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Abstract

Fine-tuning large language models (LLMs) greatly improves
model quality for downstream tasks. However, serving many
fine-tuned LLMs concurrently is challenging due to the spo-
radic, bursty, and varying request patterns of different LLMs.
To bridge this gap, we present DELTAZ1P, an LLM serving sys-
tem that efficiently serves multiple full-parameter fine-tuned
models concurrently by aggressively compressing model
deltas by up to 10x while maintaining high model quality.
The key insight behind this design is that fine-tuning re-
sults in small-magnitude changes to the pre-trained model.
By co-designing the serving system with the compression
algorithm, DELTAZIP achieves 2X to 12X improvement in
throughput compared to the state-of-the-art systems.

1 Introduction

Large Language Models (LLMs), such as GPT [51], Llama [64]
and Gemini [63] have demonstrated remarkable performance
and are widely used in a variety of applications, such as chat-
bots [49] and coding assistants [14, 28, 84]. To achieve high
accuracy for a target domain, LLMs are first pre-trained on
a large corpus of text data, then fine-tuned on application-
specific tasks or datasets [43, 56], such as code [14], con-
versations [52], and human preferences [55]. Cloud Al in-
frastructure companies, such as OpenAl [48], Google [54],
Microsoft [44], and Anyscale [5] expose APIs for users to
fine-tune a pre-trained LLM with their own data and deploy
the resulting customized model variant for inference.

While fine-tuning is typically a one-time effort performed
off the critical path, LLM serving is critical to optimize as it is
typically recurring and latency-critical. Techniques such as
continuous batching [76], paged attention [36], prompt pro-
cessing disaggregation [53, 61, 82], and tensor parallelism [39]
optimize inference latency and throughput for individual
models, however concurrently serving many model variants
presents additional challenges.

Figure 1 shows that the requests to each model variant in
an LLM-based chatbot service are sporadic, making it difficult
to batch requests and decide how to provision GPU resources
for each model. Dedicating GPUs for each model variant
minimizes latency, but requires many expensive GPUs that
would sit idle for long periods of time (yellow areas in Fig-
ure 1). On the other hand, swapping model variants on a
limited pool of GPUs reduces cost and improves utilization,
but adds latency on the critical path of requests. Optimiz-
ing the storage hierarchy to reduce swapping latency can
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Figure 1. Invocation counts per 5-min time windows for 20
different models in the LMSys Chatbot Arena [81] trace.

help [26], but requests still experience long queuing delays
due to limited batching opportunities when treating each
model variant as a separate model.

The state-of-the-art approach to LLM serving with the
proliferation of fine-tuned model variants is to adopt an
entirely new fine-tuning paradigm, parameter-efficient tuning
(PEFT). Instead of tuning model weights directly, PEFT tunes
a compact, adjunctive model adapter (i.e., a small set of extra
parameters) that is attached to the model for serving. For
example, low-rank adaptation (LoRA) [32] is a popular PEFT
method that freezes models weights and attaches low-rank
matrices to the model structure which are fine-tuned on
task-specific data. Systems like Punica [13] and S-LoRA [59]
leverage the small size of LoRA adapters and the common
base model weights to efficiently swap adapters and batch
requests to optimize inference latency and throughput.

However, PEFT serving systems are not compatible with
the traditional fine-tuning approach, full model tuning (FMT).
While PEFT methods have achieved high accuracy for down-
stream tasks like SQL generation [5, 7] and ViGGO [35],
they are still not able to match the accuracy of FMT for more
complex tasks, such as coding and math [9], or when the fine-
tuning dataset is particularly large [78]. Figure 2 summarizes
the results of two recent studies [5, 9] comparing LoRA and
FMT accuracy on three downstream tasks. Full-parameter
fine-tuning remains appealing to applications that aim to
maximize accuracy on more complex tasks and is still widely-
used. Yet the serving solutions available for this paradigm
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Figure 2. LoRA vs. full-model fine-tuning accuracy [5, 9].
LoRA fine-tuning is comparable for some tasks (SQL), but
has lower quality on more complex tasks (Math and Code).

(which either dedicate GPUs for each model variant or swap
entire models) are either expensive or slow.

We aim to extend PEFT-based serving systems to also sup-
port efficient FMT model variant serving. Our key insight
is that FMT model weights often have low-magnitude per-
turbations with respect to the original pre-trained model
(see Figure 3), allowing us to aggressively sparsify, quantize,
and compress model deltas while maintaining high accuracy.
Due to their compact size, low-precision and sparse deltas
can be swapped and served with low latency. We apply this
idea in the design of DELTAZIP, a multi-variant LLM serv-
ing system. DELTAZIP extracts and compresses model deltas
with ACOMPRESS, an algorithm we propose to help maintain
high accuracy during compression. To efficiently serve FMT
model variants, DELTAZIP decouples base model serving and
low-precision delta serving, inspired by how S-LoRA [59]
and Punica [13] serve LoRA adapters. This decoupling en-
ables DELTAZIP to batch requests to different model vari-
ants that share the same base and perform low-precision
inference for model deltas to minimize latency and mem-
ory bandwidth pressure on the GPU. We further optimize
delta inference by designing a custom GPU kernel, Selective
Batched Matrix Multiplication (SBMM), which selectively
batches requests to the same delta to minimize random ac-
cesses and performs operations for multiple deltas in parallel
to amortize kernel launch overhead. We build DELTAZIP
on top of vLLM [36] (which supports S-LoRA/Punica-based
LoRA-serving [12, 59]) and adapt continuous batching [76]
and model parallelism [60] for delta-based model serving.

To the best of our knowledge, DELTAZIP is the first serving
system to support both FMT and PEFT model variants while
accelerating FMT model serving with hardware-optimized
delta compression. In summary, our key contributions are:
e We propose ACoMPREsS (§4), a hardware-efficient com-

pression algorithm that aggressively compresses model

deltas post full-model fine-tuning. It applies structured
sparsity, quantization, and optionally lossless compression.

