbatch x. Xy shows token generation for token y, microbatch X . For simplicity, in this figure,
we assume prompt processing time takes 2× per-token processing time. In reality, the prompt-token difference can be up to 106× (see
Appendix A). Grey areas are bubbles due to prompt processing vs. token generation latency discrepancy.

phase usually takes longer than the subsequent token genera-
tion phase. Figure 2 shows prompt processing and per-token
generation times for various LLMs. Prompt processing can
be more than an order of magnitude higher than per-token
generation, depending on the model and batch size. In our
study, prompt processing latency is up to 106× higher than
per-token generation (see Appendix A for details).

With pipeline parallelism, this difference in execution time
between the two stages causes pipeline bubbles, leaving
some stages idle while waiting for others to finish. For
example, Figure 3a shows a 4-stage pipeline, with 4 micro-
batches. Each microbatch consists of the prompt processing
step, and multiple token generation steps. We observe bub-
bles in the pipeline, e.g. for token generation step 3A to
start at Stage 1 for microbatch 3, Stage 4 must have com-
pleted prompt processing (generating the first token) for this
microbatch (P3). Because prompt processing is slower than
token generation, Stage 1 stalls.

The problem of pipeline bubbles becomes even more pro-
nounced with early stopping of microbatches, where certain
requests complete earlier than others. To keep the pipeline
full, existing frameworks like Orca (Yu et al., 2022) and
HuggingFace Accelerate (HuggingFace, 2024) will intro-
duce a new microbatch, which will go through the prompt
processing phase, disturbing the token generation of unfin-
ished microbatches. Figure 3b shows an example of early
stopping, where microbatch 3 finishes earlier than the others
(at step 3A), and is replaced by a new microbatch (P5). The
difference in processing time between prompt and token
steps introduces bubbles in the pipeline.

2.2.2. INEFFICIENT USE OF GPU MEMORY

In pipeline parallel settings, multiple microbatches should
be processed concurrently by the different stages, to keep all
stages busy. For example, in Figure 3a, 4 microbatches are

in-flight at each stage. While the prompt processing phase
happens only once for each microbatch, each microbatch
goes through multiple token generation steps. Due to data
dependencies between the different stages, the microbatches
are processed in a round-robin fashion. Each microbatch
has its own KV cache.

To increase performance, existing frameworks (NVIDIA,
2023b) preallocate the KV caches of all microbatches in
GPU memory. However, since microbatches are processed
sequentially at each stage, only the KV cache memory for
a single microbatch is used at a time. Hence, memory is
overprovisioned.

2.2.3. STATEFULNESS AND FAILURE HANDLING

Due to its large memory footprint (see Figure 1), LLM infer-
ence typically spans multiple GPUs across multiple nodes.
In a distributed setup, failures are inevitable. Industry stud-
ies emphasize the prevalence of failures in ML training jobs.
Meta reports that 50% of the jobs encounter a failure within
less than 16 minutes of execution (Eisenman et al., 2022),
while Microsoft notes that training jobs often suffer from
hardware or software failures (Jeon et al., 2019). Although
these studies focus on iterative training jobs, the causes of
software and hardware failures can also affect inference.
Due to data dependencies between stages in a pipeline paral-
lel inference setup, a failure in one stage leads all remaining
stages to idle, or even results in timeouts and cascading
failures, downgrading the throughput of LLM serving.

The impact of these failures in LLM inference is exacer-
bated by its stateful nature, due to the use of the KV cache.
Since the KV cache is typically stored in GPU memory for
fast accesses, an accelerator failure would result in loss of
cached data for an inference request which in turn would re-
quire that all work for that request is redone. Figure 4 shows
a toy example of a GPT2-1.5B model serving a request

3



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

Figure 4. Effect on cumulative latency of an inference request
when a failure occurs in today’s systems, on a GPT2-1.5B model

with a prompt size of 500 tokens, and generating 500 new
tokens. After the first 250 tokens are generated, a failure
occurs. Existing LLM serving systems lack a fault tolerance
mechanism, resorting to restarting the entire request. This
involves repopulating the KV cache, thus reprocessing the
prompt and regenerating tokens up to the point of failure.
In our illustrative example, this approach results in a 1.89×
increase in the end-to-end latency of the request. This issue
is magnified with pipeline parallelism and multiple requests
grouped in microbatches, where a failure in one stage will
cause the whole pipeline and the requests across in-flight
microbatches to restart from scratch.

3. Proposed Solutions
First, to mitigate pipeline bubbles, we propose disaggregat-
ing prompt processing from token generation, by allocat-
ing separate machines for each task. By avoiding mixing
prompt and token tasks, disaggregation helps reduce the
pipeline bubbles and leads to higher throughput. However,
disaggregation’s effectiveness relies on the swift transfer
of the prompt KV cache, which can be a bottleneck es-
pecially since user-submitted prompts grow in size (Ding
et al., 2023), underscoring the need for an efficient KV cache
streaming mechanism. Additionally, a key challenge is how
to partition the available resources into prompt processing
and token generation, to optimize system throughput. While
disaggregation has also been recently proposed by concur-
rent related work (Patel et al., 2023; Zhong et al., 2024), we
employ it to mitigate bubbles in pipeline-parallel settings
(mandated by large generative models) and our planner is
grounded in using a principled approach to optimally parti-
tion the available resources to maximize system throughput.

Second, to optimize GPU memory usage, we propose swap-
ping the KV cache between GPU and CPU at the micro-
batch level 2. The KV caches for all in-flight microbatches
are stored in the CPU, and transferred to the GPU only

2In contrast, vLLM(Kwon et al., 2023) employs swapping of
the KV cache of individual requests, instead of microbatches.

Figure 5. Full DéjàVu system diagram. When disaggregation is
enabled, the workers do either only prompt processing (P-worker)
or token generation (T-worker). The blue arrows stand for prompt-
token cache exchange, the red arrows for cache replication, and
the orange arrows for cache swapping.

when the respective microbatch is processed. This dramati-
cally reduces GPU memory requirements, enabling larger
batch sizes, and facilitating LLM serving under limited hard-
ware (Sheng et al., 2023). However, CPU-GPU transfers
through limited-bandwidth PCIe, can be a bottleneck, po-
tentially leaving GPUs idle. Thus, we need an efficient
mechanism to swap the KV cache in and out of the GPU.

Third, for fault tolerance, we propose replicating the KV
cache in persistent storage or remote CPU memory. In the
event of a failure, DéjàVu restores the most recent computed
values to the failed GPUs, allowing inference to resume
from the last generated token, and decreasing the recovery
time compared to other LLM serving systems. To use such
a system in practice, we need to minimize the overheads
of KV cache streaming to storage or remote memory. We
also need to make sure that failures can be detected and
mitigated quickly to minimize recovery time.

These solutions require a fast and versatile KV cache stream-
ing mechanism. Next, we describe our KV cache streaming
library, DéjàVuLib (§4.1), and how our system, DéjàVu,
implements the proposed solutions using DéjàVuLib.

4. The DéjàVu LLM serving system
Figure 5 illustrates the DéjàVu system. A centralized con-
troller coordinates inference. Workers are registered with
the controller to serve requests. The workers send the tokens
to the controller as they are generated. Each DéjàVu Worker
has a cache manager that handles KV cache streaming.
The cache manager is aware of the pipeline configuration
(pipeline depths, prompt or token processing, batch sizes,
etc). When a Worker needs to stream the KV cache out
or into the GPU, the cache manager calls the appropriate
DéjàVuLib primitives (4.1.2). We use NCCL (NVIDIA,
2023a) for GPU-GPU communication due to pipeline or ten-
sor parallelism, and gRPC (grpc, 2023) for all control-plane
communication (e.g. between workers and controller).

4



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

(a) Buffered Copies: We aggregate small updates in a contiguous
buffer in the GPU and then copy this buffer out.

