
Dirigent: Lightweight Serverless Orchestration
Lazar Cvetković

ETH Zurich

lazar.cvetkovic@inf.ethz.ch

François Costa

ETH Zurich

francois.costa@inf.ethz.ch

Mihajlo Djokic

ETH Zurich and IBM Research Europe

djokicm@ethz.ch

Michal Friedman

ETH Zurich

michal.friedman@inf.ethz.ch

Ana Klimovic

ETH Zurich

aklimovic@ethz.ch

Abstract
While Function as a Service (FaaS) platforms can initialize

function sandboxes on worker nodes in 10-100s of millisec-

onds, the latency to schedule functions in real FaaS clusters

can be orders of magnitude higher. The current approach

of building FaaS cluster managers on top of legacy orches-

tration systems (e.g., Kubernetes) leads to high scheduling

delays when clusters experience high sandbox churn, which

is common for FaaS. Generic cluster managers use many hi-

erarchical abstractions and internal components to manage

and reconcile cluster state with frequent persistent updates.

This becomes a bottleneck for FaaS since the cluster state fre-

quently changes as sandboxes are created on the critical path

of requests. Based on our root cause analysis of performance

issues in existing FaaS cluster managers, we propose Diri-
gent, a clean-slate system architecture for FaaS orchestration

with three key principles. First, Dirigent optimizes internal

cluster manager abstractions to simplify state management.

Second, it eliminates persistent state updates on the critical

path of function invocations, leveraging the fact that FaaS

abstracts sandbox locations from users to relax exact state

reconstruction guarantees. Finally, Dirigent runs monolithic

control and data planes to minimize internal communication

overheads and maximize throughput. We compare Dirigent

to state-of-the-art FaaS platforms and show that Dirigent

reduces 99
th
percentile per-function scheduling latency for

a production workload by 2.79× compared to AWS Lambda.

Dirigent can spin up 2500 sandboxes per second at low la-

tency, which is 1250× more than Knative.

1 Introduction
Serverless computing — in particular, Function as a Service

(FaaS) — is an appealing paradigm of cloud computing as it

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1251-7/24/11.

https://doi.org/10.1145/3694715.3695966

1 25 50 100
Number of concurrent function sandbox creation in cluster

0

500

1000

1500

2000

2500

3000

M
ed

ia
n 

co
ld

 st
ar

t l
at

en
cy

 [m
s] Cluster manager control plane

Sandbox creation
Sandbox initialization
Other

Figure 1. End-to-end latency breakdown of cold invocation

bursts in Knative. Sandbox creation involves sequentially

creating two containers: user-code container and its sidecar.

Sandbox init is the time it takes to pass health probes.

raises the user’s level of abstraction to the cloud and alle-

viates users from the burden of explicitly managing server

resources [73]. In addition to ease of use, to be practical, a

FaaS platform must execute functions in securely isolated

environments (i.e., sandboxes) while minimizing end-to-end

latency and maximizing function execution throughput per

machine for cost-efficiency [38].

While initializing function sandboxes on worker nodes
takes 10-100s of milliseconds

1
with today’s FaaS worker

system software [38, 41, 47, 67, 83, 90, 91], we find that the

end-to-end latency to initialize function sandboxes is often

one or more orders of magnitude higher in operational FaaS

environments. This is because initialization involves more

than creating and starting a sandbox on a worker node. First,

the cluster manager receiving function invocations must

schedule the sandbox to be created on a particular worker

node. Then, after the sandbox is ready, the cluster manager

must plug it into the cluster so that it starts receiving traffic.

While scheduling a single sandbox at a time can be relatively

quick, we find that scheduling delay dominates when the

cluster manager concurrently schedules many sandboxes.

Figure 1 shows how the end-to-end function initialization

latency — and in particular the latency contribution of the

cluster manager — scales as we vary the number of concur-

rent sandbox creations in the Knative Serving
2
[21] FaaS

platform. The cluster manager adds 2 seconds of delay when

1
We assume that function container images are cached on worker nodes.

2
We refer to Knative Serving simply as Knative from now on.

https://doi.org/10.1145/3694715.3695966


it concurrently schedules 100 sandboxes in a burst. In Fig-

ure 2, we perform a similar experiment on AWS Lambda [5].

While we cannot measure the cluster manager component

of latency for proprietary FaaS platforms, Figure 2 confirms

that the same symptoms are present: end-to-end latency in-

creases as we scale concurrent cold starts. This is problematic

because multi-tenant, production FaaS workloads [75] re-

quire over 300 sandbox creations per second on average, with

bursts as high as 8000 (see §2.1), as FaaS applications consist

of many short-lived, sporadically invoked functions [55, 89].

So where does FaaS scheduling overhead come from and

what can we do about it? Although serverless scheduling

research has focused on scheduling policies [36, 49, 56, 65,
72, 76], we find that the mechanisms for propagating policy
decisions from the cluster manager to worker nodes are a

bottleneck. We identify high software bloat from the cur-

rent approach of building FaaS cluster managers on top of

legacy orchestration systems that were originally designed

to manage long-lived, stateful datacenter applications. In

particular, many FaaS cluster managers [4, 15, 24, 30] rely

on Kubernetes (K8s) [25] to deploy sandboxes on worker

nodes, monitor and manage cluster state, and recover from

component failures. While K8s provides useful functionality,

it leads to high scheduling latency and limits scheduling

throughput in high-churn environments like FaaS (i.e., when

sandboxes need to be frequently created and destroyed).

For example, we take Knative [21] as a representative FaaS

cluster manager. It is used in open-source FaaS frameworks

like vHive [85] and in Google’s commercial FaaS offering [9].

Knative builds on K8s, adding invocation-based autoscaling,

such that sandboxes can scale (potentially down to zero) for

each function based on its invocations. It uses the K8s API

to represent a sandbox as a Pod with a Service Endpoint,

belonging to a ReplicaSet, managed as a Deployment. Un-

der the hood, K8s runs a separate controller to manage the

state associated with each of these abstractions. Each con-

troller periodically executes a state reconciliation loop [79],

which involves watching for updates and writing updates to

a strongly consistent persistent database. Hence, creating a

single sandbox involves 10s of RPCs and sequential database

updates in the cluster manager. With high sandbox churn in

FaaS clusters, long queuing delays arise, as seen in Figure 1.

While one could try to retrofit K8s to improve its sand-

box scheduling performance, we derive design principles for

FaaS cluster management that fundamentally diverge from

the K8s system design philosophy and hence opt for a clean-

slate cluster manager design. We propose Dirigent, a new
system architecture for cluster management, specialized for

FaaS. Dirigent exposes the same user API as current FaaS

platforms (i.e., users register and invoke functions). Instead

of relying on a generic system like K8s to orchestrate sand-

boxes, Dirigent leverages the unique characteristics of FaaS

to optimize scheduling throughput and latency.

0 1 2 3 4 5 6 7
Latency [s]

0

20

40

60

80

100

Pe
rc

en
til

e

1
25
100
400
800
1600

Figure 2. AWS Lambda end-to-end latency CDFs with differ-

ent cold start bursts of hello-world functions. We pre-cache

container images, based on insights from Brooker et al. [41].

We design Dirigent with three key principles. First, Diri-

gent simplifies cluster management abstractions to minimize

the volume and complexity of the cluster state. Compared to

orchestrators that expose a variety of hierarchical abstrac-

tions (e.g., ReplicaSets and Deployments in K8s) to support

declaratively grouping, scaling, and restarting sandboxes,

Dirigent uses a lean set of abstractions designed for manag-

ing sandboxes of stateless, independent serverless functions.

Second, Dirigent does not modify any persistent cluster state
on the critical path of function invocations. In particular, when
Dirigent needs to create new sandboxes for an incoming func-

tion invocations (i.e., “cold starts”), it does not persist cluster

state about the number and location of sandboxes for each

function; it only maintains this state in memory. This means

that, in contrast to traditional cluster managers, Dirigent

may not always restore the cluster to an identical state when

a control plane component replica fails. However, relaxing

the exact recovery of sandboxes is suitable for FaaS as the

cluster manager abstracts sandbox information from end-

users and continuously autoscales sandboxes to match the

current invocation load. Finally, Dirigent redesigns the clus-

ter manager system architecture with a monolithic control
plane to minimize RPC overheads and amonolithic data plane
to reduce hops on the critical path of warm invocations.