ACOMPRESS can compress a 70B-parameter Llama-2 model

delta by 13X while maintaining comparable accuracy to the

original FMT model. In contrast, applying a similar sparsi-

fication and quantization technique like SparseGPT [23]

directly on the fine-tuned model substantially degrades
accuracy, even with only 6X compression.

o We design DELTAZIP (§5), a serving system that leverages
ACompress to efficiently serve FMT model variants. It
decouples and parallelizes base and delta model inference,
reducing queuing delays by batching requests to different
model variants derived from the same base and leverag-
ing our custom GPU kernel for hardware-optimized low-
precision and sparse delta serving. DELTAZIP achieves 2X
to 12X higher throughput compared to vLLM [36].

o We identify challenges when deploying DELTAZIP in prac-
tice and propose solutions to address them. In particular,
we study how many deltas to place concurrently to bal-
ance GPU memory usage and how to reduce starvation
when serving many model deltas.

2 Background and Motivation

We first introduce key concepts in LLM fine-tuning and serv-
ing, then highlight key challenges and opportunities.

2.1 Background

LLM fine-tuning. In contrast to prior deep learning work-
loads that follow a task-specific paradigm, which trains a
model from scratch on domain-specific data to tackle a par-
ticular task (e.g., machine translation [62, 71]), LLMs follow a
pretrain-then-finetune paradigm, which pretrains a model on
a massive general-domain corpus and then fine-tunes it for
specific objectives. For example, ChatGPT is fine-tuned to fol-
low human instructions [52]. There are two main fine-tuning
approaches: 1) Full Model Tuning (FMT) which updates all
model parameters and 2) Parameter-Efficient Tuning (PEFT)
which adds a small number of extra parameters after pretrain-
ing, called adapters, e.g., low-rank matrices learned during
fine-tuning. PEFT methods, such as LoRA [32], are popular
ways to reduce the compute and memory requirements of
both fine-tuning and serving. However, the choice of fine-
tuning paradigm impacts accuracy. While PEFT methods
can achieve high accuracy for a variety of tasks [32], recent
studies [5, 9, 78] — summarized in Figure 2 — reveal that
FMT still achieves higher accuracy for more complex tasks.
LLM compression. Model compression is a popular ap-
proach to reduce the memory and compute requirements of
LLM inference in resource-constrained environments. Tech-
niques like GPTQ [25], SparseGPT [23] and AWQ [40] reduce
memory footprints and improve latency while maintaining
model quality (when applied in moderation). Pushing these
techniques to extremely low bit-width quantization and spar-
sity, such as 2-bit quantization and more than 50% sparsity,
results in significant model quality degradation [11, 42].
LLM serving. The LLM inference involves two phases: (1)
prompt processing (prefill), where the tokens (i.e., basic units
of text) in the input prompt are processed in parallel. This
phase can be parallelized since all previous tokens are known



from the user-provided prompt, and it is usually compute-
bound. (2) token generation (decode), where the model iter-
atively generates one token for each forward pass. Due to
the inter-token data dependency, this phase cannot be par-
allelized and is typically memory-bound. Token generation
stops when the model generates an end-of-sequence (EOS)
token or meets a user-defined condition (e.g., reach the maxi-
mum number of generated tokens). Many works [13, 36, 76],
including our own, focus on optimizing the token generation
phase as it is the main bottleneck for LLM serving.

2.2 Challenges for Multi-Variant Model Serving

With the proliferation of fine-tuned LLM variants, each spe-
cialized for a particular user’s task or domain, it is critical to
design LLM serving systems that can efficiently multiplex
requests to different model variants. Yet, on today’s commer-
cial LLM serving platforms, fine-tuned model variant serving
is still more expensive than base model serving [1, 50]. The
high cost is due to several key challenges that lead to low
resource utilization:

Low request rates per model variant. A naive approach
to serve multiple fine-tuned models is to consider each model
as a separate model and dedicate a group of GPUs for each
variant. However, as shown in Figure 1, the requests to each
model variant are sporadic and often low in volume, which
limits the batch size. Hence, dedicating GPUs for each model
underutilizes resources and leads to high cost.

Swapping incurs high latency. Another approach is
to swap the models in and out of a limited pool of GPUs.
However, the unpredictable nature of model invocations
makes it hard to predict when a request for a particular
model will arrive to enable prefetching. Swapping models
in and out of GPUs on the critical path of requests leads to
high latency and GPUs also remain underutilized.

Accuracy gap between PEFT and FMT. Although PEFT
methods such as LoRA [32] produce significantly smaller
fine-tuned adapters and systems [12, 59, 70, 85] have been
built for serving adapters, these methods face the challenge
of model quality. As shown by recent studies [5, 9, 78] (sum-
marized in Figure 2), FMT still achieves higher accuracy for
more complex tasks compared to PEFT methods.

3 DEerTAaZIP OVerview

We observe three key opportunities to address the aforemen-
tioned challenges and improve the efficiency of FMT serving
(§3.1). We then describe how we leverage these opportuni-
ties to design DELTAZIP, a multi-variant LLM serving system
that complements parameter-efficient model serving with
hardware-efficient full model tuning serving (§3.2).

3.1 Opportunities and Key Insights

1. Model deltas are highly compressible. Although fine-
tuning can significantly improve model performance on spe-
cific tasks, we find it typically results in small-magnitude
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Figure 3. Flattened weight matrix in an intermediate layer
of the pre-trained model (a), the fine-tuned model (b), and
the model delta between the two (bottom, (b)-(a)).

changes to model parameters. Figure 3 shows the distribu-
tion of the weight matrix wq in a transformer layer of a
pre-trained Llama-2-7b model, its fine-tuned counterpart
Vicuna-7b-v1.5 model, and the model delta, which is ob-
tained by subtracting the base model from the fine-tuned
model. The delta has significantly smaller magnitude range
and fewer outliers. This makes the delta easier to compress
than the model itself, with both quantization [25, 40] and
sparsification [23]. As quantization involves calculating the
maximum value such that the quantization preserves the out-
liers in the weight matrix, a more concentrated distribution
results in a denser quantization grid, which can maintain
model quality while using lower bit width. In addition, the
prevalence of near-zero values makes it easier to apply spar-
sification to the model delta than to the full model. We will
show that this enables us to compress model deltas by over
10X, making it fast to swap and serve while achieving com-
parable quality to full-precision model serving.