(b) Layer-by-layer pipelining of prompt KV cache
streaming with computation. We also pipeline the
streaming of microbatch i with prompt processing of
microbatch i+ 1

(c) Pipelining of token streaming with computation

Figure 6. DéjàVuLib KV cache streaming optimizations

4.1. DéjàVuLib: A KV cache streaming library

4.1.1. LOW-LEVEL IMPLEMENTATION OF DÉJÀVULIB

DéjàVu is built on top of FasterTransformer3, supporting
both tensor and pipeline parallelism. FasterTransformer
preallocates GPU memory for the KV cache based on a
maximum sequence length (either the maximum length sup-
ported by the model or user-defined). Figure 6a provides a
simplified 2D representation of the key cache 4, including
only the layer and the sequence length dimension.5 Figure
6a also shows what happens in the key cache after pro-
cessing a prompt of 4 words (denoted as prompt). Prompt
processing occurs layer-by-layer, populating the respective
portion of the cache at each layer. After the prompt has
been processed, tokens are generated one by one. Figure 6a
depicts key cache contents after 2 subsequent tokens have
been generated (denoted as Token 1 and Token 2). After the
generation of each token, only a small, non-contiguous part
of the Key cache is updated. The need to copy numerous
non-contiguous small memory regions results in significant
overhead, necessitating optimizations below:

(1) Buffered copies (Figure 6a): Individual token genera-
tion leads to multiple non-contiguous small updates in the
KV caches. Employing multiple cudaMemcpy calls for
copying these chunks, results in substantial overhead. In-
stead, we leverage the high bandwidth of GPU DRAM, and
aggregate all updates in a temporary buffer within GPU
memory. Once the temporary buffer has been populated, we
copy it to the appropriate destination. Since these buffers are

3We chose FasterTransformer since it supports tensor-model
and pipeline parallel inference, and the newly released TensorRT-
LLM (NVIDIA, 2023c) has not open-sourced their KV cache
manager yet. Other frameworks such as vLLM do not support
pipeline parallelism at the moment (Kwon et al., 2023).

4The value cache follows a similar structure.
5In reality, the key cache is a 6D tensor, and the value cache is

a 5D tensor. The extra dimensions include the number of attention
heads and batch size.

reused, the overhead in GPU memory capacity is negligible.

(2) Layer-by-layer prompt cache streaming (Figure 6b):
Since prompt processing occurs in a layer-by-layer fashion,
we also stream the prompt cache layer-by-layer. This is sim-
ilar to wait-free backpropagation which overlaps backward
pass computations with gradient exchange in distributed ML
training (Zhang et al., 2017). In a pipeline parallel setup,
we further parallelize streaming the prompt of microbatch i
with computation of microbatch i+ 1.

(3) Token computation and streaming parallelization
(Figure 6c): Unlike prompt processing, token generation for
a single request involves multiple steps. In a single-machine
configuration, we stream the KV cache for token i, while
the generation of token i + 1 is in progress. In a pipeline
parallel configuration, we parallelize the cache streaming
of microbatch i, token j, with computation of microbatch
i+ 1, token j. Token computation, like prompt processing,
occurs layer-by-layer. However, token streaming time can
be fully masked behind subsequent token computation, so
we do not use layer-by-layer streaming in this case.

We use a background CPU thread that is responsible for
cache streaming and CUDA streams to parallelize KV cache
streaming with computation on the GPU.

4.1.2. DÉJÀVULIB PRIMITIVES

We built DéjàVuLib as a versatile library that handles differ-
ent configurations, addressing the challenges encountered
when developing our solutions described in 3. The source,
destination, data volume, and transferring method of KV
cache streaming depend on the pipeline setup, and network
topology. For instance, when disaggregating prompt pro-
cessing from token generation, the prompt KV cache is
transferred from the prompt processing to the token genera-
tion machines. This can occur through various mechanisms,
such as GPU-GPU or CPU-CPU copies. Moreover, the
prompt and token pipelines might have different pipeline

5



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

Table 1. DéjàVuLib primitives. The stream out,stream in call scatter,gather, which call flush and fetch respectively.

Primitives Functionality

stream out, stream in Given a source (or destination) worker, the KV cache, and the inference setup (pipeline depths,
batch sizes), find the proper destinations (or sources) for the different chunks of KV cache. This
might involve splitting the cache at source or merging cache chunks at destination.

scatter, gather Given a non-contiguous region of KV cache, and a local or remote destination (or source), chunk
the region to contiguous transfers and orchestrate movement.

flush, fetch Copy a contiguous chunk of KV cache. Local copies with CUDA, and remote copies with
NCCL (NVIDIA, 2023a), MPI (OpenMPI, 2023), or Boost (Boost, 2021) are supported.

depths and batch sizes, requiring splitting or merging the KV
cache at the source and destination respectively. DéjàVuLib
aims to account for the diverse set of configurations that
require KV cache streaming, abstracting away the imple-
mentation details from the high-level handling of the KV
cache while offering efficient solutions depending on the
type of streaming. We achieve this by offering primitives
with different levels of abstraction, shown in table 1.

4.2. Detailed description of the proposed solutions

4.2.1. PROMPT-TOKEN DISAGGREGATION

Workers are categorized into 2 groups: prompt processing,
and token generation (Figure 5). The Controller assigns
incoming requests to the prompt workers, which generate
the first token, populating the KV cache, which is then
transferred to the token generation machines. With disag-
gregation, we need to ensure that: 1) we optimally allocate
resources for each phase, and 2) we transfer the KV cache
from prompt to token machines with minimal overheads.

1. Principled allocation of resources: Given a fixed set
of machines, we want to partition them into prompt and
token processing to satisfy the following requirements: 1)
the aggregate memory footprint (model parameters and KV
cache), for the active microbatches should fit into the ag-
gregate GPU memory capacity for each pipeline, and 2)
the throughput of the disaggregated system should be max-
imized, and ideally be higher than the throughput of the
non-disaggregated system.

Appendix D describes the theoretical foundations of our
resource allocation planner. At a high level, for require-
ment (1), equations 2 and 3 establish a lower limit on the
number of machines required for prompt and token pro-
cessing respectively. For requirement (2), since we want
to maximize the throughput of the disaggregated system,
we need to ensure that the prompt processing and token
generation pipelines have comparable throughput. Assume
a system with D machines, with prompt processing time per
microbatch Y , token generation time per microbatch t, and
N tokens generated per request. The number of machines
for token generation Dt, and the number of machines for

prompt processing Dp is given by formula 1 (m is the addi-
tional prompt processing overhead due to cache streaming).

Dt =
D ·N · t

m · Y +N · t
and Dp =

D ·m · Y
m · Y +N · t

(1)

When the overhead of prompt KV cache streaming is small,
the disaggregated system will have higher throughput than
the baseline (see Appendix D).

2. Fast prompt KV cache transfers: We use optimiza-
tions from 4.1 to pipeline layer-by-layer prompt KV cache
streaming with prompt processing. To avoid overloading
GPU memory, we transfer the KV cache to local CPU
memory, and then to CPU memory of the token machine.
Prompt and token pipelines might have different pipeline
depths, or different batch sizes. This may require split-
ting the KV cache to multiple token machines or merging
from different prompt machines. The cache manager in-
vokes the stream out primitive which calls the lower-
level primitives (Table 1) based on pipeline depth and batch
size. Whenever a prompt is needed, the token machines
check if there are any prompt KV caches in their local CPU
memory. When prompt KV cache becomes available, it is
loaded into GPU memory and token generation starts.

4.2.2. MICROBATCH SWAPPING

To facilitate microbatch swapping with minimal overhead
we leverage all three optimizations presented in 4.1. For
a pipeline of depth D, where D microbatches are active
at a time, and each microbatch requires M GB, we allo-
cate D · M GB in CPU memory, and 2 · M GB in GPU
memory. Before token generation step t for microbatch x
starts, DéjàVu prefetches the KV cache for this microbatch
from CPU to GPU (swap in). After step t has finished, the
DéjàVu cache manager transfers the updated part of micro-
batch x’s KV cache, corresponding to step t, back to the
CPU (swap out). See Figure 26 in Appendix G for a visual
representation of microbatch swapping over time.

4.2.3. FAILURE HANDLING

For fault tolerance, we need to ensure that 1) KV cache repli-
cation has minimal overheads, and 2) failures are detected

6



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

and mitigated quickly to minimize recovery time. Figure
24 in appendix E provides a toy example with 4 token gen-
eration workers. The DéjàVu Controller is responsible for
detecting and mitigating failures. The workers send heart-
beats to the controller periodically. If the controller has
not received a heartbeat from a worker within a specified
timeframe, it identifies the worker as failed, and notifies the
rest workers to stop serving requests. To recover from the
failure, we need to 1) restore the lost KV caches, and 2)
determine the step and microbatch from which the inference
should resume.