We show that Dirigent supports 2500 cold starts per sec-

ond, which is 1250× more than Knative. For the Azure Func-

tions trace, Dirigent reduces per-function scheduling latency

at the 99
th
percentile by 403× compared to Knative and 2.79×

compared to AWS Lambda. Dirigent provides the same fault

tolerance guarantees for FaaS users while enabling faster

recovery times from control plane, data plane, and worker

node failures. Dirigent is an open-source project available

at: https://github.com/eth-easl/dirigent.

2 Background and Motivation
We outline the requirements for FaaS cluster management

(§2.1) and analyze the fundamental mismatch between these

requirements and K8s, which is used today as the foundation

2

https://github.com/eth-easl/dirigent


0 300 600 900 1200 1500 1800
Time [s]

0

2000

4000

6000

8000

Sa
nd

bo
x 

cr
ea

tio
n 

co
un

t avg = 301.41
p50 = 152.5
p95 = 1023.05
p99 = 2181.85

Figure 3. Rate of sandbox creation over time in a 30-minute

window (after 10-min warmup) of the 70K function Azure

trace [75], simulated on a 1000 worker-node cluster with

default Knative scheduling policies. Each sandbox processes

1 request at a time, the default for FaaS platforms [16, 35].

in many FaaS platforms (§2.2). We discuss alternative cluster

managers and why they are not suitable for FaaS (§2.3).

2.1 FaaS Cluster Management Requirements
A FaaS cluster manager manages function registrations and

schedules function invocations for execution on worker

nodes. Scheduling in the context of FaaS involves three as-

pects: autoscaling (i.e., creating and tearing down) sandboxes
per function based on invocations, placing sandboxes across

workers to optimize performance and resource efficiency,

and load-balancing invocations across sandboxes. A FaaS

cluster manager is also responsible for keeping the FaaS ser-

vice operational despite potential cluster component failures.

We summarize the key requirements for a FaaS cluster man-

ager and discuss the associated challenges that arise due to

the unique characteristics of FaaS workloads:

R1) High throughput scheduling. A FaaS cluster man-

ager must be able to create, place, and tear down function

sandboxes and load-balance incoming requests with high

throughput. FaaSworkloads involve bursty and unpredictable

function invocations [75]. Keeping many warm sandboxes

available in DRAM is expensive, so the cluster manager must

frequently create and destroy function sandboxes. Figure 3

plots the number of sandbox creations in the Azure trace

over a 30-minute time window when simulating the trace

on a 1000-node cluster with the default autoscaling, load-

balancing, and placement policy in Knative [22, 23, 29]. For

this workload, the cluster manager creates 300 sandboxes per

second on average, with bursts of thousands of sandboxes

per second. Even if we configure the scaling policy to have

infinite keep-alive (i.e., never downscale functions sandboxes

after an invocation), the cluster manager still needs to create

229 sandboxes per second on average and 1551 per second

at the 99
th
percentile. This is due to inevitable cold starts

when functions are invoked for the first time. In contrast,

traditional cluster managers do not optimize sandbox cre-

ation and placement throughput, since sandboxes are often

pre-deployed off the critical path of requests and sandbox

creation is amortized for traditional, long-lived applications.

R2) Low latency scheduling. Since serverless functions
are often short-lived (e.g., 50% of functions in the Azure

Functions trace [75] execute within a second), the cluster

manager must schedule functions with low latency (ideally

less than tens of ms) on the critical path.

R3) Fault tolerance.We distinguish between component-

level and request-level fault tolerance. The FaaS cluster man-

agermust provide component-level fault tolerance, i.e., ensure
the platform remains operational and able to serve new in-

vocations despite worker, data plane, or control plane node

failures. The platform should minimize the impact of com-

ponent failures on the end-to-end invocation latency.

Request-level fault tolerance concerns requests that are

in-flight in the cluster when a failure occurs. Though desir-

able [54, 70, 92], existing FaaS platforms generally do not

provide request-level fault tolerance. For synchronous invo-

cations — where the client blocks until receiving a response

— state-of-the-art FaaS platforms rely on users to re-invoke

a function [6, 16, 63] in case an invocation is lost (e.g., if a

worker node fails in the middle of execution). Some FaaS

platforms, like AWS Lambda, also support asynchronous in-

vocations with a persistent queue that buffers invocations

and can retry invocations in case of timeouts to provide

at-least-once invocation guarantees. Since a function may

get invoked (and partially executed) more than once, FaaS

platforms advise users to write idempotent functions [39, 64].

Non-requirements. A FaaS cluster manager does not

expose the exact number and location of sandboxes to end-

users, nor it needs to support direct communication between

sandboxes [58]. Hence, in case a particular sandbox fails, it

is not necessary to restore the cluster to an identical state.

Redeploying sandboxes is acceptable and straightforward

as FaaS functions are independent and stateless, in contrast

to generic applications which may have complex workflow

chains and whose components spread across different sand-

boxes may have complex inter-communication patterns.

2.2 The Kubernetes – FaaS Mismatch
We now discuss the mismatch between the FaaS cluster man-

ager requirements in §2.1 and K8s-based cluster managers,

which are common in current FaaS platforms [8], such as

Knative [21], OpenWhisk
3
[4], OpenFaaS [30], Fission [15],

Kubeless [24], Cloudburst [78], and Google Cloud Run for

Anthos [9]. The K8s-based cluster managers in these plat-

forms ensure component-level fault tolerance for FaaS (R3 in

§2.1). However, we find that building on generic K8s API ab-

stractions and inheriting the microservice-based architecture

of K8s makes cluster managers unfit for high throughput

and low latency FaaS workload scheduling (R1 and R2).

3
OpenWhisk can run in a non-K8s Docker setup for clusters with less than

10 nodes and 100 containers [1], but the K8s deployment is encouraged [32].

3



Autoscaling
Controller

Deployment
Controller

Endpoint
Controller

ReplicaSet
Controller

API
Server

Placement
Service

Activator Queue-
Proxy FunctionIngress

Gateway

DB

Data plane

Control plane

Worker nodes

Figure 4. Knative system architecture, which builds on K8s.

This diagram is simplified, showing only key components

which all run as independent microservices. K8s components

are blue, while yellow components are added by Knative.

Knative case study: We take Knative [21] as a represen-

tative FaaS cluster manager, as it is open-source and widely

used [8], both in research [85] and commercially [9]. Figure 4

shows the Knative system architecture and how it builds on

K8s components and concepts. The K8s API [26] provides

concepts, such as Deployments, ReplicaSets, and Endpoints,

which can be used to monitor and control cluster state at

different levels of abstraction. For example, a Pod (the min-

imal scheduling unit in K8s) can be horizontally scaled as

a ReplicaSet, a low-level K8s object that ensures a specified

number of replicas are running at all times. K8s can man-

age ReplicaSets with a higher-level object, a Deployment,

which provides additional features like rolling updates and

rollbacks. K8s stores state for all objects in the cluster in a

strongly-consistent database. K8s also implements multiple

controllers that run reconciliation loops for objects like De-

ployments and ReplicaSets to converge the actual system

state to the desired state. To use K8s as the underlying re-

source orchestrator for FaaS, Knative extends K8s with an

additional set of controllers to implement invocation-based

autoscaling. The Knative autoscaling controller supports

scaling a function to zero sandboxes at low load. This is

necessary for FaaS as the default K8s Horizontal Pod Au-

toscaler cannot scale a function to zero, i.e., has no support

for cold starts but scales sandboxes based on generic metrics

like CPU and memory utilization [27]. Knative also adds a

component to buffer requests for cold starts (Activator) and
a per-Pod sidecar component (Queue-Proxy) to throttle the

number of concurrent requests each Pod can process.

While the K8s API provides convenient abstractions and

the K8s architecture is modular and extensible, we find that

implementing a FaaS cluster manager on top of K8s has

high performance overhead. For example, Figure 5 shows

the cumulative distribution of Knative scheduling latency

when running a 500-function sample of the Azure production

trace [75] on a 93 worker-node cluster. Scheduling has long

tail latency. One third of functions experience an average

100 101 102 103 104 105 106

Scheduling latency [ms]
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Per-invocation
Per-function average

Figure 5. CDF of per-invocation scheduling latency and

per-function mean scheduling latency when executing 500-

function Azure trace [75, 84] on a 93-worker cluster.

scheduling latency greater than or equal to 100 seconds,

whereas many functions only execute for milliseconds.