2. Many model variants share the same base model,
for which we can batch many requests. Since pre-training
LLMs requires immense datasets and compute resources,
only a handful of organizations are well-positioned to pro-
duce high-quality pre-trained models [3, 63]. Instead, most
organizations rely on fine-tuning pre-trained models for their
use cases, as this is typically much cheaper [1]. This means
that fine-tuned models often share the same base model,
even if they are used for different applications. For example,
GitHub’s Copilot [19] and OpenAI’s ChatGPT [52] are both
fine-tuned from GPT models. Hence, although batch sizes for
individual model variants may be limited (Figure 1), we can
quickly accumulate large batches to common base models
to improve GPU utilization and reduce queuing delays. This
requires decoupling base model and delta serving, which we
will discuss in §5.1.

3. GPU support for delta computations. We can accel-
erate delta inference by leveraging features of modern GPU
hardware, such as: 1) using sparse tensor cores [8] for sparse
delta computations, 3) performing multiple low-precision
matrix multiplications in parallel to improve stream multi-
processors (SMs) utilization, and 3) reducing memory band-
width pressure for delta matrix computations by designing
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Figure 4. DELTAZIP system architecture.

a custom GPU kernel that minimizes data movement from
GPU global memory to device memory.

3.2 System Overview

To realize the above opportunities in practice, we propose
DEertAZIpP. Our key contributions are a model delta compres-
sion algorithm (AComprEss) and the end-to-end DELTAZIP
serving system. The algorithm compresses FMT deltas into a
hardware-efficient, low-precision, and sparse format that pre-
serves high accuracy, while the serving system incorporates
state-of-the-art serving optimizations and adapts them for
low-latency, high-throughput inference with model deltas.

System architecture. Figure 4 shows the DELTAZI1P sys-
tem architecture. The system consists of three main com-
ponents: 1) the Delta Compressor (§4) which extracts and
compresses the delta from a FMT model registered by the
user, 2) the Model Manager which tracks and manages model
metadata, and 3) the Serving Engine (§5) which serves infer-
ence requests for base and fine-tuned models.

Life of a request. The model developer first uploads a
fine-tuned model to the Delta Compressor, together with
some metadata (such as the pre-trained model identifier) and
a small calibration dataset that the compression algorithm
uses to measure and minimize accuracy loss. The compressor
computes and compresses the model delta, then stores it in
a packed, low-precision, and sparse format in the Model
Manager’s delta zoo. The manager keeps track of metadata
for each stored delta, such as its compression configuration
(such as the bit width per parameter and sparsity level) and
model lineage. In addition to deltas, the model manager also
allows developers to register LoRA adapters directly, and the
serving engine can serve them as well.

The Serving Engine serves inference requests for fine-
tuned models whose deltas are stored in the model manager.
Users send inference requests to the engine’s API frontend,
which fetches the requested deltas into CPU main memory, if
they are not already present in CPU or GPU memory. Mean-
while, the frontend forwards the request to the job scheduler,

which queues the requests. The job scheduler performs con-
tinuous batching by assigning requests to the model runner
per-iteration (i.e., for each forward pass of the model). The
model runner is responsible for processing the batched re-
quests. Internally, the model runner can process requests for
different FMT and PEFT models in parallel, by decoupling
base model and delta (or PEFT adapter) inference computa-
tions. The model runner also leverages tensor parallelism
and supports large models that do not fit in a single GPU.

4 Model Delta Compression

When a model developer registers an FMT model with DELTAZIP,
the Delta Compressor computes the delta and applies a com-
pression pipeline (§4.1) to reduce the size of the model state.
The compression pipeline only runs when a developer reg-
isters a new model. We develop the AComPREss algorithm
(§4.2) to apply quantization and sparsification in the com-
pression pipeline in a way that preserves high accuracy.

We design DELTAZIP to be agnostic to the compression
pipeline, such that users can apply a variety of compression
techniques to model deltas, such as GPTQ [25], SparseGPT [23],
and AWQ [40]. Here we describe a SparseGPT-inspired com-
pression pipeline, which we use in our implementation and
evaluation of DELTAZIP. We implemented this compression
pipeline on top of AutoGPTQ [68] and SparseGPT [23].

4.1 DEevrtaZip Compression Pipeline

Within DELTAZIP, the Delta Compressor encompasses mul-
tiple steps as shown in Figure 5. Initially, Step 1 computes
the model delta by subtracting the pre-trained base model
weights from the fine-tuned model. The remaining steps are
applied on the delta matrix since it has a smaller range of
values (see Figure 3) and is hence more amenable to com-
pression compared to the fine-tuned model weight matrix.
Step 2 applies structured 2:4 pruning [33, 83], which in-
volves setting at least two elements among each group of
four contiguous elements to 0 in the delta matrix. After struc-
tured pruning, DELTAZIP only needs to store the non-zero
values of the delta matrix and their 2-bit indices. Compared
to applying quantization only or unstructured sparsity, struc-
tured sparsity enables higher peak performance with large
input size. Figure 6 shows a microbenchmark of matrix mul-
tiplication performance with different compression configu-
rations. We observe that with small input sizes (e.g., from 1
to 4, which is common during the decode phase), structured
sparse matrix multiplication achieves similar performance to
quantization-only compression and outperforms the uncom-
pressed version. This is mainly because both sparsity and
quantization reduce data movement between GPU HBM and
compute unit. However, with large input sizes (e.g., from 16
to 4096, which is typical during the prefill phase), structured
sparsity significantly outperforms quantization-only com-
pression. This is because structured sparsity leverages the
sparse tensor cores on GPUs to achieve higher performance.
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Step 3 quantizes the pruned delta weight matrix, which
squeezes the values into a smaller bit-width format and packs
the data. For example, 4-bit quantization packs 8 values into
a single 32-bit value, achieving 4X compression ratio.

Step 4 is an optional final step that applies lossless com-
pression. We use the GDeflate algorithm from nvcomp [47]
for lossless compression for fast decompression on GPUs.
This step is beneficial when the disk bandwidth is a bottle-
neck (such as with NFS). In such cases, users can opt-in to
lossless compression to reduce the disk I/O time. If disk I/O is
not a bottleneck, lossless compression may not be beneficial
due to the decompression overhead.

Hardware-efficient design. We design DELTAZIP’S com-
pression pipeline with GPU hardware features in mind. Struc-
tured pruning (Step 2) leverages sparse tensor cores [8] for
fast sparse matrix multiplication. The quantization (Step 3)
allows us to move a smaller amount of data between GPU
global memory to device memory, alleviating the memory
bandwidth bottleneck. Lossless compression (Step 4) uses
GPU decompression engines [47].