Each worker x streams its KV cache to worker (x+ 1)%N
(assuming an N-stage pipeline). For example, in Figure 24,
the worker at Stage 1 streams its cache to Stage 2, Stage
2 to Stage 3, etc. The cache is streamed incrementally, as
each token is generated, and takes place asynchronously (in
parallel) to computation (see 4.1). We define a background
thread at each worker that is responsible for receiving the
KV cache from its peer. When a worker x fails, both its own
KV cache and the replica KV cache of worker (x− 1)%N
is lost. During recovery, we make sure the lost caches are
repopulated at worker x.

Upon receiving the KV cache update from worker (x −
1)%N , for microbatch j and generation step t, worker x
sends a message to the controller of the form (x, j, t). There-
fore, the controller is aware of the KV cache replication
status across all workers. In the event of failure, we follow
a four-step process for recovery. First, worker (x+ 1)%N
sends the replica KV cache it hosts to worker x (repopulat-
ing x’s lost cache). Second, worker (x − 1)%N sends its
KV cache to x (repopulating the lost replica at x). Third,
the controller finds the microbatch j and step t, that needs
to be re-executed, since the cache of failed worker x has not
been replicated up to that point. Finally, as stage x requires
input from its preceding stages to re-execute a microbatch,
the controller propagates (j, t) to all workers, and Stage 1
resumes inference from microbatch j and step t.

As a concrete example, consider the scenario in Figure 24,
where stage 2 fails. First, stage 3 will copy stage 2’s KV
cache replica back to stage 2. Second, stage 1 will copy its
own KV cache to stage 2. Third, the controller identifies
the microbatch j and step t that needs to be reexecuted. In
that case, j == 1 and t == C, since stage 2’s KV cache
for 1C had not been replicated before the failure. If stage
2 restarts from 1C, it needs to get inputs (activations) from
stage 1. Thus, finally, all stages execute 1C.

5. Evaluation
Setup We use VMs with 2 A100-80GB GPUs, and inter-
VM network bandwidth of 40 Gbps.
Models We use HuggingFace versions of GPT2, OPT and

BLOOM, adapted for FasterTransformer. We use half-
precision for all models.
Experiments Section 5.1 evaluates DéjàVuLib with mi-
crobenchmars. We evaluate the DéjàVu disaggregation pol-
icy, microbatch swapping, and fault-tolerance functionality
in sections 5.2.1, 5.2.2 and 5.2.3 respectively.
Baselines We compare DéjàVu with FasterTransformer, as
it supports pipeline parallelism for LLM inference. The
original FasterTransformer follows a very rigid paradigm,
where all microbatches must finish generating tokens before
any new microbatches are introduced. This avoids mixing
prompt and token processing, but it introduces bubbles in
the pipeline since not enough microbatches are now in-flight
to fully utilize the pipeline. Since works such as Orca (Yu
et al., 2022) allow more flexible scheduling, we modified
FasterTransformer to allow scheduling at the microbatch
level. Whenever a microbatch completed in any stage, it
can be replaced by the next available microbatch. Appendix
H.1 shows that our modified FasterTransformer baseline
outperforms the original.

5.1. Microbenchmarks

We evaluate the DéjàVuLib streaming mechanism, using
requests with a prompt size of 500 tokens, generating 500
new tokens. We measure the time to complete a batch of
requests, without streaming, and with streaming to local
SSD, and remote CPU. Here, we use only tensor paral-
lelism when more than 1 GPU is employed (no pipeline
parallelism). The DéjàVuLib streaming slowdown is within
2% for local SSD and remote CPU memory (Appendix F).
The negligible overhead of DéjàVuLib is due to the opti-
mizations described in 4.1. Figure 7 provides a breakdown
of the performance achieved by each of the optimizations.
Baseline stands for transferring all contiguous memory re-
gions one by one. Buffered Copies (Optimization (1) in
4.1) has 95× improvement compared to baseline. The other
two DéjàVuLib optimizations further improve streaming
performance by 1.4×.

5.2. End-To-End Performance

5.2.1. PERFORMANCE WITHOUT FAILURES

We now evaluate the performance of our disaggregated
DéjàVu system compared to the non-disaggregated base-
line. We configure all our requests to a fixed prompt size
(1000 tokens for Figure 8), and we sample the number of
newly generated tokens from the LMSys dataset (Zheng
et al., 2023), assuming all requests within a microbatch gen-
erate the same number of tokens. We use one client, which
submits requests following a Poisson distribution in an open
loop, with varying request rates. We use microbatch size
of 8 in all cases. Similarly to Orca (Yu et al., 2022) and
vLLM (Kwon et al., 2023) we report normalized latency

7



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

GPT2-1.5B OPT-13B OPT-66B
Model

0

1

2

3

4

5

Sl
ow

do
wn

 o
ve

r n
o 

st
re

am
in

g

131 92 69

Naive Streaming
+ DejaVu buffered copies 

+ DejaVu layer-by-layer streaming
DejaVu (all)

Figure 7. Single-batch latency slowdown (with batch size 8)
caused by KV streaming to remote CPU memory, when grad-
ually applying the optimizations proposed by DéjàVuLib.

(seconds/token) for each request rate. To compute the nor-
malized latency for each request, we divide its end-to-end
latency by the number of generated tokens. Figure 8 shows
the median normalized latency for OPT-66B and BLOOM-
175B. Since DéjàVu targets pipeline parallel configurations,
we employ pipeline parallelism using multiple machines
with a few GPUs each. Each pipeline stage is a VM with
2 GPUs running tensor model parallelism. The legends in
Figure 8 show the pipeline parallelism depth.

(a) OPT-66B (b) BLOOM-176B

Figure 8. E2E performance of the OPT-66B and BLOOM-176B
model in the LMSys dataset. Baseline-X means that X machines
were used in the pipeline. DejaVu-X-Y means that X machines
were used for prompt processing, and Y for token generation.

As we increase the input request rate, the normalized latency
increases, due to the systems’ inability to maintain that
high request rate, leading to queueing effects. DéjàVu sus-
tains low latency with up to 1.88×, and 2× higher through-
put than FasterTransformer baseline for the OPT-66B and
BLOOM-176B models respectively. Since microbatches
generate a variable number of tokens, new prompts are being
injected, introducing bubbles in the pipeline of the baseline
case, where all machines are dedicated to both prompt and
token processing. DéjàVu addresses this issue by allocating
separate pipelines for prompt and token processing. We se-
lect the number of prompt processing and token generation
pipelines as explained in section 4.2.1, to ensure that the to-
ken generation machines do not idle waiting for prompts to

be processed. Disaggregation benefits are more noticeable
with larger prompt sizes. Larger prompts result in extended
prompt processing time, leading to larger bubbles in the
baseline case, thereby downgrading performance. Despite
the larger amount of data that needs to be streamed from
the prompt processing to token generation machines with
larger prompt sizes, DéjàVu streaming optimizations (sec
4.1) manage to fully hide the prompt streaming overhead.
In appendix B we use our planner and simulator to evaluate
various scenarios. Overall, DéjàVu scales better than the
baseline, leading to shorter makespan and cost.

5.2.2. PERFORMANCE WITH MICROBATCH SWAPPING

Swapping reduces the amount of GPU memory required
for the KV cache, allowing larger batch sizes, and increas-
ing system throughput. Figure 9 illustrates this. In this
experiment, we also evaluate OPT-30B on VMs with 2
V100-16GB GPUs, and inter-VM network bandwidth of
32 Gbps. For each model and set of GPUs (x-axis), we
get the achieved system throughput with the largest feasible
batch size without swapping B, and the achieved throughput
with swapping enabled and batch size 2 ·B. By accommo-
dating larger batch size, we increase throughput by up to
1.8×. However, the main bottleneck of swapping is the
time needed to bring the KV cache back into the GPU. This
depends on the size of the cache and the CPU-GPU PCIe
bandwidth. Since each token generation step takes 10s-
100s ms, the KV cache transferring should also be very fast.
In Appendix G, we formalize the benefits of microbatch
swapping and evaluate the mechanism varying the sequence
length and batch size.