To understand the root cause of this latency overhead, we

analyze which function invocations experience high sched-

uling delays. We find it is functions invoked while the cluster

manager is orchestrating a large number of concurrent sand-

box creations. Figure 1 confirms Knative cluster manager

latency increases significantly when the cluster experiences

multiple concurrent cold starts. We validate our findings by

running cold start invocation microbenchmarks on Google

Cloud Run for Anthos [9], a commercial Knative offering. We

see similar latency patterns as we scale cold start invocations.

The fundamental bottleneck is the complex critical path of

sandbox creation in Knative, as the system relies on multiple

K8s-based controllers to reconcile desired and actual cluster

state. While computing the desired state (i.e., executing the

autoscaling and placement algorithms) is fast, reconciling

the cluster state is highly inefficient for several reasons. First,

by design, K8s components cannot exchange information

directly, even if they run in the same process. The K8s con-

trollers can only exchange information through synchronous

read-modify-write sequences to a centralized cluster state

database, etcd [13]. Hence, creating a new sandbox in the

cluster involves multiple RPCs between controllers and the

database front-end (the API server). These operations are not

commutative and hence impede scalability [43]. Second, the

volume of state exchanged in RPC calls is large as K8s man-

ages state with key-value pairs that average 17kB in size in

our experiments and are represented as deeply nested trees.

As a result, we find the API server spends significant CPU

cycles on data serialization. When invoking cold starts at a

steady rate, we find Knative can only support 2 cold starts

per second before scheduling latency saturates (see Figure 7)

due to the API server saturating CPU resources. Finally, K8s

serializes and persists cluster state updates with strong con-

sistency. While serializing and persisting updates enables

restoring the cluster state to an identical state as before a

failure occurred, it limits sandbox creation throughput.

A natural approach to scale sandbox scheduling through-

put is to deploy functions across independent sub-clusters.

4



However, supporting the median sandbox creation rate in

the Azure trace simulation shown in Figure 3 (152 sandbox

creations per second) would require spreading invocations

across ∼90 separate sub-clusters, each managed by a sepa-

rate Knative instance. Each sub-cluster would require sepa-

rate nodes for control and data plane replicas. An additional

load-balancing layer would add an extra hop for all requests.

Furthermore, the division of the cluster into sub-clusters

would reduce global visibility of the load across machines,

which can degrade scheduling decision quality [71].

Generalizing beyond Knative: To test if our findings

generalize to other K8s-based cluster managers besides Kna-

tive, we experimented with OpenWhisk [4]. Also, we tested

bypassing K8s abstractions, such as Deployments and Repli-

caSets, and instead directly created and managed Pods. In

both cases, we observe high cold start latency with concur-

rent cold starts, confirming that even creating and tearing

down the minimal type of K8s objects (Pods) has high over-

head at the high churn rate required by FaaS applications.

We also observe that increasing concurrent sandbox cre-

ations significantly impacts AWS Lambda cold start latency

(Figure 2), however, we do not have access to the platform’s

cluster manager implementation to analyze the root cause.

2.3 Related Work
Alternative cluster managers. Cluster manager design is

an active research area, with many alternatives to K8s [42,

74]. However, data center clustermanagers [31, 40, 44–46, 51–

53, 57, 69, 82, 86, 87] are typically designed to orchestrate

long-living applications. For such applications, sandbox cre-

ation is amortized and not on the critical paths of requests.

FaaS, in contrast, has much shorter sandbox lifetimes and

higher churn. To orchestrate thousands of nodes and appli-

cations, systems such as Mesos and YARN [52, 86] embed all

inter-component communication into periodic heartbeats.

However, long heartbeat periods lead to poor responsiveness,

which is not suitable for FaaS workloads. Quincy [53] and Fir-

mament [51] focus on scheduling policy design and explore

the tradeoff of computational efficiency vs. decision quality,

but ignore how the cluster manager system architecture af-

fects decision propagation speed in the cluster. Sparrow [69]

improves scalability by decentralizing scheduling, however,

trading off global knowledge of the load on each worker

node can degrade decision quality [71].

Many prior works explore complementary, such as reduc-

ing interference between the co-located workloads [44–46].

Mercury [57] explores tradeoffs for collocating long-running

analytic jobs with latency-critical workload. Omega [74] ex-

plores tradeoffs between centralized and distributed sched-

uler designs. DCM [81] proposes a new cluster management

architecture to simplify scheduling policy implementation

and debugging for developers, by enabling declarative SQL

queries to a relational cluster state database. Sieve [79] and

Anvil [80] address correctness challenges with state recon-

ciliation systems like K8s to improve reliability.

Cluster management for FaaS. The closest to our work

is a study characterizing the gap between FaaS research and

real-world systems, which also identifies high cold start la-

tency when scheduling many sandboxes [62]. We analyze

the root-cause and design Dirigent to alleviate cluster man-

ager control plane bottlenecks. Ilúvatar [48] is complemen-

tary work that reduces warm start scheduling overheads

originating on worker nodes. Most work on FaaS orchestra-

tion has focused on autoscaling, load-balancing, and place-

ment policies to reduce the frequency and overhead of cold

starts, improve end-to-end performance, and resource effi-

ciency [36, 50, 56, 65, 69, 72, 75, 76]. These works build on

top of existing FaaS cluster manager system architectures,

in which the state management performance bottlenecks

described in §2.2 remain.

AdaptingK8s. Someworks have adapted K8s for different

use cases. KOLE [93] adapts K8s for the edge environment

and manages to scale K8s to 1M nodes but at the expense of

abolishing dynamic Pod creation and scheduling, which is

not suitable for FaaS. K3s [19] is a lightweight K8s for IoT

and edge environments. Although the single-process version

of K8s is easy to deploy, we observed the system suffers from

many of the same performance issues as the baseline K8s.

Faasd [14] targets single-node resource-constrained edge

setups, while we target FaaS cloud clusters.

3 Dirigent Design Approach
To address the scheduling overheads in state-of-the-art FaaS

platforms, we proposeDirigent, a new clustermanager catered

for FaaS. Dirigent maintains the same serverless end-user

API as today’s FaaS platforms (i.e., users register and in-

voke functions) such that applications designed for AWS

Lambda or Knative can seamlessly run on Dirigent. To meet

the performance and fault tolerance requirements of FaaS

applications (discussed in §2.1), we derive system design prin-

ciples based on insights from our analysis of K8s-based FaaS

systems, summarized in Table 1. This results in a clean-slate

system design, which we present below.

3.1 System Overview
System architecture. Figure 6 shows Dirigent’s system

architecture. Each Dirigent component runs as an indepen-

dent process, preferably on a separate physical machine,

and can be replicated independently. The control plane is
responsible for monitoring cluster components, autoscaling,

placing sandboxes on worker nodes, and persisting cluster

state. Only one control plane component replica is active at

a time. The active control plane component replica persists

some of its state to a database, which is replicated across

nodes with strong consistency. The data plane load balances

incoming invocations to worker nodes, buffers invocations

5



Feature of K8s-based FaaS system design that con-
tributes to high scheduling latency

Insight for Dirigent design

Managing a large volume of state for many, hierarchical

abstractions in K8s (e.g., Deployments, ReplicaSets).

Simple internal cluster management abstractions.

Persisting and serializing each cluster state update on the

critical path of cold function invocations.

Persistence-free latency-critical operations, relaxing exact

cluster state reconstruction as it is abstracted from FaaS users.

Microservice-based control plane with RPC communication

between components.

Monolithic control plane.

Per-sandbox sidecars on workers for concurrency throttling. Monolithic data plane for request throttling.

Table 1. Dirigent’s design principles, based on insights from our performance issues analysis in K8s-based FaaS systems.

LBLB

HTTP/2
reverse proxy

Request
queue

Concurrency 
throttler

Autoscaler Placer

Data plane Worker node

Control planeInvocation

LB

SandboxSandboxSandbox

DBDBDB

Figure 6. System diagram of Dirigent cluster manager.

waiting for a sandbox, and limits the number of requests

that a sandbox processes in parallel (concurrency throttling).

Data plane component replicas are all active and indepen-

dent. The front-end load balancer (LB in Figure 6) spreads

incoming invocations across data plane components.Worker
nodes execute function invocations and create/destroy sand-

boxes when instructed by the control plane. §3.3 describes

the life of a function invocation request through the system.