4.2 ACompress Algorithm

The core of the compression pipeline is the lossy compression
algorithm that finds the optimal pruning mask (in Step 2) and
quantized weight matrix (in Step 3). We design ACOMPRESS
to compress the model deltas in a way that minimizes the
loss between the outputs computed by the original weights
and the compressed weights. ACOMPRESS achieves this by
calibrating the compression algorithm with a subset of the

Algorithm 1 ACoMPpRESS algorithm. Given an N-layer FMT
model where each layer has a weight matrix w¢ of the shape
drow X dcol, and the corresponding layer in the base model has
a weight wp, the algorithm computes quantized weight Q
and pruning mask M. © denotes elementwise multiplication.

1: forn=0,1,2,---,N do

2: M~ 14 .xd., >>Binary Pruning Mask
3 Q — 04, xd. > Quantized Delta
4: A=wp—wy > Extract Delta
5 Q.M = Compress(A, X,,) >e.g., SparseGPT
6 Wy — QO M+w,, > Reconstruct Weight
7 Xu41 = wyX,, as input of next layer.

8: forn=0,1,2---,N do
9: pack and store Q, M of layer n.

training dataset, provided by model developers when reg-
istering the FMT model to DELTAZIP. As outlined in Algo-
rithm 1, ACOMPRESs iteratively (Line 1) compresses the delta
(extracted in Line 4) for each layer of the model. For each
layer, the objective is to find the optimal pruning mask M
and quantized weight matrix Q (Line 2, Line 3). ACOMPRESS
is designed to be compatible with various different compres-
sion techniques to achieve this goal, such as GPTQ [25],
SparseGPT [23] and AWQ [40]. In our current implementa-
tion, we follow the optimal brain surgeon [31, 37] approach
and leverage SparseGPT [23] (since it has support for both
sparsification and quantization) to compute the optimal M
and Q by solving the following optimization problem:

argmin ||A - X - A - X||2 (1)
A

where A is the compressed delta and X is the input to the
layer, which is from the calibration set used for compression.

The major distinction from full model compression is that
ACoOMPRESS reconstructs the weight matrix for each layer
(Line 6) after compressing the delta and computes the in-
put for next layer (Line 7). This is because the input data
(i.e., X; in Line 5) is crucial for the compression algorithm.
Without re-adding the base weight matrix and reconstruct-
ing the weight matrix for each layer, the magnitude of the



deltas causes diminishing outputs, leading to vanishing acti-
vations in deeper layers. The vanishing activations, as the
input to the next layer, will make the compression algorithm
fail to capture the input (i.e., X, Line 5). By extracting the
delta and reconstruting the weight for each layer on the fly,
ACoMPRESS ensures proper calibration and maintains high
model quality.

Beyond model quality, AComPRESs has two advantages:
1) Low memory requirement. As ACOMPRESS performs
layer-wise compression, it only needs a GPU with sufficient
memory for a single layer to perform the forward pass. 2) No
need to retrain the model. Unlike some other compression
algorithms [11, 65], ACoMPRESs does not require further fine-
tuning the model to recover the model quality.

5 Serving System Design

We implement DELTAZIP in 18K lines of Python and 1K lines
of C++/CUDA code. We build the serving engine on top
of vLLM [36], HuggingFace Transformers [69], and Sparse
Marlin [10]. §5.1 explains how DELTAZIP decouples base and
delta serving to maximize request batching for base model
inference. §5.2 describes how the system parallelizes low-
precision delta serving with a custom GPU kernel design.
Finally, we describe how we extend model parallelism for
delta serving (§5.3) and schedule delta serving requests with
continuous batching (§5.4).

5.1 Base and Delta Decoupling

DELTAZIP’s serving engine always keeps the base model in
GPU memory,! and swaps compressed deltas on-demand
to serve inference requests. The naive approach to serve
a fine-tuned model is to load its compressed delta, decom-
press it, add it to the base model, and then perform inference.
However, this approach is inefficient for several reasons: 1) it
requires decompressing the delta on the critical path, which
adds latency; 2) it does not allow batching requests to differ-
ent model variants with the same base model; 3) performing
inference after adding the delta back to the full-precision
base model does not leverage low-precision computation to
reduce delta inference latency; and 4) storing decompressed
deltas in GPU memory to add back to the base model limits
how many deltas can fit concurrently in the GPU.

To improve inference latency and throughput, our first
optimization is to decouple the inference computation of
the base model and delta. Consider a matrix multiplication,
which we can decouple as follows by the distributive law:

Y = Wiine-tunedX = (Wbase + A)X
~ Whase * X+ A-X (2)
—_ —_——
Batched FP16 matmul  Quantized and sparse matmul

In Eq 2, Wpase X refers to the matmul with the base model,

which is shared across all fine-tuned models and we can

LIf there are M base models, we divide the GPU cluster into M sets of GPUs,
each dedicated to serving a particular base model’s variants.
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Figure 7. Breakdown of total execution time for different
implementations of batched matrix multiplication. The dark
part of the bar shows the portion of total execution time
spent on computation. Naive for-loop refers to performing
low-precision and sparse computation while looping through
all models. SBMM refers to our proposed kernel.

compute this with a standard GEMM. AX denotes the compu-
tation with the delta, which is in a sparse and low-precision
format. DELTAZIP decouples the computation into two parts
and executes the batched base model and low-precision delta
matrix multiplications independently and in parallel.

Since the distributive law does not hold for non-linear
operations, such as activation functions, we decouple the
computation at the granularity of linear layers. We merge re-
sults from the base model and the delta part after each linear
layer to get the output to feed into a non-linear operation.
In a transformer block, we serve all linear layers with low-
precision, such as the QKV projections Wgq, Wk, Wy, output
projection w, and the linear layers in the MLP module.

Decoupling base and delta serving improves GPU utiliza-
tion and performance in several ways. First, for the base
model computation, it enables batching requests for differ-
ent model variants, as long as they share the same base
model. Second, for the delta computation, keeping deltas in
low-precision, sparse formats allows us to fit more deltas in
GPU memory and reduce swapping. Third, low-precision
delta serving also reduces inference latency since token gen-
eration in LLM inference is inherently memory-bound (as
discussed in §2.1), so the decoding latency is proportional to
the GPU memory consumption of the model weights.