OPT-30B
6*V100-16GB

OPT-66B
2*A100-80GB

BLOOM-176B
5*A100-80GB

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

Th
ro

ug
hp

ut
(re

q/
se

c) No Swapping, B Swapping, 2*B

Figure 9. Benefit of microbatch swapping

5.2.3. PERFORMANCE WITH FAILURES

We now evaluate the performance of DéjàVu in the event
of failures. We serve the OPT-66B model in a cluster of 4
machines, using pipeline parallelism with 4 stages, and mi-
crobatch size 8. Each stage in the pipeline does both prompt
processing and token generation. Each request has a prompt
size of 500 tokens and generates 1000 extra tokens. We
incur a pipeline stage failure at token generation step 1200.
Figure 10 depicts the cumulative latency of one of the active
microbatches at the moment of failure. A single failure led

8



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Number of tokens

0
50

100
150
200

Cu
m

ul
at

iv
e 

La
te

nc
y 

(s
) No Failure Failure, Baseline Failure, DejaVu

Figure 10. Effect on cumulative latency for a single microbatch
when a failure occurs at token generation step 1200.

0 500 1000 1500 2000 2500
Time (sec)

Baseline DejaVu

Figure 11. Request completions over time. We introduce failures
after 600, 1200, and 1800 sec (marked with black X).

to 1.91× increase in the latency of a set of microbatches. In
contrast, with DéjàVu the increase due to failure is 1.24×.

In Figure 11 we introduce failures at various timestamps
while serving a set of requests. In the case of baseline, all
workers need to restart, and the processing of the micro-
batches that were active at the point of failure starts from
scratch. With DéjàVu, due to the lightweight cache stream-
ing protocol, token generation just restarts from the latest
replicated step, leading to 1.16× shorter runtime.

6. Related Work
Serving Systems for LLMs The widespread adoption of
LLMs led to multiple LLM serving systems, such as Faster-
Transformer, TensorRT-LLM (NVIDIA, 2023c), and Deep-
Speed Inference (Aminabadi et al., 2022). Orca (Yu et al.,
2022) introduces iteration-level scheduling allowing re-
quests at a batch to be at different phases (prompt pro-
cessing or token generation), but overlooks the potential
negative impact on request latency caused by the difference
between prompt processing and per-token generation time.
vLLM (Kwon et al., 2023) reduces KV cache overprovision-
ing by using dynamic memory allocation, and swapping KV
cache blocks to the CPU under GPU memory pressure for in-
dividual requests. In contrast to vLLM that does not support
pipeline parallelism, DéjàVu targets pipeline parallel infer-
ence and employs swapping at the level of microbatches.

Differences in prompt and token processing Some re-
cent works, developed concurrently with DéjàVu, also ad-
dress the discrepancy in prompt and token processing times.
Sarathi (Agrawal et al., 2023) proposes partitioning prefill
requests into smaller chunks and merging them with de-
codes. Splitwise (Patel et al., 2023) and DistServe (Zhong
et al., 2024) propose separating prompt from token pro-
cessing, to reduce power consumption and cost, by using
heterogeneous GPUs for each phase independently. Split-
wise is primarily simulation-based and supports execution
modes with limited parallelism; models fit on a single GPU
or run tensor-model parallel across GPUs, and they do no
consider pipeline parallel serving (required for recent mas-
sive LLM models). DistServe employs distinct batching
and parallelism for the prompt processing and token genera-
tion, based on model characteristics and simulation findings.
DéjàVu uses disaggregation to minimize bubbles in pipeline
parallel configurations and optimizes machine allocation for
prompt and token pipelines to maximize system throughput.

LLM serving on preemptible resources SpotServe (Miao
et al., 2023) is a framework for serving LLMs over spot
cloud resources. SpotServe utilizes the grace period (e.g. 30
sec in AWS) before a VM is preempted, to optionally mi-
grate KV cache contents to avoid restarting inference from
scratch. However, this approach cannot protect from sudden
failures which can harm request latency (see Figure 10). In
contrast, DéjàVu uses a token-level KV cache replication
strategy with minimal overhead, offering continuous fault
tolerance and seamless recovery from any failure.

Overall, DéjàVu stands out by being comprehensive in ad-
dressing the key LLM-serving challenges we highlight in
the paper; DéjàVuLib, its KV cache streaming library, is
designed for high-performance and versatility to address
these challenges. Unlike other systems that are myopic in
their focus of a challenge, DéjàVu offers high-throughput,
fault-tolerance, and seamless recovery upon failures, as well
as opportunities for memory savings in LLM inference.

7. Conclusion
DéjàVu is a system for efficient and fault-tolerant LLM serv-
ing at scale. It decouples prompt processing from token
generation to mitigate pipeline bubbles caused by the differ-
ences in prompt processing and per-token generation times.
Additionally, it optimizes memory utilization in pipeline
parallel configurations by implementing microbatch-level
swapping to and from CPU memory. Finally, it employs
cache replication and failure handling mechanisms to pro-
vide seamless recovery and minimize redundant work in the
event of failures. DéjàVu leverages DéjàVuLib, a library
that allows KV cache streaming under various setups with
minimal overhead. DéjàVu improves LLM serving through-
put by up to 2× compared to state-of-the-art systems.

9



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgements
We thank the anonymous reviewers for their valuable
feedback. Foteini Strati was supported in part by the
Swiss National Science Foundation (Project Number
200021 204620). Sara McAllister was supported in part
by a NDSEG fellowship.

10



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

References
Agrawal, A., Panwar, A., Mohan, J., Kwatra, N., Gulavani,

B. S., and Ramjee, R. Sarathi: Efficient llm inference by
piggybacking decodes with chunked prefills, 2023.

Aminabadi, R. Y., Rajbhandari, S., Zhang, M., Awan, A. A.,
Li, C., Li, D., Zheng, E., Rasley, J., Smith, S., Ruwase,
O., and He, Y. Deepspeed inference: Enabling efficient
inference of transformer models at unprecedented scale,
2022.

Bhardwaj, A., Phanishayee, A., Narayanan, D., Tarta, M.,
and Stutsman, R. Packrat: Automatic reconfiguration for
latency minimization in cpu-based dnn serving, 2023.

Boost. Boost.asio. https://www.boost.org/doc/
libs/1_78_0/doc/html/boost_asio.html,
2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Ding, J., Ma, S., Dong, L., Zhang, X., Huang, S., Wang, W.,
Zheng, N., and Wei, F. Longnet: Scaling transformers to
1,000,000,000 tokens, 2023.

Eisenman, A., Matam, K. K., Ingram, S., Mudi-
gere, D., Krishnamoorthi, R., Nair, K., Smelyan-
skiy, M., and Annavaram, M. Check-N-Run: a
checkpointing system for training deep learning rec-
ommendation models. In 19th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI 22), pp. 929–943, Renton, WA, April
2022. USENIX Association. ISBN 978-1-939133-27-4.
URL https://www.usenix.org/conference/
nsdi22/presentation/eisenman.

grpc. grpc: A high performance, open source universal rpc
framework. https://grpc.io/, 2023.

HuggingFace. Huggingface accelerate. https:
//huggingface.co/docs/accelerate/en/
index, 2024.

Jeon, M., Venkataraman, S., Phanishayee, A., Qian, J.,
Xiao, W., and Yang, F. Analysis of Large-Scale
Multi-Tenant GPU clusters for DNN training work-
loads. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pp. 947–960, Renton, WA, July
2019. USENIX Association. ISBN 978-1-939133-03-8.
URL https://www.usenix.org/conference/
atc19/presentation/jeon.

Jiang, Y., Yan, R., Yao, X., Zhou, Y., Chen, B., and Yuan, B.
Hexgen: Generative inference of large-scale foundation
model over heterogeneous decentralized environment,
2024.

Jin, Y., Wu, C.-F., Brooks, D., and Wei, G.-Y. S3: Increasing
gpu utilization during generative inference for higher
throughput, 2023.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
29th Symposium on Operating Systems Principles, SOSP
’23, pp. 611–626, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9798400702297.
doi: 10.1145/3600006.3613165. URL https://doi.
org/10.1145/3600006.3613165.

Li, Y., Phanishayee, A., Murray, D., Tarnawski, J., and
Kim, N. S. Harmony: overcoming the hurdles of gpu
memory capacity to train massive dnn models on com-
modity servers. Proc. VLDB Endow., 15(11):2747–2760,
jul 2022. ISSN 2150-8097. doi: 10.14778/3551793.
3551828. URL https://doi.org/10.14778/
3551793.3551828.