Dirigent API. The bold Client caller rows at the top of

Table 2 show Dirigent’s end-user API, which corresponds to

FaaS platforms like AWS Lambda and Knative. Users register

functions in Dirigent by providing container images. Hence,

workloads require no porting effort. Functions simply need

to expose a gRPC/HTTP server, as in today’s FaaS platforms.

Users can directly invoke functions or configure triggers

(e.g. timer events) to invoke functions. The other rows in

Table 2 show the internal calls supported between Dirigent’s

components to send metrics, add/remove components, and

perform leader election.

3.2 Design Principles
Dirigent’s design is based on principles that address the

performance issues we identified in K8s-based FaaS cluster

managers (Table 1). We discuss each principle below.

Simple internal abstractions. In contrast to Knative,

which uses a plethora of K8s objects (e.g., Deployments,

ReplicaSets, Endpoints), Dirigent defines only four funda-

mental types of objects that the control plane orchestrates,

shown in Table 3. The Function abstraction represents a func-

tion that a user registers with a name, container image URL,

and exposed port. Dirigent uses this information as a recipe

for creating sandboxes of that function. Dirigent keeps track

of per-function scheduling configurations (e.g., autoscaling

knobs, resource quotas, placement constraints) and moni-

tors per-function scheduling metrics, such as the number of

inflight requests of that function. The Sandbox abstraction

(analogous to K8s Pod) represents information about the

sandbox state on a worker node, such as the sandbox name,

IP address, port, and the name of the worker node it resides

on. DataPlane andWorkerNode objects store the IP addresses

and ports of respective components so that a control plane

can re-establish communication channels in case they fail.

Minimizing the number of internal abstractions minimizes

the amount of state that Dirigent needs tomaintain, improves

resource efficiency, and avoids double bookkeeping and its

associated consistency overheads. Moreover, it reduces the

number of state updates needed whenever the autoscaling al-

gorithm triggers a sandbox creation or teardown. In Knative,

a sandbox creation triggers updates to multiple hierarchical

objects (e.g., Deployment, ReplicaSet, Endpoint, Routes) via

their associated state reconciliation controllers. On the other

hand, Dirigent updates a single Sandbox object and forwards

data plane components an updated list of sandboxes.

In addition to managing fewer objects, Dirigent also mini-

mizes the state stored per object. For example, by tailoring

Dirigent’s state management for the FaaS use case, we store

the sandbox state in 16 bytes, compared to a K8s Pod resource

definition, which we find can be as big as 17 KB. We find

Knative uses K8s abstractions to store large function-related

metadata in YAML format as raw Unicode text. This data

includes annotations and labels, environment variables, sand-

box state transition timestamps, and control messages. The

schema features many long keys, which amplify serialization

overheads. In Dirigent, we adopt a minimalist metadata and

storage schema and store state in a serialized binary format.

Persistence-free latency-critical operations. The con-
trol plane persists (with strong consistency to a replicated

database) only the minimal state required for the control

plane to operate correctly after recovering from a failure.

Table 3 shows the cluster state Dirigent maintains in mem-

ory and the checkmarks in the last column indicate which

6



Caller Operation Callee

Client (De)-Register function CP
Invoke function DP

Data plane

(DP)

(De)-Register data plane CP

List registered functions CP

Send scaling metric CP

Send heartbeat CP

Control plane

(CP)

Add/remove function DP

Add/remove LB endpoint DP

Create/Kill sandbox WN

List sandboxes WN

Vote for leader election CP

Worker node

(WN)

(De)-Register worker CP

Send heartbeat CP

Table 2. Dirigent API. Bold operations are exposed to users.

Others are internal calls between Dirigent components.

state is persisted. Dirigent’s control plane does not persist

state that is recoverable from other cluster components. This

includes the Sandbox state (which can be recovered from

worker nodes) and Function scheduling metrics (which can

be inferred from data plane traffic).

In contrast, in FaaS platforms like Knative, K8s mandates

that every cluster state change (e.g., adding a Pod to a Repli-

caSet) is persisted in a centralized, strongly consistent data-

base, such that K8s can restore the cluster to the exact state

as before the failure. We argue that such strong guarantees –

and the performance overheads that they come with – are

not fundamentally necessary in FaaS clusters.

Specializing the cluster manager design for FaaS opens op-

portunities for relaxing state reconstruction guarantees. For

example, if a FaaS cluster fails, sandboxes can be started on

different worker nodes, as IP addresses and placement infor-

mation are not exposed to end-users. Additionally, the cluster

need not recover the same number of sandboxes as the traffic

often varies significantly over short time windows. While

relaxing state reconstruction guarantees may be unsuitable

for a generic cluster manager with an arbitrary workload,

Dirigent still satisfies the component-level fault tolerance

requirements of FaaS platforms (R3 in §2.1). In §3.4.1, we

discuss how Dirigent handles failure scenarios. By removing

state persistence from an invocation’s critical path, Dirigent

increases scheduling throughput, as we will show in §5.2.

Monolithic control and data planes. Dirigent central-
izes the functionality for creating and managing sandboxes

into a monolithic control plane and the functionality for

routing, throttling, and buffering function invocations into

a monolithic data plane. Dirigent’s monolithic architecture

contrasts with systems like Knative and OpenWhisk, which

inherit the microservice architecture of K8s where multiple

components run as separate services and communicate via

RPCs. Dirigent’s monolithic control and data planes allow

simpler deployment andmanagement, fewer leader elections,

and faster recovery time on crashes. In Dirigent’s control

plane, modules such as the state manager, health monitor,

autoscaler, and placer exchange information through fast

in-memory channels and atomic primitives. The monolithic

data plane allows Dirigent to minimize infrastructure tax on

warm starts, compared to Knative’s approach of deploying

separate Queue-Proxy sidecars per function sandbox for re-

quest buffering and throttling. Abolishing sidecars leads to

faster sandbox startup time, better monitoring over invoca-

tions from data planes, less resource usage, and a shorter

invocation critical path. However, we decided to separate the

control and data planes, such that we can scale data planes

independently based on the warm invocation load while

maintaining stable control plane performance for cold starts.

3.3 Life of a Request
We now describe how a function invocation traverses the

Dirigent system in Figure 6. A function invocation arrives

in Dirigent through the front-end load balancer (LB) and

reverse proxy. If there is a sandbox to handle the invocation

(i.e., a warm start), the data plane picks a sandbox that will
execute the invocation, ensures the sandbox has an available

processing slot, and proxies the request to the worker node.

If no sandboxes are available to process a request when it

arrives (i.e., cold start), the invocation waits in a data plane’s

request queue until at least one sandbox becomes available.

The data plane periodically sends autoscaling metrics to the

control plane. The autoscaler in the control plane determines

the number of sandboxes needed to serve the current traffic.

When a new sandbox needs to be created, the placer chooses

and notifies the worker node that should spin up the new

Abstraction Associated State Persisted

Function

Name ✓
Image URL ✓
Port to expose ✓
Scheduling configuration ✓
Scheduling metrics

Sandbox

Name

IP address

Port on worker node

Worker node ID

DataPlane

IP address ✓
Port ✓

WorkerNode

Name ✓
IP address ✓
Port ✓

Table 3. Dirigent’s key cluster management abstractions

and their associated state maintained by the control plane.

7



sandbox. Once a sandbox is created, the worker daemon

issues health probes to ensure the sandbox is booted and

ready to handle the traffic. After the sandbox passes a health

probe, the worker daemon notifies the control plane, which

then broadcasts endpoint updates to data plane components.

The data plane dequeues the request and handles it as a warm

start. Requests leave the system in the reverse direction and

pass through the same data plane to reach the client.

Synchronous vs. asynchronous invocations. Dirigent
supports both operationmodes. Users specify themode in the

request header and submit the request as described above.

Asynchronous calls pass through an additional queue be-

tween the front-end load balancer and the reverse proxy

which submits requests and monitors invocation status and

can be configured to re-invoke functions on timeouts. In this

paper, we focus on synchronous calls as asynchronous ones

are not supported by all FaaS platforms (e.g., Knative).

3.4 Fault Tolerance
Wediscuss howDirigent handles component-level and request-

level fault tolerance. Furthermore, since Dirigent aims to

minimize state persistence (§3.2), particularly on the critical

path of invocations, we elaborate on how Dirigent matches

the fault tolerance guarantees of today’s FaaS platforms.