5.2 GPU-Efficient Delta Serving

DEeLTAZIP parallelizes the delta computation (AX) in a GPU-
efficient manner with an approach we call Selective Batched
Matrix Multiplication (SBMM). For a single batch of requests
X{ where i is the request index and j is the delta index, the
delta computation can be formalized as: given a batch of re-
quests X}, X5, .. .,X{, compute Y; =X} -Aq,...,Y; = X{ A
We use an index Idx; to denote the delta index for each re-
quest i. Naively, we can loop through different deltas in the
batch, find the respective requests and compute the matrix
multiplication. However, we observe that this approach is
inefficient for two main reasons: 1) it introduces random
memory accesses to fetch the inputs and write the outputs
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to the correct locations, 2) it needs to launch the matrix mul-
tiplication kernel multiple times which computes on a small
number of requests each time, incurring a high overhead and
low GPU utilization. Another option is to use an operator
with a batch dimension like torch.bmm [22]. However, this
requires first stacking the weight matrices for each input
into a single matrix, which is not efficient or scalable with
delta matrices, as they have large memory footprints. Fig-
ure 7 shows the total execution time of different batched
matrix multiplication implementations and the portion of
time each spends on computation. We find that although the
low-precision matmul kernel reduces computation time, the
total execution time is still high as it is dominated by kernel
launch time and other overheads.

To reduce this overhead and improve GPU utilization, we
apply two optimizations. First, before launching a compu-
tation on the GPU, DELTAZIP’s job scheduler reorders the
requests to group requests belonging to the same delta
together. This reduces random data accesses during compu-
tation and enables higher batch sizes for delta serving.

Second, we design a kernel that performs the SBMM
operation for multiple deltas in a single kernel launch.
We design SBMM to compute its kernel launch configura-
tion dynamically to balance resources for each delta, since
there is often a different number of requests for each delta
in the batch. We implement this with CUDA dynamic paral-
lelism [4] on modern GPUs. Specifically, SBMM first launches
a kernel that prepares the launch configuration, pointers to
the weight, input and output addresses, and other necessary
information for each delta, and then launches the actual
blocked matmul kernel, which fuses dequantization for each
delta and leverages sparse tensor cores on GPUs. The dy-
namic parallelism feature is revamped in the recent CUDA
toolkit [6] and offers substantial performance improvements.
Figure 8 illustrates the kernel launch process for 3 deltas and
4 requests where the third delta has two requests. The first
kernel is launched from the host and prepares the addresses
of the weights, input and output for each delta, and then

Base

(B, h) (B,h)

N

Output
___________ VA

Input

Figure 9. Tensor Parallelism in DELTAZIP for n = 2 GPUs.
B = number of tokens, h = input dimension, d = hidden
size. Column-wise and row-wise partitions are illustrated as
vertically and horizontally divided boxes, respectively.

launches a blocked matmul for each delta in the second step.
The actual matmul, in the last step, writes the results to the
output. Figure 7 shows that even though the actual com-
putation time is similar, our optimized kernel significantly
reduces overhead and improves end-to-end latency.

We design our SBMM kernel to be compatible with popular
low-precision and sparse matrix multiplication implementa-
tions. Optimizing such computations is an active research
area for which many libraries have been developed, such as
BitBLAS [67], Marlin [24], and SparseMarlin [10]. Maintain-
ing compatibility with these libraries allows us to leverage
the latest hardware and community efforts.

5.3 Model Parallelism for Delta Serving

To serve large models that do not fit into a single GPU,
DELTAZIP extends Megatron-style [60] tensor parallelism
to serve compressed deltas. In Megatron-style tensor paral-
lelism, the model is partitioned column-wise or row-wise
across multiple GPUs. DELTAZIP adapts this to delta serv-
ing by partitioning the delta in the same way as the
base model. We first illustrate how our partition strategy
works in Figure 9 with two linear layers, and then explain
how we extend this approach to self-attention layers. Fig-
ure 9 assumes that we have two GPUs, a base model with
two linear layers [wy, w] and a delta [Aq, A;]. In the up-
per box, we partition the base model w; to [wy 1, wy 2] by
column across two GPUs, and calculate the partial results
Yoasei = Xw1; on each GPU. In the lower box, we partition
the delta A; to [Aq,1, A12] in the same way, and calculate the
partial results Ygelra; = XA1; on each GPU. The result of the
matrix multiplication can be computed on each GPU inde-
pendently without any synchronization with other GPUs as
Y= [Yls YZ] = [Ybase,l + Ydelta,1> Ybase,2 + Ydelta,2]~

We then partition the second linear layer wj, A; with
row-parallel across two GPUs as [wy.1, Wa2] 7, [Ag1, Aga]T.
Then the output of this layer becomes Z = [1;, Y2] - [wz1 +
Ay1, Woz + Mg 2]T. To compute this, we first perform Y; - wy;
and Y; - Ay; on each GPU individually, and then sum the re-
sults across GPUs with an all-reduce operation as the output.

In the self-attention module, we partition the q,k and
v projections as column-wise linear layers and the output



projection o as row-wise linear layers. We then apply the
same strategy as we described above to compute the output
of the transformer block.

5.4 Continuous Batching and Scheduling with Delta

Last but not least, DELTAZIP optimizes inference by extend-
ing continuous batching [76], a standard technique to im-
prove GPU utilization for LLM serving. DELTAZIP imple-
ments a software scheduler per set of GPU workers that
form a tensor parallel serving group. At every iteration, the
scheduler picks N models to serve concurrently on a first-
come-first-served basis, where N is at most the number of
deltas that can fit concurrently in GPU memory across the
workers. After selecting the first N deltas, the scheduler
searches the request queue for all requests that belong to the
selected N models. To maximize batching, it allows requests
to skip the line if they are for one of the N selected models
at the head of the queue. The scheduler delivers the batch
of requests to the Model Runner, which starts to load the
requested deltas, performs prompt processing if needed, and
then batches request decoding for different models.

Tuning N, the number of concurrent deltas. DELTAZ1pP
tunes N empirically based on a short trace profiling phase.
We explore the impact of varying N. Intuitively, process-
ing more deltas concurrently (larger N) allows for more
extensive request batching, enhancing throughput. However,
collocating many deltas increases GPU memory pressure,
potentially degrading performance if there are already many
requests to batch for a particular delta. On the left side of
Figure 10, we show how N affects the serving latency when
executing a 25 second time interval of a trace with arrival
rate 3 and zipf-4.0 model popularity distribution. In this case,
DEerTaZIp would pick N = 3 as it achieves optimal perfor-
mance during profiling. We then run a series of traces under
different settings. The right side of Figure 10 shows that
N = 3 remains optimal or near-optimal across different ar-
rival rates and model popularity distributions. We generally
find that offline profiling with a short trace is sufficient to
determine the (near-)optimal number of concurrent deltas.
Dynamic tuning can also be implemented.