Miao, X., Shi, C., Duan, J., Xi, X., Lin, D., Cui, B., and Jia,
Z. Spotserve: Serving generative large language models
on preemptible instances, 2023.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V. A., Vainbrand, D., Kashinkunti,
P., Bernauer, J., Catanzaro, B., Phanishayee, A., and Za-
haria, M. Efficient large-scale language model training
on gpu clusters using megatron-lm, 2021.

NVIDIA. Nvidia collective communications library (nccl).
https://developer.nvidia.com/nccl,
2023a.

NVIDIA. Nvidia fastertransformer. https://github.
com/NVIDIA/FasterTransformer, 2023b.

NVIDIA. Tensorrt-llm. https://github.com/
NVIDIA/TensorRT-LLM, 2023c.

OpenMPI. Open mpi: Open source high performance com-
puting. https://www.open-mpi.org/, 2023.

11

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.usenix.org/conference/nsdi22/presentation/eisenman
https://www.usenix.org/conference/nsdi22/presentation/eisenman
https://grpc.io/
https://huggingface.co/docs/accelerate/en/index
https://huggingface.co/docs/accelerate/en/index
https://huggingface.co/docs/accelerate/en/index
https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/atc19/presentation/jeon
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.14778/3551793.3551828
https://doi.org/10.14778/3551793.3551828
https://developer.nvidia.com/nccl
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://www.open-mpi.org/


DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S.,
Ng, N., Grangier, D., and Auli, M. fairseq: A fast,
extensible toolkit for sequence modeling. In Ammar,
W., Louis, A., and Mostafazadeh, N. (eds.), Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics (Demonstrations), pp. 48–53, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-4009. URL https:
//aclanthology.org/N19-4009.

Patel, P., Choukse, E., Zhang, C., Íñigo Goiri, Shah, A.,
Maleki, S., and Bianchini, R. Splitwise: Efficient genera-
tive llm inference using phase splitting, 2023.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Brad-
bury, J., Levskaya, A., Heek, J., Xiao, K., Agrawal, S.,
and Dean, J. Efficiently scaling transformer inference.
CoRR, abs/2211.05102, 2022. doi: 10.48550/ARXIV.
2211.05102. URL https://doi.org/10.48550/
arXiv.2211.05102.

Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., and
He, Y. Zero-infinity: breaking the gpu memory wall
for extreme scale deep learning. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’21,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450384421. doi: 10.1145/
3458817.3476205. URL https://doi.org/10.
1145/3458817.3476205.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Fu,
D. Y., Xie, Z., Chen, B., Barrett, C., Gonzalez, J. E.,
Liang, P., Ré, C., Stoica, I., and Zhang, C. Flexgen: High-
throughput generative inference of large language models
with a single gpu, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023.

Workshop, B. Bloom: A 176b-parameter open-access mul-
tilingual language model, 2023.

Yan, Y., Hu, F., Chen, J., Bhendawade, N., Ye, T., Gong,
Y., Duan, N., Cui, D., Chi, B., and Zhang, R. Fast-
seq: Make sequence generation faster. In Annual Meet-
ing of the Association for Computational Linguistics,
2021. URL https://api.semanticscholar.
org/CorpusID:235376968.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for Transformer-
Based generative models. In 16th USENIX Sympo-

sium on Operating Systems Design and Implementa-
tion (OSDI 22), pp. 521–538, Carlsbad, CA, July
2022. USENIX Association. ISBN 978-1-939133-28-1.
URL https://www.usenix.org/conference/
osdi22/presentation/yu.

Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X.,
Hu, Z., Wei, J., Xie, P., and Xing, E. P. Poseidon: An
efficient communication architecture for distributed deep
learning on GPU clusters. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17), pp. 181–193, Santa
Clara, CA, July 2017. USENIX Association. ISBN 978-
1-931971-38-6. URL https://www.usenix.org/
conference/atc17/technical-sessions/
presentation/zhang.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. Opt: Open pre-trained transformer language models,
2022.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., Wang, Z., and
Chen, B. H2o: Heavy-hitter oracle for efficient generative
inference of large language models, 2023.

Zheng, L., Chiang, W.-L., Sheng, Y., Li, T., Zhuang, S., Wu,
Z., Zhuang, Y., Li, Z., Lin, Z., Xing, E. P., Gonzalez, J. E.,
Stoica, I., and Zhang, H. Lmsys-chat-1m: A large-scale
real-world llm conversation dataset, 2023.

Zhong, Y., Liu, S., Chen, J., Hu, J., Zhu, Y., Liu, X., Jin,
X., and Zhang, H. Distserve: Disaggregating prefill and
decoding for goodput-optimized large language model
serving, 2024.

12

https://aclanthology.org/N19-4009
https://aclanthology.org/N19-4009
https://doi.org/10.48550/arXiv.2211.05102
https://doi.org/10.48550/arXiv.2211.05102
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://api.semanticscholar.org/CorpusID:235376968
https://api.semanticscholar.org/CorpusID:235376968
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang


DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

A. Prompt processing and token generation time

Figure 12. Prompt processing and token generation time for OPT-13B and OPT-66B serving with batch size 8

Figure 12 shows the per-token generation time when serving the OPT-13B and OPT-66B model, with prompt size 1000, and
generating 1000 extra tokens. We observe that the time to generate the first token (i.e. prompt processing time) is much
higher than the time to generate each subsequent token (which is nearly constant).

Figures 13, 14, and 15 show average per-token generation time, and prompt processing time with different prompt sizes and
batch sizes. Prompt processing time scales almost linearly with batch size and prompt length while being up to 106× higher
than per-token generation latency. We observe similar patterns in other model generations such as Llama (Touvron et al.,
2023).

(a) Batch size 1 (b) Batch size 2

(c) Batch size 4 (d) Batch size 8

Figure 13. Prompt processing and token generation times for the OPT-13B model

13



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

(a) Batch size 1 (b) Batch size 2

(c) Batch size 4 (d) Batch size 8

Figure 14. Prompt processing and token generation times for the OPT-66B model

(a) Batch size 1 (b) Batch size 2

(c) Batch size 4 (d) Batch size 8

Figure 15. Prompt processing and token generation times for the BLOOM-176B model

14



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

B. DéjàVu Planner
In this section, we evaluate how disaggregation performs under various scenarios. Due to limited budget, we use our simulator
to model a large number of machines. We use different types of models (OPT (Zhang et al., 2022) and BLOOM (Workshop,
2023)), different types of GPUs (V100-16GB, and A100-80GB) and different number of GPUs per machine (i.e. varying
degrees of tensor parallelism). As in section 5.2.1, we use a modified version of the LMSys dataset for the number of
generated tokens per microbatch (Zheng et al., 2023), and keep the prompt size equal to 1000 tokens.

Figures 16-19 show the makespan and normalized total cost (with respect to the hourly cost of a single VM) for various
numbers of available machines for our trace. For D available machines, we simulate 3 different scenarios:

1. Baseline (Tensor Model + Pipeline Parallel): all D machines run pipeline parallelism (all GPUs within each machine
run Tensor Model Parallelism). We vary the microbatch size b, and pick the microbatch size that leads to the shortest
makespan for our trace of requests.

2. Baseline-DP (Tensor Model + Pipeline + Data Parallel): we use d pipelines, serving requests in parallel. Each
pipeline has depth D

d . We also vary the microbatch size b, that each pipeline is using. We pick the combination d-b that
leads to the shortest makespan.

3. DéjàVu (Tensor Model + Pipeline Parallel): we use Dp machines for prompt processing (with pipeline depth Dp),
and Dt machines for token generation (with pipeline depth Dt), where D = Dp +Dt. We also vary the microbatch
size b, that each pipeline is using. We pick the combination Dp-b that leads to the shortest makespan.

Tables 2-5 show the best configurations found for each use case. For the Baseline, (Y p, Zb) indicates that a pipeline of depth
Y was used, with microbatch size Z. For the Baseline-DP, (Xd, Y p, Zb) indicates that X pipelines were used, each with
depth Y and microbatch size Z. For DéjàVu, ((Y1d, Z1b), (Y2d, Z2b)) means that the pipeline used for prompt processing
has depth Y1 and microbatch size Z1, and the pipeline used for token generation has depth Y2 and microbatch size Z2.