3.4.1 Component-level fault tolerance. These failures
occur because Dirigent’s component(s) or the physical ma-

chines running them crash. Dirigent leverages replication to

recover components quickly, implements a restart policy on

component failure, and ensures that requests arriving after

any component failure are correctly executed.

Control plane fault tolerance. For high availability

(HA), Dirigent runs multiple control plane components. One

control plane component is the leader that serves requests,

while others are on standby. Each control plane component

runs an instance of the replicated cluster state database. New

sandboxes cannot be spawned while the control plane leader

is down. However, warm functions remain unaffected, pro-

vided the data plane does not crash. The control plane recov-

ers by electing a new leader followed by fetching all Data-
Plane and WorkerNode objects from the persistent storage to

re-establish connections with the cluster components. The

control plane then retrieves Function objects from the data-

base and updates data plane caches. At this point, the control

plane can serve new requests. The scale of all deployed func-

tions in the control plane’s internal data structures is zero,

although, in a scenario where only the control plane crashes,

worker nodes still run the sandboxes, i.e., the actual scale is

greater than zero. Hence, worker nodes provide the control

plane with a list of sandboxes they run and the control plane

merges this information asynchronously, as it arrives, to its

internal data structures and notifies data planes of changes.

Dirigent does not downscale recovered sandboxes for one au-

toscaling time window (60s by default), since the autoscaling

metrics, which were lost on failure, take time to repopulate.

Data plane fault tolerance. The data plane is replicated.
Each replica is active and operates independently. When a

data plane component fails, it recovers by re-establishing

a connection with the control plane and pulling the list of

registered functions and sandboxes in the cluster.

Worker node fault tolerance. The worker node is con-
sidered healthy and schedulable as long as the control plane

receives periodic heartbeats from it. Once the control plane

detects no heartbeats, it notifies data plane components not

to route requests to sandboxes on the affected worker node.

The control plane re-runs autoscaling to spin up sandboxes

somewhere else. The worker node continuously monitors

sandbox processes and notifies the control plane of crashes.

Multi-component fault tolerance. Dirigent can toler-

ate failure of multiple components of different types, each

of which individually recovers as described above. Dirigent

cluster is operational as soon as at least 1 control plane, 1

data plane, and 1 worker node are available. In the worst

failure scenario, when the control plane, data plane, and all

worker nodes fail, the cluster after recovery will be equiva-

lent to the cluster where all functions have zero sandboxes

running. Since sandbox creation in Dirigent is quick (see

§5.2.1), the cluster will converge to the state for serving the

current traffic demand, while invocations will experience a

slowdown during the convergence period. However, Diri-

gent does not guarantee the exact sandbox count as before

the failure, nor that sandboxes will be assigned the same IP

addresses or placement as before the failure.

State consistency. Data plane components operate on in-

formation from their internal caches, which can become stale

if the control plane experiences longer downtime. In such

scenarios, a data plane can load balance requests to a non-

existing sandbox. Dirigent favors availability over consis-

tency, similar to many production-grade load balancers [12].

3.4.2 Request-level fault tolerance. Cluster manager

component failures may lead to invocation failures. For ex-

ample, if a worker node fails, all invocations executing on

that node will also fail. If a data plane fails, all inflight re-

quests in that data plane will be terminated, as connections

to clients are lost. Dirigent provides no request-level fault

tolerance guarantees for synchronous invocations, which is

also the case with the Knative, OpenWhisk [33], and com-

mercial FaaS platforms such as AWS Lambda and Azure

Functions [6, 7, 16]. For synchronous requests, these sys-

tems rely on the user to re-invoke functions. For asynchro-

nous requests, Dirigent provides at-least-once guarantees,

through request persistence and a retry policy. Dirigent can

serve as a basis for providing stronger request-level guar-

antees [54, 70, 92]. Data plane and worker nodes can also

8



be extended to support workflow orchestration, function

checkpointing, and transactions [59].

4 Implementation and Limitations
We implement Dirigent in approximately 11.3K lines of Go

code. Communication between system components shown

in Figure 6 happens via gRPC calls that are invokable at any

time, rather than through periodic heartbeats like in Mesos

and YARN [52, 86]. Dirigent uses RAFT [68] for control plane

leader election and relies on systemd to monitor Dirigent

component health and restart a failed process. Dirigent uses

Redis [34] to persist the system state. We collocate a Redis

replica with each control plane component replica. When a

control plane leader changes, the Redis master also changes.

Concurrency. System components use readers-writer

locks for all critical sections with a transactional state up-

date. On hot-paths, we use lock-free data structures where

possible. The communication between different control plane

modules such as the placer and autoscaler uses Go channels.

Worker node software stack.We implement Dirigent

with two different sandbox runtimes: containerd [11] and

Firecracker [38, 41] with and without microVM snapshots.

Integrating additional sandbox runtimes only involves ex-

tending a three-call interface. Each worker node maintains

a local container image and snapshot cache to reduce image

pulling. Because of Linux network stack performance issues

on parallel network interface creations [66, 83], each worker

node maintains a pool of pre-created recyclable network

configurations along with pre-configured iptables rules to

allow quick network allocation to a newly created sandbox.

Scheduling policies. Dirigent implements and uses Kna-

tive’s default scheduling policies across all three scheduling

dimensions (autoscaling, placement, and load balancing).

The autoscaling algorithm scales the number of sandboxes

per function based on the number of in-flight requests for

each function [22]. The placement policy favors nodes with

the least utilized resources while aiming to balance resource

utilization across CPU and memory [29]. Dirigent supports

Hermod [56] and CH-RLU [50] scheduling policies, though

they are unused in our evaluation (§5) to ensure a fair com-

parison to Knative. The load-balancing algorithm forwards

invocations to least-loaded sandboxes [23]. The front-end

load balancer steers invocations based on function ID hash,

which ensures all invocations of a particular function end up

on the same data plane component and allows centralized

tracking of the number of in-flight requests for each function.

Implementing new scheduling policies and metrics involves

extending the relevant Go interfaces in the control plane (for

autoscaling and placement policies) and in the data plane

(for load-balancing policies), recompiling, and redeploying

Dirigent. Knative also requires recompilation, repackaging,

and redeployment of its autoscaling, load-balancing, or place-

ment service containers to add new policies and metrics.

Sandbox teardown. The control plane runs an asynchro-

nous autoscaling loop that issues sandbox teardown calls to

worker nodes, based on the inflight request count in the clus-

ter. On worker nodes, such calls trigger sandbox termination,

a process that dismantles the file system, network interfaces,

and cgroups structures associated with the sandbox.

Operations and monitoring. Dirigent components ex-

pose global and per-function metrics (e.g., the number of

inflight requests, queue depth, and number of successful in-

vocations) via HTTP, similar to Knative. Dirigent is equipped

with logging infrastructure that reports important events

in the cluster, eases debugging, and can be used to break

down end-to-end function latency. Dirigent’s logging and

monitoring infrastructure provides a foundation for building

fine-grain resource accounting and billing services.

Limitations.Dirigent does not currently support function
versioning and partial traffic steering to different function

versions, which is supported in Knative. This can be imple-

mented in Dirigent by extending Function and Sandbox ab-

stractions with a version number and by adding a versioning-

aware load-balancing policy in the data plane. Cluster man-

ager features like QoS support and remote log fetching are

not yet integrated into Dirigent but can be added. We empha-

size that Dirigent is an alternative to FaaS cluster managers.

It is not intended as a replacement for a general-purpose

cluster manager as it does not support naming/discovery ser-

vices for coordination between sandboxes or provide strict

guarantees for state reconstruction upon failures as K8s.

5 Evaluation
We evaluate Dirigent to answer the following key questions:

• What is the throughput of Dirigent’s control plane, i.e.,

what is the system’s peak sandbox creation rate?

• What is the Dirigent’s data plane throughput, i.e., how

many warm requests can Dirigent serve per second?

• How does Dirigent improve end-to-end function la-

tency and cluster resource utilization for FaaS produc-

tion workload compared to state-of-the-art systems?

• How effectively does Dirigent handle control plane,

data plane, and worker node failure scenarios?