Avoiding starvation. Allowing requests to skip the line
is good for batching, but it may cause starvation if requests
for the currently selected deltas keep arriving and skipping
the line before the system has a chance to swap and serve
other deltas. When a request skips the line to be batched
with a currently loaded delta, we refer to the original request
for that delta at the head of the queue as the parent request.
To alleviate starvation, DELTAZIP uses a preemption strategy:
requests that skip the line are preempted when their
parent request finishes. Preempted requests get reinserted
in their original place in the request queue (as if they did
not skip the line) and can get scheduled in the next itera-
tion. DELTAZIP currently swaps the intermediate state of
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Figure 10. Normalized latency of DELTAZIP With varying

N, the number of concurrent deltas in GPU memory.

preempted requests to CPU memory and resumes computa-
tion when the request is re-scheduled. Future work involves
exploring whether and when recomputing from scratch may
be faster than swap-and-resume.

6 Evaluation

6.1 Performance Evaluation Setup

Experiment testbed. We conduct our experiments on a
homogeneous GPU cluster. Each node has 2x Intel Xeon
8358P CPUs (128 threads) and 2TB DDR4 memory. We use 4
A800 GPUs per node and GPUs are interconnected to each
other by NVLink and NVSwitch [2]. Additionally, the cluster
adopts an all-NVMe shared parallel file system, ensuring
rapid data access and storage, connected through a 50Gbps
RoCE network. All the experiments are conducted on this
cluster unless explicitly stated.

Models and downstream tasks. We use the Llama-2 [64]
model with 7B, 13B, and 70B parameter and their fine-tuned
variants. For 7B and 13B models we use the Vicuna-v1.5[15]
fine-tuned models since the fine-tuning data is disclosed
and can be used for calibration. For 70B model we use the
Llama-2-70B-chat-hf variant, and we use the fine-tuning
dataset from Vicuna [15] as a proxy to calibrate the com-
pression. We mainly focus on serving 7B and 13B models in
the serving experiments and compress them to 4-bit with
50% sparsity. For these large models, we evaluate the post-
compression quality on standard benchmarks in Im-eval-
harness [27]. We also fine-tune a smaller scale Pythia-2.8B
model on natural instructions tasks and evaluate the quality
on the known downstream tasks. Since the accuracy drop
is already substantial for SparseGPT and we found that the
accuracy drop is more significant with lower precision, we
do not evaluate the 2-bit 50% sparsity for SparseGPT.

Workload traces. To evaluate the serving performance,
we use the prompts and responses sampled from the LM-
Sys Chatbot Arena [81]. We consider three types of model
popularity distribution: 1) Uniform: all models are equally
popular. 2) Skewed: model popularity follows a Zipf-« dis-
tribution. In other words, the popularity of the i-th model
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Base Downstream TasksT Compress
Method R

Model T1 T2 T3 Ratio
FP16 73.76  94.23  79.61 1.00%
Pythia SparseGPT (4bitx) 67.59 91.99  72.67 3.93%x
2.8B  DELTAZIP (4bitx)  73.13 94.30 79.52 4.75%
DELTAZIP (2bitx)  74.44 94.22 78.90 8.36%
FP16 80.92 41.65 27.34 1.00%
SparseGPT (4bitx) 67.16 36.48 24.12 5.61x
Llama AWQ (4bit) 80.86 41.66 27.96 3.64%
7B DELTAZIP (4bitx)  81.41 41.72 27.50 5.39%
DELTAZIP (2bitx)  81.56 41.91 28.26 10.36X%
FP16 85.29 43.00 27.04 1.00x
SparseGPT (4bitx) 79.88 35.01 23.20 5.91%
Llama AWQ (4bit) 84.80 43.37 27.80 3.82x
13B DELTAZIP (4bitk) 85.11 42.48 27.04 5.91x
DELTAZIP (2bitk) 84.95 4254 27.65 11.83%
FP16 86.73 44.25 33.18 1.00%
SparseGPT (4bitx) 85.87 37.06 27.80 6.11X
Llama AWQ (4bit) 8636 44.04 31.80 3.72%
70B DELTAZIP (4bitx)  87.28 44.18 32.87 5.84%
DELTAZIP (2bitk) 86.67 4347 33.49 13.96x

Table 1. Model quality of DELTAZIP vs. uncompressed (FP16)
vs. SparseGPT [23] and AWQ [40]. For Pythia, T1, T2, T3
show the accuracy on 3 downstream tasks (Amazon Review
Classification, Synthetic Palindrome Numbers, Yes/No Ques-
tion) from natural instructions [45]. For other models, T1,
T2, T3 show accuracy on 3 standard benchmarks (BoolQA,
TruthfulQA, LogiQA) in Im-eval-harness [27]. % indicates
50% structured pruning and quantization.

is proportional to 1/i*. We set a = 1.5 for the skewed distri-
bution. 3) Azure trace: since there is no publicly available
traces for multi-variant LLM serving available, following
previous work [39], we use the Azure serverless function
traces [58, 79] as a proxy. Note the traffic in this trace is
highly bursty and the model distribution is highly skewed.
Except for the small-scale timeline analysis in Figure 16
(which we show for illustration purposes) and ablation stud-
ies, we run the traces for 5 minutes under different arrival
rates and model distribution. Unless otherwise stated, we
assume there are 32 model variants that need to be served.

Metrics. We use downstream accuracy to evaluate the
post-compression quality and three metrics for serving per-
formance: 1) average end-to-end (E2E) latency, 2) average
time to first token (TTFT), which is an important indicator
of the system’s responsiveness, 3) throughput and 4) SLO
attainment (i.e., percentage of requests served within a given
SLO requirement) for TTFT and E2E Latency.