Overall, Baseline (i.e. using tensor model and pipeline parallelism) has a shorter makespan with a larger number of
available machines (and subsequently the pipeline depth) and microbatch size (which can also be explained from formula
4). However, we observe 3 trends: First, the scalability of Baseline diminishes as pipeline depth increases, i.e. an Y×
increase in the pipeline depth does not correspond to a Y× decrease in makespan. This becomes evident from the normalized
cost Figures 16-19, where the cost increases with the number of machines. Second, with a real-world trace such as the
LMSys (Zheng et al., 2023) dataset, the number of ”non-overlapping” early stops, and their impact on the pipeline depends
on the trace and the pipeline depth. For example, in Figure 20, we plot the makespan for Baseline for the BLOOM model,
with and without early stops for a fixed microbatch size. Without early stops, as we increase the number of machines, the
makespan decreases. With early stops, we see sudden increases in makespan with 6,10, and 14 machines, due to a higher
number of non-overlapping early stops. Third, although a larger microbatch size can reduce the makespan, it also increases
proportionally the time for prompt computation (Y ). However, the time per token only slightly increases (see Figures 13-15).
Consequently, larger microbatch size leads to larger differences between prompt processing and token generation time,
which increases the pipeline bubbles in the case of requests exiting early. Thus, a larger microbatch size is not always
beneficial, as shown in Figure 21.

Introducing Data Parallelism is beneficial for performance. Overall, Baseline-DP outperforms Baseline by 2.29×. However,
the varying number of generated token at the LMSys trace can cause imbalance to the different data parallel pipelines, both
in the total number of tokens they generate, and also in the number of early stops they encounter.

DéjàVu can alleviate all of these issues by disaggregating prompt processing from token generation, and eliminating the
impact of early stops. Overall, when dedicating the same number of machines to all baselines, DéjàVu leads to 4.2× and
2.22× shorter makespan compared to Baseline, and Baseline-DP respectively. We also observe that DéjàVu’s makespan
speedup increases as the cluster size increases. Thus, we expect that with ever larger models and deployments, DéjàVu’s
performance benefits will be even more crucial.

15



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

(a) Makespan (b) Normalized Cost

Figure 16. Makespan and cost for the best configurations found with different policies for the OPT-66B model on 2-A100-80GB machines.
The best configurations found for each use case are shown in table 2

(a) Makespan (b) Normalized Cost

Figure 17. Makespan and cost for the best configurations found with different policies for the OPT-66B model on 4-A100-80GB machines.
The best configurations found for each use case are shown in table 3

(a) Makespan (b) Normalized Cost

Figure 18. Makespan and cost for the best configurations found with different policies for the OPT-30B model on 4-V100-16GB machines.
The best configurations found for each use case are shown in table 4

16



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

(a) Makespan (b) Total Cost

Figure 19. Makespan and cost for the best configurations found with different policies for the BLOOM-176B model on 4-A100-80GB
machines. The best configurations found for each use case are shown in table 5

(a) Without early stopping (b) With early stopping

Figure 20. Makespan for BLOOM-176B with and without early stopping, varying the number of available machines. We keep the
microbatch size constant at 16 requests.

(a) Without early stopping (b) With early stopping

Figure 21. Makespan for BLOOM-176B on 8 machines, with and without early stopping, varying the microbatch size.

17



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

Table 2. Best configurations found for Figure 16.

Number of machines Baseline Baseline-DP DéjàVu

1 (1p, 4b)
2 (2p, 16b) (2d, 1p, 4b) ((1p, 4b), (1p, 4b))
4 (4p, 16b) (2d, 2p, 16b) ((2p, 2b), (2p, 2b))
6 (6p, 16b) (3d, 2p, 16b) ((2p, 16b), (4p, 16b))
8 (8p, 16b) (2d, 4p, 16b) ((3p, 16b), (5p, 16b))

10 (10p, 16b) (5d, 2p, 16b) ((4p, 16b), (6p, 16b))
12 (12p, 16b) (3d, 4p, 16b) ((5p, 16b), (7p, 16b))
14 (14p, 16b) (7d, 2p, 16b) ((5p, 16b), (9p, 16b))
16 (16p, 8b) (4d, 4p, 16b) ((6p, 16b), (10p, 16b))

Table 3. Best configurations found for Figure 17.

Number of machines Baseline Baseline-DP DéjàVu

1 (1p, 32b)
2 (2p, 32b) (2d, 1p, 32b) ((1p, 32b), (1p, 32b))
4 (4p, 16b) (4d, 1p, 32b) ((2p, 32b), (2p, 32b))
6 (6p, 32b) (6d, 1p, 32b) ((3p, 32b), (3p, 32b))
8 (8p, 16b) (8d, 1p, 32b) ((4p, 32b), (4p, 32b))
10 (10p, 32b) (10d, 1p, 32b) ((5p, 32b), (5p, 32b))
12 (12p, 16b) (12d, 1p, 32b) ((6p, 32b), (6p, 32b))
14 (14p, 32b) (14d, 1p, 32b) ((7p, 32b), (7p, 32b))
16 (16p, 8b) (16d, 1p, 32b) ((8p, 32b), (8p, 32b))

Table 4. Best configurations found for Figure 18.

Number of machines Baseline Baseline-DP DéjàVu

2 (2p, 8b)
4 (4p, 16b) (2d, 2p, 8b) ((2p, 8b), (2p, 8b))
6 (6p, 16b) (3d, 2p, 8b) ((2p, 16b), (4p, 16b))
8 (8p, 16b) (2d, 4p, 16b) ((3p, 16b), (5p, 16b))
10 (10p, 16b) (5d, 2p, 8b) ((4p, 16b), (6p, 16b))
12 (12p, 16b) (3d, 4p, 16b) ((5p, 16b), (7p, 16b))
14 (14p, 16b) (7d, 2p, 8b) ((6p, 16b), (8p, 16b))
16 (16p, 8b) (4d, 4p, 16b) ((7p, 16b), (9p, 16b))

Table 5. Best configurations found for Figure 19.

Number of machines Baseline Baseline-DP DéjàVu

2 (2p, 16b)
4 (4p, 16b) (2d, 2p, 16b) ((2p, 16b), (2p, 16b))
6 (6p, 32b) (3d, 2p, 16b) ((3p, 16b), (3p, 16b))
8 (8p, 16b) (2d, 4p, 16b) ((4p, 16b), (4p, 16b))

10 (10p, 32b) (5d, 2p, 16b) ((5p, 16b), (5p, 16b))
12 (12p, 16b) (6d, 2p, 16b) ((6p, 32b), (6p, 32b))
14 (14p, 32b) (7d, 2p, 16b) ((8p, 32b), (6p, 32b))
16 (16p, 8b) (4d, 4p, 16b) ((10p, 32b), (6p, 32b))

18



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

C. Traces of disaggregation

(a) Prompt processing and token generation in the same pipeline.

(b) Using a different pipeline for prompt processing and token generation.

Figure 22. Comparison between dedicating 4 machines to both prompt processing and token generation, vs using 2 machines for prompt
processing and 2 machines for token generation. Prompt processing latency is 10 × higher than per-token generation latency.

D. Principled allocation of resources for prompt processing and token generation
Assume we are given D machines, each with aggregate GPU memory capacity of M GB. Assume a model has L layers.
For simplification, we consider only the memory requirements of the attention layers Wi. We also assume each layer’s
prompt KV cache footprint is Ci. The requirements that we need to satisfy are: 1) the aggregate memory footprint (model
parameters and KV cache), for the active microbatches should fit into the aggregate GPU memory capacity for each pipeline,
and 2) the throughput of the disaggregated system should be maximized, and ideally be higher than the throughput of the
non-disaggregated system.