5.1 Experimental Methodology
Baselines. We compare Dirigent to two open-source K8s-

based FaaS platforms: Knative [21] and OpenWhisk [4]. We

briefly experimented with OpenFaaS [30] as another K8s-

based baseline, but we found that the community version

is not competitive as it only supports up to 15 functions

and lacks critical features like scale-to-zero and concurrency

throttling. We compare Dirigent’s end-to-end performance

to a state-of-the-art commercial platform, AWS Lambda [5].

Hardware setup.We run Dirigent and the open-source

baseline systems on a 100-node xl170 Cloudlab cluster [10].

Each node is an Intel Xeon E5-2640 v4 @ 2.4 GHz CPU with

9



100 101 102 103

Cold starts per second

1000

2000

3000

4000

5000

En
d-

to
-e

nd
 la

te
nc

y 
[m

s] Knative - p50
Knative - p99
OpenWhisk - p50
OpenWhisk - p99
Dirigent - containerd - p50
Dirigent - containerd - p99
Dirigent - Firecracker - p50
Dirigent - Firecracker - p99

Figure 7. Cold start performance.

10 physical cores, 64GB of DRAM, and an Intel DC S3520

SSD. All nodes run Ubuntu 20.04. Nodes are connected in

groups of 40 machines with 25 Gbps links to Mellanox 2410

leaf switches and groups connect to a Mellanox 2700 spine

switch with 100 Gbps links. For AWS Lambda experiments,

we register functions in the us-east-1 region and invoke

functions from T3 EC2 instances in the same region.

Software setup.We run Knative v1.13.1 [21] with Istio

v1.20.2 [18] and OpenWhisk v1.0.1 [4]. Both baselines run

on Kubernetes v1.29.1 [25]. We use containerd v1.6.18 [11]

as the sandbox manager. Dirigent also supports snapshot-

enabled Firecracker v1.7.0 [38] sandboxes. Firecracker mi-

croVMs run Linux kernel v4.14. For the persistent data store,

Dirigent uses Redis v7.2.0 [34] in append-only mode with

fsync enabled at each query. We use HAProxy v2.4.24 [17]

with keepalived v2.2.8 [20] as a highly-available front-end

load balancer. We configure sandboxes to handle only one re-

quest at a time, similar to commercial cloud offerings [16, 35].

We employ the same scheduling policies in Knative and Diri-

gent (§4), and prefetch container images and VM snapshots

on each worker node. We do container image prefetching in

AWS Lambda experiments with technique from [41].

In both Knative and Dirigent experiments, we run the

control plane in high-availability (HA) mode with 3 replicas,

each running on a dedicated node. Also, we run 3 data plane

replicas on separate nodes. We co-locate the front-end load

balancer with the data planes and run the InVitro [84] load

generator on a separate machine in the cluster.

5.2 Microbenchmarks
We analyze cluster manager latency, peak throughput, and

scalability by invoking hello-world functions. We run cold

start microbenchmarks to stress test the control plane and

warm start microbenchmarks to stress test the data plane.

5.2.1 Cold Start Performance.
Peak sandbox creation throughput. Figure 7 shows the
p50 and p99 end-to-end latency as we sweep the number of

cold start invocations per second in the 93 worker-node clus-

ter. Dirigent sandbox creation throughput with containerd

saturates at 1750 cold starts per second. The bottleneck is

not the Dirigent control plane but kernel lock contention

during sandbox creation, network interface configuration,

and iptables rule updates on containerd worker nodes. To

saturate the Dirigent control plane, we optimize the worker

node software stack by running functions in Firecracker mi-

croVMs booted from snapshots. Dirigent with Firecracker

microVMs achieves a peak throughput of 2500 cold starts

per second. At this load, the Dirigent control plane CPU

utilization is still only 55% and access congestion on shared

data structures used for autoscaling becomes the bottleneck.

In contrast, cold start latency with Knative and OpenWhisk

saturates at significantly lower load (below 2 cold starts per

second!), due to high CPU utilization on the K8s API Server

which is processing many RPCs from controller components

and serializing large volumes of data for state updates to

the etcd database. Note that compared to the experiment

in Figure 1, where we invoked bursts of specific size and

reported the p50 latency for invocations in that burst, here

we invoke functions at a steady rate. Overall, Dirigent en-

ables 1250× higher sandbox creation throughput than the

K8s-based cluster managers. This is critical as FaaS clus-

ters in production experience bursts in which thousands of

sandboxes per second must be created (recall Figure 3).

Cold start latency breakdown. Figure 7 also shows that
Dirigent’s cold start latency is lower than K8s-based systems

even at low load (e.g., 1 cold start per second). We analyze the

breakdown of unloaded cold start latency in Knative and Diri-

gent. Knative is slow at booting new sandboxes (∼400 ms)

since in addition to the user container, it creates a queue-

proxy sidecar container on the worker node for each user

function container. The sidecar buffers requests to the user

container. These two containers are created sequentially and

need to pass the readiness probe checks, which we find takes

∼500 ms after both containers are created. In contrast, Diri-

gent buffers requests in per-function queues in data plane

nodes and therefore does not need to boot sidecars on worker

nodes in the critical path. This significantly reduces sand-

box creation and readiness wait latency. Dirigent also has

lower control plane latency due to minimal state updates

on the critical path of sandbox creation. Dirigent with Fire-

cracker snapshot microVMs further reduces unloaded cold

start latency as it reduces sandbox creation and network

configuration latency on worker nodes.

Dirigent optimization breakdown.To understandwhich
aspects of Dirigent’s design contribute most to performance

benefits, we repeat the cold start throughput sweep exper-

iment with a modified version of Dirigent that persists all

state in Table 3, including sandbox state. Persisting sandbox

state in the control plane introduces a write to persistent

storage on the critical path for cold starts, which decreases

Dirigent’s peak cold start throughput to 1000 cold starts per

second, and p99 latency surges at 500 cold starts per second.

This confirms that avoiding persistent state updates on the

critical path of cold start requests is a performance-critical

10



100 101 102 103 104

Warm starts per second

0

10

20

30

40

50

En
d-

to
-e

nd
 la

te
nc

y 
[m

s]

Knative - p50
Knative - p99
Dirigent - p50

Dirigent - p99
OpenWhisk - p50
OpenWhisk - p99

Figure 8. Warm start performance.

design decision. In §5.4 we will show this design decision

does not degrade failure recovery times, as Dirigent can still

reconstruct sandbox state efficiently from worker nodes in

case of control plane failures. We also confirm that simply

fusing K8s components (which avoids RPCs between con-

trollers) is not sufficient to eliminate performance issues in

K8s-based cluster managers. We deploy Knative on top of

K3s [19], which is a monolithic implementation of K8s within

a single process. We observe only marginally higher peak

cold start throughput than Knative on K8s, indicating that

the state management and state persistence design decisions

are muchmore performance-critical than the monolithic con-

trol plane. However, Dirigent’s monolithic control plane is

still useful as it simplifies the system design and deployment.

Finally, reducing the volume of state that Dirigent manages

is also a performance-critical design decision since it avoids

saturating the CPU with data structure serialization tasks,

which we saw in §2.2 limit the scheduling throughput of K8s.

5.2.2 Warm Start Performance. To stress-test the clus-

ter manager data plane, we now consider only warm starts,

i.e., invocations for which a sandbox is already available

in the cluster and the control plane is not on the critical

path. Figure 8 shows the p50 and p99 end-to-end latency

as we sweep warm start throughput. Dirigent can sustain

4000 warm invocations per second with a p50 latency of

1.4 ms and a p99 latency of 2.5 ms. The components that

contribute to the warm start latency are the front-end load

balancer, proxy service, request throttler on data plane nodes,

and iptables NAT on worker nodes. At the peak warm start

throughput, Dirigent cannot accept any new requests since

the machine runs out of ports. In contrast, Knative achieves

a peak throughput of only 1200 warm starts per second with

a p50 latency of 7 ms, as the activator and queue-proxy com-

ponents in Knative add delays. OpenWhisk’s high latency

originates from its architecture, where Apache Kafka [3] and

CouchDB [2] are on each request’s critical path [48].

5.2.3 Scalability. We explore how cold start throughput

scales as we increase the number of worker nodes in the clus-

ter. Knative claims to support clusters of up to 5K nodes [28].