Baselines. For compression quality, we compare DELTAZIP
with SparseGPT [23] which incorporates both quantization
and sparsification, as well as AWQ [40] which is a state-
of-the-art quantization algorithm. For serving performance,

Figure 11. Throughput of different serving systems with
varying poisson arrival rate A € {0.5,1.0} and distribution
D € {azure, uniform, zipf-1.5} for 13B model.

since there is no existing system that can serve multiple
full-parameter fine-tuned models, we implement a simple
baseline based on vLLM that supports 1) Swapping mod-
els in and out of GPU memory, 2) Continuous batching of
different full-precision models by looping through models
in a batch and 3) Batching available requests for the same
model. We refer to this baseline as vLLM-SCB. We use the
maximum number of models that can fit in the GPU memory
for the baseline serving system. We use a tensor parallelism
degree of 4 for both DELTAZIP and the baseline system unless
otherwise stated. We do not show a comparison to Serverless-
LLM [26] as it treats each model as a black box — meaning it
does not batch requests from models derived from the same
base — and hence is not competitive for the scenarios we
explore.

6.2 Post-Compression Model Quality

We first study how inference accuracy is impacted by ap-
plying quantization and sparsification on model deltas com-
pared to directly on FMT model weights. As shown in Ta-
ble 1, DELTAZIP achieves up to 13X compression ratio with
comparable accuracy to the original FP16 FMT models. On
smaller models, DELTAZIP achieves 8% to 11X compression
ratio with comparable accuracy. In contrast, SparseGPT —
which applies similar techniques directly to the FMT model
weights — has a substantial drop in accuracy for all models.
DELTAZIP also achieves comparable accuracy compared with
the state-of-the-art quantization algorithm AWQ [40] but
with a much higher compression ratio. We also observe that
in some cases, the accuracy of the compressed model is even
higher than the full-precision model. This effect is also no-
ticeable in other works [25, 30, 40] and is likely due to the reg-
ularizaiton effects of compression. These results show that
ACoMPRESS can aggressively compress model deltas while
retaining higher accuracy than the traditional approach of
compressing model weights directly. In §6.4, we also show
that compressed delta serving achieves higher accuracy on
complex tasks than LoRA serving.

6.3 End-to-end Serving Performance

Serving throughput. Figure 11 shows the throughput of
different serving systems with varying arrival rates and
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Figure 12. Average latency of different serving systems with
varying arrival rate and distribution for 13B model.

model distributions. We observe a 2X to 12X improvement in
throughput compared to the baseline system. The improve-
ment is more pronounced when the arrival rate is relatively
light and more skewed. When the arrival rate is high and
the model distribution is uniform, the improvement is less
significant, and we find this is mainly due to the high cost
in prompt processing when the models are more uniform.
Since our techniques cannot reduce the prompt processing
time, and when more deltas are batched together, requests
in this batch have to wait for the prompt processing of the
slowest request in the batch, leading to a lower throughput.

Average E2E latency and TTFT. Figure 12 shows that
DELTAZIP acheives a 1.6X to 16X improvement in average
EZ2E latency and even higher improvement in TTFT. The
high improvement in TTFT is due to DELTAZIP’s ability to
batch more requests from different models concurrently, thus
reducing queuing time. As in our throughput experiments,
the improvement under uniform distribution with high load
is less significant. We also observe that the maximum number
of concurrent deltas being served has a substantial impact
on the performance.

SLO Attainment of TTFT and E2E Latency. Figure 13
shows the SLO attainment of E2E latency and TTFT with the
Azure trace under varying Poisson arrival rate. We observe
that DELTAZIP achieves a higher SLO attainment compared
to the baseline system.

6.4 Delta versus LoRA Serving Approaches

Complementary to LoRA serving systems, DELTAZIP extends
their serving optimizations to also efficiently serve FMT
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A
Base Model Task ccuracy]
FMT LoRA ACOMPRESS

Llama-7B Math (GSM8K) 34.79 29.49 34.95
Amazon Review 73.76  50.92 73.13
Pythia-2.8B  BoolQ Yes/No 79.61 63.76 79.52
NLI Classification 73.23 52.15 70.74
Amazon Review 76.07 55.07 77.36
OpenLlama 3B BoolQ Yes/No 83.38  65.69 83.29
NLI Classification 80.07 63.46 79.75

Table 2. Model quality of FMT vs. LoRA vs. ACOMPRESS.

models. DELTAZIP inherits the ability to serve LoRA adapters
from vLLM [36], which supports Punica-based [12] LoRA
serving. Figure 14 shows an example of using DELTAZIP
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Figure 15. End-to-end latency and TTFT of DELTAZIP and
LoRA serving system with varying arrival rate.

to serve LoRA adapters on one GPU node and FMT model
variants on another GPU node. For LoRA serving, DELTAZIP
achieves similar performance as vLLM with Punica kernels
and for FMT serving, DELTAZIP significantly outperforms
the baseline due to its delta compression approach.

Given that DELTAZIP supports both LoRA and FMT model
serving, a natural question that arises for users is when to use
which type of model fine-tuning approach. While a detailed
study is outside the scope of this paper and prior works have
already compared FMT and LoRA accuracy [5, 9], we conduct
a brief analysis in which we apply delta compression for FMT
serving. Table 2 compares the accuracy of uncompressed
FMT models, LoRA adapters and ACoMPRESs compressed
FMT models. We conduct extensive hyper-parameter tuning
for LoRA adapters, using scripts from Anyscale [5]. We ob-
serve that even on complicated tasks (e.g., Math) where LoRA
adapters cannot achieve similar accuracy as FMT models,
ACoMmPRESS can maintaining high accuracy while compress-
ing the FMT models.

We also compare the inference latency and TTFT of LoRA
adapter, compressed delta FMT and baseline full model FMT
serving with varying arrival rates. Figure 15 shows that com-
pressed deltas and LoRA adapters are much more efficient to
serve than the vLLM+SCB baseline approach for FMT model
serving, which swaps full models. Serving LoRA adapters is
still more efficient than serving compressed deltas, mainly
due to the more compact size and smaller memory footprint
of LoRA adapters. In conclusion, users should choose be-
tween LoRA and compressed delta FMT serving based
on the trade-off between accuracy and serving perfor-
mance: LoRA is more suitable for tasks where accuracy is
not the primary concern or for simpler tasks where LoRA
can achieve comparable accuracy to full model tuning. In
contrast, compressed delta FMT serving is more suitable for
tasks where accuracy is critical. DELTAZIP improves the serv-
ing efficiency for FMT serving with the AComPREss delta
compression approach and its optimized delta serving system
design and implementation.
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Figure 17. Microbenchmark of the SBMM kernel vs. the
baseline implementation on a single GPU with varying num-
ber of models given a fixed number of requests. “Ours” refers
to the implementation with reduced random memory access
only and “Ours+” refers to the kernel implementation we
proposed in §5.1. For FP16, we do not perform the decoupling
as it will only introduce additional overhead.