We first aim to satisfy requirement (1) for the prompt processing pipeline, i.e. find the prompt pipeline depth Dp. Pn is
the number of attention layers per stage. Assuming each machine corresponds to a pipeline stage, the following inequality
should hold:

M ≥ Pn · (C0 +W0) =⇒ Pn ≤ ⌊ M

C0 +W0
⌋

Since Dp = ⌈ L
Pn

⌉:

Dp ≥ ⌈L · (C0 +W0)

M
⌉ (2)

Similarly, we need to satisfy requirement (1) for the token generation pipeline, i.e. find the token generation depth Dt. Each
layer’s token KV cache footprint is Ki. Tn is the number of attention layers per stage. Since token generation involves
multiple steps, and at least Dt microbatches need to be on-the-fly at any given step, we have:

M ≥ Tn ·W0 +Dt · (Ci +Ki) =⇒ M ≥ Tn · (W0 + (C0 +K0) ·Dt)

Since Dt = ⌈ L
Tn

⌉:

M ≥ Tn · (W0 + (C0 +K0) · ⌈
L

Tn
⌉)

19



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

For simplicity, we assume Tn divides L:

M ≥ Tn ·W0 + L · (C0 +K0) =⇒ M ≥ L

Dt
·W0 + L · (C0 +K0)

Dt ≥
L ·W0

M − L · (C0 +K0)
(3)

For requirement (2), we need to compute the throughput of the non-disaggragated and the disaggregated setups. For
simplicity, in the following formulas, we work with the inverse throughput of the pipelines. Thus, we would like the
disaggregated case to have lower inverse throughput than the non-disaggregated one. Assume, for simplicity, that prompt
processing of each microbatch with D machines lasts Y ms, and each token generation step for a single microbatch takes t
ms. Since we dedicate Dp machines to prompt processing and Dt machines to token generation, each machine will host a
larger number of layers. Thus, Ydis =

D
Dp

· Y , and tdis =
D
Dt

· t. Assume, also, N new tokens are generated per microbatch.

First, we compute the inverse throughput (I) of the baseline. Figure 23 illustrates a toy example of a pipeline with 3 stages.
In the general case of a pipeline with D stages, and D active microbatches at each point in time, the inverse throughput is
given by:

Ic =
S1 + S2 + S3

D

where:

S1 = D · Y

S2 = (D − 1) · Y

S3 = (N − 1) ·D · t+ t

Thus:

Ic =
D · Y + (D − 1) · Y + (N − 1) ·D · t+ t

D

Ic =
D · Y + (D − 1) · Y +N ·D · t−D · t+ t

D

Ic =
D · Y + (D − 1) · Y +N ·D · t− (D − 1) · t

D

Ic = Y +N · t+ (D − 1)(Y − t)

D

Ic =
(D − 1)(Y − t)

D
+ Y +N · t (4)

In steady case, the token generation pipeline with Dt machines will have inverse throughput:

It =
N ·Dt · tdis

Dt
= N · tdis =

N ·D · t
Dt

The prompt generation pipeline with Dp stages will have inverse throughput:

20



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

Ip =
m · Ydis ·Dp

Dp
= m · Ydis =

m ·D · Y
Dp

where m is the additional overhead due to cache streaming (i.e. m ≥ 1).

The performance of the disaggregated system (Idis) depends on the performance of the prompt processing and token
generation pipelines, i.e. Idis = max(It, Ip). Since we have D machines, and we partition them into the 2 phases,
allocating more machines to prompt processing, i.e. decreasing its inverse throughput, would lead to fewer machines for
token generation, i.e. increasing its inverse throughput. Since we are minimizing a max function, the ideal case will be
when It = Ip. Thus, we want:

Idis = It = Ip < Ic

From It = Ip (and the fact that Dt +Dp = D), we get that:

N ·D · t
Dt

=
m ·D · Y

Dp
=⇒ Dt =

D ·N · t
m · Y +N · t

Given this Dt, the throughput of the disaggregated system will be higher than the throughput of the non-disaggragated
system if

Idis = It < Ic =⇒
Y

t
>

D − 1

D · (2−m)− 1
(5)

Eq. 5 holds if m ∈ [1, 2). If m ∈ [1, 2), we have:

Dt =
D ·N · t

m · Y +N · t
(6)

and

Dp = D −Dt =
D ·m · Y

m · Y +N · t
(7)

Formulas 5, 6 and 7 lead to a couple of observations. First, as expected, given D, Y , and t, with Y > t, the benefits of
disaggregation depend on the overheads of the prompt KV cache streaming. If the streaming overhead is too high (i.e.
m ≥ 2), there will be no benefits from disaggregation. DéjàVuLib employs multiple optimizations to ensure that the prompt
KV cache streaming overhead is minimized. Second, the larger N is, i.e. a lot of new tokens are generated, Dt is increasing,
i.e. we need to dedicate more machines to token generation. In contrast, when Y

t increases, Dp is increasing, thus more
machines need to be dedicated for prompt processing. Moreover, as Y

t increases, i.e. with larger prompts, the disaggregated
setup becomes more beneficial, as can be seen from inequality 5.

Figure 23. Illustration of the different phases of a 3-stage pipeline with prompt processing and token generation

21



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

E. Fault tolerance example
Figure 24 provides a toy example with 4 token generation workers, depicting our fault-tolerance mechanism. Refer to
section 4.2.3 for a description of the fault-tolerance protocol (with references to this example).

(a) A failure occurs (F )

(b) The failure is detected and repaired

Figure 24. Example of a pipeline failure and recovery. Token stage 2 fails (F ), and is detected by the DéjàVu Controller (D). The pipeline
is repaired (R), which includes copying the KV caches around appropriately. After repair is done, inference continues.

F. Microbenchmarks
Figure 25 shows the slowdown of DéjàVuLib when streaming to remote CPU memory for a single batch (i.e. no pipeline
parallelism) that contains requests with prompt size 500, and generating 500 extra tokens. The slowdown compared to no
streaming is always within 2%. DéjàVuLib might cause some slowdown in prompt processing time, due to streaming that
cannot be hidden without pipeline parallelism. However, since many tokens are generated, this slowdown is negligible.

(a) DéjàVu slowdown when streaming to remote CPU (b) DéjàVu slowdown when streaming to local SSD

Figure 25. Single-batch slowdown of DéjàVu KV cache streaming

G. Microbatch swapping
Figure 26 shows KV cache swapping on a microbatch level, for a pipeline of 4 stages, focusing on Stage 4. Whenever a
microbatch is processed, we make sure its KV cache resides in GPU memory, while, in parallel, swapping other microbatches
in and out of GPU. When Stage 4 generates a token for microbatch 1 (e.g. step T11), it swaps in the KV cache for the
next microbatch to be processed, i.e. microbatch 2. When the processing of microbatch 1 has finished, the newly added
contents to the KV cache of microbatch 1 are swapped out of the GPU. The same procedure follows for all microbatches:
assuming a pipeline with N stages, when microbatch x is processed, microbatch (x+ 1)%N is swapped in, and microbatch

22



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

(x− 1)%N is swapped out.

Figure 26. Microbatch KV cache swapping over time for a 4-stage token generation pipeline. We show microbatch swapping for Stage 4,
but all other stages follow similar pattern.

G.1. Understanding the benefits of microbatch swapping

The performance of microbatch swapping heavily depends on the time needed to swap the KV cache back in the GPU.
In this section, we formalize the performance of pipeline parallel inference with and without microbatch swapping and
investigate where it makes sense to use swapping.

Since the amount of GPU memory needed for the KV cache, when the microbatch swapping optimization is enabled, is
smaller than without swapping, we can use larger batch sizes, which are beneficial for the inference throughput. Assume a
case where with a given set of GPUs, we can fit a maximum microbatch size B without swapping, and microbatch size 2 ·B
with swapping. We also assume that the time for token generation t is constant with both microbatch sizes (which has been
validated experimentally). The time for prompt processing with microbatch size B is P , while for microbatch size 2 ·B is
2 · P .

Microbatch swapping will lead to higher throughput when:

2 · (P +N · t) ≥ 2 · P +

i=N∑
i=p

max(t, transfi)

2 ·N · t ≥
i=N+p∑
i=p

max(t, transfi)

where transfi stands for the time needed to transfer the KV cache back in GPU from host memory, and N is the number of
generated tokens. We have that transfi = i·B·Ci

pciebw , where Ci is the single-token, single-request KV cache size, and pciebw
is the PCIe bandwidth. Thus, we have that:

2 ·N · t ≥
i=N+p∑
i=p

max(t,
i ·B · Ci

pciebw
)

G.2. Experimental Analysis

For a given model, the main factors that affect the performance of microbatch swapping are the batch size and the number of
generated tokens. For our analysis, we use OPT-30B, OPT-66B, BLOOM-176B, and 2 types of GPUs: V100-16GB, and
A100-80GB. As expected, with larger batch sizes or sequence lengths, the overhead of streaming the KV cache becomes
high, and swapping is not beneficial anymore.

G.2.1. CONSTANT BATCH SIZE, VARY THE NUMBER OF GENERATED TOKENS

In Figure 27, We keep the batch size constant, vary the sequence length, and measure the throughput in each setup.