Since we do not have access to thousands of nodes, we run

multiple worker daemons per machine on our 100-node clus-

ter. Each worker daemon sends heartbeats to the control

plane and sleeps for 40 ms upon receiving a sandbox creation

request, which corresponds to the p50 Firecracker microVM

creation time from snapshots. We find Dirigent latency and

peak throughput match the results in Figure 7 when cold

starts are distributed across up to 2500 worker nodes. With

more worker nodes, throughput starts to degrade (e.g., with

5000 workers, Dirigent supports up to 2000 cold starts per

second) due to contention on shared data structures for mon-

itoring sandbox health in response to heartbeats.

While we have so far shown the scalability of a single Diri-

gent cluster, Dirigent can further scale by dividing big clus-

ters into smaller sub-clusters, analogous to Borg cells [88].

In such a deployment, each sub-cluster runs its own con-

trol and data plane components, while a front-end sharding

system [37, 61] steers invocations to sub-clusters.

5.2.4 FunctionRegistrationPerformance. Before a user
can invoke a function, they must first register the function.

Although registration is only done once per function, fast

registration is important for quickly deploying applications

with many functions. In AWS Lambda, we observe register-

ing 500 functions can take hours. Knative takes roughly 18

minutes, whereas Dirigent takes 1 second. In Knative, it takes

∼770 ms to register a single function in an empty cluster, but

this latency grows the more functions there are in the sys-

tem. This is because Knative ascribes multiple abstractions to

each function on registration (e.g., routes, revisions, services)

and synchronizes ingress controllers. In contrast, register-

ing a function in Dirigent takes 2 ms on average, as it only

involves persisting function specification into the database

and propagating metadata to data plane components.

5.3 End-to-End Performance on Azure Trace
We now measure end-to-end performance on a FaaS produc-

tion workload trace from Microsoft Azure [75] that contains

70K functions invoked over two weeks. We use InVitro [84]

to obtain a representative trace sample that can run on our

100-node cluster. We extract a 30-minute time window start-

ing in the middle of the trace (8th hour of day 6) and sample

500 functions trace with 168K invocations. We also test Diri-

gent with a larger trace containing 4K functions and 3.33M

invocations. Functions execute the SQRTSD x86 instruction

for a number of iterations derived from the function execu-

tion time distribution in the trace. We run experiments for

30 minutes and discard the first 10 minutes as a warm-up.

We measure scheduling latency and per-function slow-

down. Slowdown is the end-to-end latency of the invocation

in the FaaS cluster divided by the function’s execution time

on a dedicated worker node with no cluster scheduling over-

head. Since the execution times of different functions in the

trace can vary by orders of magnitude, we group by function

and report the geometric mean slowdown per function. We

11



100 101 102 103 104 105

Per-function slowdown

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Knative
AWS Lambda
Dirigent - containerd
Dirigent - Firecracker

Figure 9. Per-function slowdown CDF for Azure 500 trace.

also evaluate resource efficiency by measuring cluster CPU

and memory usage. Since OpenWhisk performance is worse

than Knative for both cold and warm starts in §5.2, we do

not include it here, but we compare to AWS Lambda.

Function latency analysis. Figure 9 shows Dirigent sig-
nificantly reduces per-function slowdown compared to state-

of-the-art systems. While the median function slowdown is

1.87 in AWS Lambda and 13.2 in Knative, it is only 1.38 with

Dirigent. Dirigent especially reduces scheduling overheads

at the tail, i.e., reduces p99 function slowdown by 6.89× com-

pared to AWS Lambda and by over three orders of magnitude

compared to Knative. While slowdown quantifies the impact

the cluster manager has on end-to-end latency (which also

depends on the function’s execution time), Figure 10 shows

the raw scheduling latency CDFs for the same experiment,

both per-invocation and per-function average scheduling

latency. Note the log scale. Dirigent reduces the median and

p99 per-function scheduling delay by 3.07× and 2.79× com-

pared to AWS Lambda, respectively. Dirigent reduces the p99

per-function scheduling delay by 403× compared to Knative.

The functions that experience the highest slowdown in

Dirigent are those with the shortest execution time (i.e.,

below 10 ms) as these functions are the most sensitive to

scheduling overheads and sandbox creation delays. Mean-

while, the functions with the highest slowdown in Knative

and AWS Lambda experiments are predominantly functions

whose individual invocations are greatly spread out over

time but occur during times in the trace when the cluster ex-

periences the most cold starts. We find some functions in the

trace are repeatedly invoked in unison (due to timer-based

invocation triggers [75]) with long periods, resulting in large

cold start bursts in the cluster. These bursts lead to high

scheduling latency in AWS Lambda and Knative, whereas

Dirigent handles much higher cold start throughput. For the

Azure 500 function trace experiment, Knative’s median per-

invocation scheduling latency is 4.67 ms and 59.59 s at the

99th percentile. In contrast, Dirigent’s median scheduling

latency is 1.74 ms and 1.13 s at the 99th percentile. Dirigent

with Firecracker has a bit longer per-function slowdown tail

as some functions are never invoked during the warm-up

period and depend on the disk for snapshot restoration.

100 101 102 103 104 105 106

Per-invocation scheduling
latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Dirigent
Knative
AWS λ

100 101 102 103 104 105 106

Average per-function
scheduling latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Dirigent
Knative
AWS λ

Figure 10. Scheduling latency for Azure 500 function trace.

Sandbox creation count. Dirigent creates fewer sand-
boxes throughout the experiment even though it uses the

same autoscaling algorithm and metrics as Knative. During

the experiment, Knative spawned 2930 sandboxes, whereas

Dirigent created only 713 sandboxes for the same workload

trace. To understand this discrepancy, we need to delve into

the functioning of the Knative autoscaling algorithm. Kna-

tive’s autoscaler monitors the number of inflight requests,

which includes both those actively being processed within

pods and those queued. The desired number of pods is di-

rectly proportional to the inflight request count. Intuitively,

when a queue forms, the autoscaler initiates new pod cre-

ations proportionally to the queue length. However, due to a

lengthy scale-up delay within Knative, the queue continues

to grow during the scale-up process, prompting the creation

of even more pods. In contrast, Dirigent exhibits a more

responsive behavior. When a queue starts to form, the Kna-

tive autoscaling algorithm starts creating pods, and Dirigent

promptly scales the number of ready pods to the desired state

of the autoscaler, leading to a near-immediate depletion of

the queue. This swift response translates to a significantly

reduced number of pods being provisioned overall.

Resource utilization.We observe Dirigent control plane

node only uses 3% of CPU cycles on average, whereas in Kna-

tive, the CPU is consistently above 75% utilized struggling to

handle cold start bursts. Dirigent provides higher scheduling

performance while consuming fewer CPU resources for the

control plane than Knative. Memory on worker nodes in

Knative and Dirigent is utilized 4.62% and 3.1%, respectively.

Larger trace. While the sampled Azure trace with 500

functions is the biggest trace we can run with Knative be-

fore we start observing high invocation failure rates due to

timeouts, this trace can not saturate the same hardware clus-

ter orchestrated by Dirigent. Hence, we run a larger Azure

trace sample with 4000 functions and 3.33M invocations. We

compare Dirigent to AWS Lambda. With this trace, Dirigent

utilizes 70% of CPU resources on worker nodes and achieves

p50 and p99 slowdowns of 2.14 and 15.4, respectively. On

the other hand, AWS Lambda’s p50 and p99 slowdowns are

70 and 11631, respectively. Finally, Dirigent experiences a

12



598 600 602 604 606 608
Time [s]

100

101

102

103

Pe
r-i

nv
oc

at
io

n
Sl

ow
do

wn

Knative
Dirigent

Figure 11. Control plane fault tolerance. The vertical red
line shows when the failure occurs.

negligible invocation failure rate, while in the AWS Lambda,

33% of invocations experience timeout.

5.4 Fault Tolerance
We now analyze the impact of component failures. We mea-

sure average function invocation slowdown over time for

the Azure 500-function workload, while triggering failures.

Control plane failure. Figure 11, shows how the slow-

down of function invocations varies over time before and af-

ter we fail the control plane leader for Dirigent and Knative. A

control plane failure impacts performance by adding a queu-

ing delay for cold starts. Such invocations remain buffered in

the data plane until the control plane becomes operational to

schedule a sandbox creation or until a busy sandbox related

to that function on some worker node becomes idle. Dirigent

achieves a lower per-invocation slowdown for invocations

issued at the moment of failure and stabilizes the slowdown

quicker than Knative. The performance improvements of

Dirigent stem from the fast control plane recovery mecha-

nism that takes 10ms to detect a control plane leader failure,

elect a new leader, retrieve recovery-relevant information

from the DB, and synchronize data planes. In Knative, it can

take several seconds until each control plane microservice

recovers and the control plane starts serving new requests.