6.5 Microbenchmarks and Ablation Study

Latency breakdown. We perform a smaller-scale experi-
ment to visualize the latency breakdown of different serving
stages (queuing, loading, and inference). We synthesize a
trace with 12 models, arrival rate of 0.5 requests per second
for 60 seconds and run on two RTX 3090 GPUs. Figure 16
compares DELTAZIP with the baseline. The vVLLM+SCB sys-
tem has two main issues: 1) the loading time is substantial,
as it needs to load the entire model from the disk to GPU,
and 2) queuing time dominates, due to the lack of batching.
Even though it batches requests for the same model (e.g., for
the model #2), it cannot batch requests from many differ-
ent models due to GPU memory capacity limits. In contrast,
DELTAZIP alleviates these two issues by 1) loading only the
compressed deltas, which can be 5x to 10x smaller than the
full model, and 2) batching requests from different models,
which significantly reduces queuing delays.

SBMM kernel. We evaluate the performance of the SBMM
kernel described in §5.1. Figure 17 shows the performance
of the SBMM kernel compared to the baseline implementa-
tions as we scale the number of models. We observe that the
naive for-loop approach does not bring much performance
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improvement and is comparable with the half-precision im-
plementation. However, with reduced random memory ac-
cess, we observe a 2X speedup compared to the baseline
implementation, and the proposed kernel further improves
the performance by another 2x to 3X. In addition, we also
observe that given the same number of requests, our kernel
scales well with different number of models.

Model Parallelism. We also conduct an experiment with
varying numbers of GPUs under different settings to evaluate
the model parallelism of DerTAZ1p. Figure 18 shows the
end-to-end latency and TTFT of DErTaZIp with varying
number of GPUs. We observe that the latency decreases
with the number of GPUs, particularly on A800 platform.
This is because the inter-GPU communication is faster on
A800 platform compared to the RTX 3090 platform. This
observation leaves a direction for future work to optimize
and tune the tensor parallelism degree of DELTAZIP.

Starvation Handling. Next we evaluate the effectiveness
of the preemption mechanism as described in §5.4. Figure 19
shows the E2E latency and TTFT with and without preemp-
tion. We observe that the preemption mechanism effectively
reduces the latency, particularly the time-to-first-token as it
allows more requests to start earlier.

7 Related Work

ML Model Serving Systems. Optimizing ML serving is
an active area of research [16, 29, 57]. With the increasing
popularity of LLMs, there has been a surge of LLM serving
systems proposing optimizations such as GPU kernel im-
plementations [17, 18, 38, 75], advanced and fine-grained
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batching [21, 76], memory management [36], and paral-
lelism [39, 60]. However, most of these works do not con-
sider the multi-variant serving scenario, for which DELTAZIP
is designed. For multi-model LLM serving, MuxServe [20]
explores spatial-temporal multiplexing for LLM serving to
improve GPU utilization. ServerlessLLM [26] studies the fea-
sibility of serving LLMs in a serverless environment and
proposes fast checkpoint loading and locality-driven live
migration. However, these works treat the models as a black
box and do not consider their lineage, and are hence orthog-
onal to DELTAZIP. Punica and S-LoRA [13, 59] are the most
relevant to DELTAZIP, as they also target multi-variant model
serving scenarios, but they focus on serving LoRA adapters
and do not consider serving full fine-tuned models. DELTAZIP
is complementary to these works.

Post-Training Compression. Another line of work fo-
cuses on reducing the memory footprint of large models
by compressing the model weights in a lossy manner. Be-
yond the OBS framework [31] and its improvements, such
as GPTQ [25] and SparseGPT [23], many compression al-
gorithms [40, 66, 72, 74] have been proposed to reduce the
model size. Such techniques can also be applied to model
deltas by adapting the DELTAZIP compression pipeline. There

is also concurrent work on model delta compression. DeltaZip [73]

and GPT-Zip [34] proposes quantization and unstructured
sparsity, BitDelta [41] proposes extreme quantization and
DARE [77] proposes unstructured sparsity. Compared to
these works, DELTAZIP optimizes more for hardware-efficiency
by combining quantization with structured sparsity. To the
best of our knowledge, DELTAZIP is also the first serving
system to support both LoRA and compressed delta FMT
model serving,.

8 Discussion

Limitations. While DELTAZIP’s decoupled computation im-
proves throughput and reduces latency when concurrently
serving many models, decoupled inference still has higher
unloaded latency than serving a FMT model directly in GPU
memory. Hence, when there are only a handful of models
to serve and they fit in GPU memory, DELTAZIP may not be
suitable. In addition, the co-serving of LoRA and FMT models
in DELTAZIP is at a coarse granularity, where LoRA and FMT
models are served in two separate sets of GPUs and must
be in separate batches. We plan to explore the possibility of
serving LoRA and FMT models in the same batch as future
work.

Supporting PEFT approaches beyond LoORA. DELTAZIP’s
decoupled computation architecture is general and can be
used beyond LoRA, for other PEFT methods being proposed
to improve accuracy. For example, GaLore [80] only uses
low-rank on the gradient but results in full-rank weight up-
dates. RoSA [46] introduces sparse adapters in addition to
low-rank adapters. Due to the lack of support for full-rank



weight updates, these methods cannot be served by existing
LoRA-based systems. We plan to extend DELTAZIP to add
support for emerging PEFT methods.

9 Conclusion

To conclude, DELTAZIP efficiently serves a variety of fine-
tuned model variants, whether they are fine-tuned through
parameter-efficient or full-model tuning techniques. For effi-
cient serving of full-model-tuned models, DELTAZIP lever-
ages a key insight: fine-tuning typically results in small per-
turbations, allowing model deltas to be highly compressible.
DELTAZIP co-designs the serving system with the compres-
sion algorithm and achieves 10X compression ratio, improves
serving throughput by 2x to 12X and maintains high model
quality comparable to FP16 models. Our system will be open-
source upon publication.
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