23



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

(a) OPT-30B, 6 V100-16GB, B=1 (b) OPT-66B, 2 A100-80GB, B=1

Figure 27. Throughput with and without swapping, varying the sequence length

G.2.2. CONSTANT NUMBER OF GENERATED TOKENS, VARY BATCH SIZE

Figures 28, 29, and 30 show results in simulation, where we keep the total number of generated tokens constant, and vary
the batch size (in these figures, N is the number of generated tokens). We want to see whether in cases where the maximum
batch size that can fit without swapping is B, having batch size 2 ·B, with swapping, provides any performance benefits.

(a) N=200 (b) N=1200 (c) N=2000

Figure 28. Throughput for OPT-30B, 6 V100-16GB

(a) N=200 (b) N=1200 (c) N=2000

Figure 29. Throughput for OPT-66B, 2 A100-80GB

(a) N=200 (b) N=1200 (c) N=2000

Figure 30. Throughput for BLOOM-176B, 5 A100-80GB

24



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

H. Discussion
H.1. Comparison with original FasterTransformer

We modified FasterTransformer to allow for more flexible scheduling of microbatches, i.e. whenever a microbatch is
completed in any stage, it can be replaced by the next available microbatch. In Figure 31 we compare our modified
FasterTransformer version with the original version, highlighting that our modified FasterTransformer version outperforms
the original. We use this modified version of FasterTransformer as a baseline in our paper for comparison with DéjàVu.

0.5 1.0 1.5 2.0 2.5 3.0
Request rate (rps)

0
1
2
3
4
5
6
7

La
te

nc
y 

(s
/to

ke
n)

Modified FasterTransformer
Original FasterTransformer

Figure 31. Comparison between original and modified FasterTransformer for the OPT-66B model.

H.2. Relation to PagedAttention and other swapping techniques

Recently, vLLM (Kwon et al., 2023) proposed Paged Attention, a mechanism to dynamically reserve GPU memory as more
tokens are generated. Paged Attention has helped alleviate memory capacity pressure due to the KV cache in non-pipeline-
parallel configurations, by reserving only the necessary amount of KV cache in GPU, organizing memory in blocks, and
swapping blocks to CPU memory under GPU memory pressure.

In this work, we identify another source of memory overprovisioning in pipeline parallel setups. As explained in section
2.2.2, current frameworks that support pipeline parallel LLM inference such as FasterTransformer (NVIDIA, 2023b)
preallocate the KV caches for all microbatches in GPU memory. However, only one microbatch is processed at a time, thus a
large part of GPU memory remains unused. To alleviate this issue and enable inference with limited hardware, we proposed
using our DéjàVuLib streaming mechanism to swap the KV cache in and out of the GPU. Compared to paged attention and
vLLM, since vLLM does not currently support pipeline parallelism, it is unclear how paged attention is applied to pipeline
parallel cinfigurations, and whether it resolves the memory overprovisioning issue we identify in this work. We plan to
combine our swapping (and DéjàVuLib streaming mechanism) with paged attention to enable even further memory savings.

It is also important to acknowledge that swapping to CPU memory (or disk) has been widely used in DNN training to
facilitate training under limited GPU memory (Li et al., 2022; Rajbhandari et al., 2021).

H.3. Discussion about FasterTransformer, and comparison with other baselines

We chose FasterTransformer as our baseline since our exploratory evaluations showed that it was the most performant
system out of the systems that supported pipeline parallelism ((Aminabadi et al., 2022) and (HuggingFace, 2024)) when we
started working on this project.

TensorRT-LLM (NVIDIA, 2023c) is a newly released successor to FasterTranformer (NVIDIA, 2023b). We observe that the
same issues we identify in the FasterTransofrmer framework also apply to TensorRT-LLM. For example, we still see a very
large difference in prompt processing and token generation time (14× in an 2-A100-80GB machine for OPT-66B with batch
size 2), while there is still no fault-tolerance support.

Given the close relationship between FasterTransformer and TensorRT-LLM, we are exploring the implementation of DéjàVu

25



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

(disaggregation, state replication, microbatch swapping) on top of TensorRT-LLM to address these issues. Since it already
supports pipeline parallelism, TensorRT-LLM serves as a stronger foundation (compared to others that do not support
pipeline parallelism). However, TensorRT-LLM’s KV cache management source code is not open-sourced (yet) and hence
such an integration will take longer than what one might expect from integrating with fully open-source implementations.

H.4. Effects of network bandwidth on disaggregation

Although disaggregation can reduce pipeline bubbles, increasing GPU utilization, KV cache transferring between the prompt
processing and token generation workers can easily become a bottleneck, especially in slow networks. DéjàVu takes this into
account, by 1) optimizing the cache streaming time, to exchange the KV cache as fast as possible, and 2) by incorporating the
cache streaming time in the resource planner’s decision mechanism (m in formula 5 is the cache streaming overhead). Our
planner can make informed decisions and determine the cases where disaggregation would be beneficial or not, depending
on the available network bandwidth and compute time. Naturally, the lower the network bandwidth, the larger the streaming
overhead, so disaggregation would not be beneficial (see formula 5).

To demonstrate how network bandwidth affects request latency, in table 6, we simulate the p50 latency when serving
BLOOM-176B in a cluster of 7 machines (3 used for prompt processing, and 4 for token generation) with microbatch size
8. We issue requests with a Poisson distribution. All requests have a prompt size of 1000 tokens, and generate a different
number of tokens, following the LMSys dataset (Zheng et al., 2023).

We vary the network bandwidth, which affects the time needed for cache transferring. Since DéjàVuLib performs a range of
optimizations to hide the streaming overheads as much as possible, we define as extra time, the streaming time of the KV
cache which cannot be hidden by computation. From table 6, we observe that network bandwidth up to 20 Gbps is enough
to sustain low latency in this setup. However, with lower network bandwidths, the cache streaming overhead cannot be
tolerated. This can be seen from formula 5, where for m > 2 (m = Cache Transfer T ime

Prompt time ), the non-disaggregated baseline
is better than DéjàVu. Also, as batch size increases, both the prompt computation time and KV cache transfer time increase
proportionally, thus we expect similar trends.

Table 6. Effects of network bandwidth in the performance of a disaggregated DéjàVu inference setup (simulation-based). We serve
BLOOM-176B in a cluster of 7 machines (3 used for prompt processing, and 4 for token generation). The KV cache per microbatch is
10.7 GB.

BW (Gbps) Transfer time (sec) Prompt time (sec) Extra time (sec) Latency/Token (sec)

100 0.856 3.1 0 1.29
80 1.07 3.1 0 1.29
60 1.43 3.1 0 1.29
40 2.14 3.1 0 1.29
20 4.28 3.1 1.18 1.35
10 8.56 3.1 5.46 1.5
1 85.6 3.1 82.5 3.65

H.5. Dynamic reconfiguration

So far, we have considered a static resource allocation planning setup, where the planner defines a plan once (e.g. amount
of workers used for prompt processing or token generation), which is followed throughout model serving. An interesting
extension would be to dynamically adjust the number of machines and parallelism degrees for prompt and token generation
phases, based on the average input and output lengths of requests over time, and average rps. We now propose a way to
adapt DéjàVu to work on this dynamic environment:

First, we would need to integrate a monitoring component that detects workload changes (changes in burstiness of requests,
average prompt sizes, and number of generated tokens - while avoiding overreacting to minor temporal blips; detecting
“stable” changes in workloads is a well-studied area in web services). Second, DéjàVu ’s planner would have to be invoked
upon such “stable” workload changes, to adjust the number of machines allocated for each phase. The time required for the
planner to come up with an optimal allocation plan is negligible, so this will not add any overheads. Third, we will need
necessary orchestration infrastructure in the worker processes to be able to adapt configuration on-the-fly, i.e. transitioning
between prompt processing to token generation workers, and repartitioning the model if needed, based on the new degrees of

26



DejaVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

parallelism. Here, reconfiguring from a prior state to a new state for each pipeline, can be done after flushing active requests,
or in the case of aggressive reconfigurations can be done without flushing the pipelines (in which case, DéjàVu ’s KV cache
streaming primitives can be used to re-partition the cache along with model weights). Such reconfiguration can also be
performed in a rolling fashion as done in some serving systems (for non-generative workloads) such as Packrat (Bhardwaj
et al., 2023).

27