Data plane failure.When a data plane fails, all inflight

requests associated with that data plane also fail, as clients’

connections are terminated. We fail one data plane replica

and monitor the invocation failure rate. In Dirigent, we ob-

serve it takes 2s for the invocation failure rate to stabilize at

zero after a data plane failure. The recovery time includes fail-

ure detection, restarting the systemd service, re-connecting

with the control plane, synchronizing data plane caches, re-

configuring the front-end load balancer, and depleting the

load balancer queue. In Knative, whose data plane is not a

monolith as in Dirigent, we measured it took 15s for the data

plane to recover. We observe Istio Ingress Gateway domi-

nates the recovery time, as the slowest component to restart.

Worker daemon failure.When the worker daemon on a

node fails, the worker can no longer respond to any control

plane commands, including starting or tearing down sand-

boxes. This leads to a higher slowdown on cold invocations,

while warm invocations remain affected. We failed 47 out

of 93 worker daemons in the cluster while monitoring the

slowdown of functions invoked during worker downtime.

Dirigent achieves a peak per-invocation slowdown of 2.7,

which is 10× lower than Knative, as Dirigent can efficiently

create new sandboxes on non-affected nodes and because it

has shorter worker daemon recovery time.

Concurrent component failures. Dirigent remains op-

erational as long as one control plane replica is elected as

a leader and at least one data plane is operational. In case

of concurrent component failures, the recovery time will be

dominated by the slowest component to recover, as compo-

nents can recover in parallel.

6 Future Directions
By enabling orders of magnitude higher sandbox creation

throughput compared to existing platforms, Dirigent pro-

vides a foundation for future FaaS system research. We are

currently exploring how Dirigent’s design generalizes to

scheduling function workflows by extending Dirigent data

plane components to serve as workflow orchestrators. We

also aim to explore the performance trade-offs related to

providing stricter request-level fault tolerance guarantees,

such as at-least-once or exactly-once [54, 59, 70, 77, 92], and

quantifying their cost at scale. We plan to integrate addi-

tional sandbox runtimes [60] and scheduling policies. An-

other future direction involves exploring caching techniques

for sandbox images and snapshots at scale [41].

7 Conclusion
Dirigent is a new customized cluster manager for server-

less. In contrast to the state-of-the-art approach of building

FaaS cluster managers on top of legacy cluster managers

like Kubernetes, Dirigent presents a clean-slate system ar-

chitecture, simple abstractions, and lightweight persistence

for state management to eliminate the performance bottle-

necks of K8s-based cluster managers in high-churn FaaS

environments. We show that Dirigent can schedule 2500

sandboxes per second at low latency, which is 1250× more

than Knative. Dirigent achieves 6.89× lower 99th percentile

per-function slowdown and 403× lower 99th percentile per-

function scheduling latency compared to Knative on a pro-

duction Azure trace while maintaining 25× lower control

plane CPU utilization on average. Dirigent also improves re-

covery times from component failures compared to Knative.

Acknowledgments
We thank Rodrigo Fonseca, Lalith Suresh, Timothy Roscoe,

MichaelWawrzoniak, Patrick Stuedi, andMalte Schwarzkopf

for their valuable feedback. We also thank our anonymous

shepherd and reviewers for their helpful comments and sug-

gestions. Thank you to Luka Simić and the anonymous arti-

fact evaluators for verifying our experiment results.

13



References
[1] Available at https://github.com/apache/openwhisk/issues/5449.
[2] Apache CouchDB. Available at https://couchdb.apache.org/.
[3] Apache Kafka. Available at https://kafka.apache.org/.
[4] Apache OpenWhisk. Available at https://openwhisk.apache.org/.
[5] AWS Lambda. Available at https://aws.amazon.com/lambda/.
[6] AWS Lambda Invocation-Level Guarantees. Available at https://docs.

aws.amazon.com/lambda/latest/dg/invocation-retries.html.
[7] Azure Functions Invocation-Level Guarantees. Available at

https://learn.microsoft.com/en-us/azure/azure-functions/functions-
bindings-error-pages.

[8] Cloud Native Computing Foundation Survey – 2020. Available

at https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_
Report_2020.pdf.

[9] Cloud Run for Anthos. Available at https://cloud.google.com/anthos/
run.

[10] Cloudlab. Available at https://www.cloudlab.us/.
[11] containerd. Available at https://containerd.io/.
[12] Envoy Proxy – xDS REST and gRPC protocol. Available at https:

//www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol#xds-
protocol-eventual-consistency-considerations.

[13] etcd. Available at https://etcd.io/.
[14] faasd - a lightweight & portable faas engine. Available at https://github.

com/openfaas/faasd.
[15] Fission. Available at https://github.com/fission/fission.
[16] Google Cloud Functions Invocation-Level Guarantees. Available at

https://cloud.google.com/functions/docs/bestpractices/retries.
[17] Haproxy. Available at https://www.haproxy.com/.
[18] Istio considerations for large clusters. Available at https://www.istio.

io/.
[19] K3s - lightweight kubernetes. Available at https://k3s.io/.
[20] keepalived. Available at https://www.keepalived.org/.
[21] Knative. Available at https://knative.dev/.
[22] Knative autoscaling. Available at https://knative.dev/docs/serving/

autoscaling/.
[23] Knative load-balancing. Available at https://knative.dev/docs/serving/

load-balancing/.
[24] Kubeless. Available at https://kubeless.io/.
[25] Kubernetes. Available at https://kubernetes.io/.
[26] Kubernetes – API Overview. Available at https://kubernetes.io/docs/

reference/generated/kubernetes-api/.
[27] Kubernetes – horizontal pod autoscaler. Available at

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/.

[28] Kubernetes considerations for large clusters. Available at https://www.
kubernetes.io/docs/setup/best-practices/cluster-large/.

[29] Kubernetes placement. Available at https://kubernetes.io/docs/
concepts/scheduling-eviction/kube-scheduler/.

[30] OpenFaaS. Available at https://www.openfaas.com/.
[31] Openstack. Available at https://www.openstack.org/.
[32] OpenWhisk Documentation. Available at https://openwhisk.apache.

org/documentation.html.
[33] OpenWhisk Invocation-Level Guarantees. Available at https://github.

com/apache/openwhisk/issues/5449.
[34] Redis. Available at https://redis.io/.
[35] Understanding AWS Lambda’s invoke throttling limits. Avail-

able at https://aws.amazon.com/blogs/compute/understanding-aws-
lambdas-invoke-throttle-limits/.

[36] Abdi, M., Ginzburg, S., Lin, X. C., Faleiro, J., Chaudhry, G. I., Goiri,

I., Bianchini, R., Berger, D. S., and Fonseca, R. Palette load balancing:

Locality hints for serverless functions. In Proceedings of the Eighteenth
European Conference on Computer Systems (New York, NY, USA, 2023),

EuroSys ’23, Association for Computing Machinery, p. 365–380.

[37] Adya, A., Myers, D., Howell, J., Elson, J., Meek, C., Khemani, V.,

Fulger, S., Gu, P., Bhuvanagiri, L., Hunter, J., Peon, R., Kai, L.,

Shraer, A., Merchant, A., and Lev-Ari, K. Slicer: Auto-sharding

for datacenter applications. In 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016 (2016), K. Keeton and T. Roscoe, Eds., USENIX

Association, pp. 739–753.

[38] Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R.,

Piwonka, P., and Popa, D.-M. Firecracker: Lightweight Virtualization

for Serverless Applications. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20) (2020), pp. 419–434.

[39] AWS Lambda. Developing for retries and failures. Available

at https://docs.aws.amazon.com/lambda/latest/operatorguide/retries-
failures.html.

[40] Boutin, E., Ekanayake, J., Lin, W., Shi, B., Zhou, J., Qian, Z., Wu,

M., and Zhou, L. Apollo: Scalable and coordinated scheduling for

Cloud-Scale computing. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14) (2014).

[41] Brooker, M., Danilov, M., Greenwood, C., and Piwonka, P. On-

demand container loading in AWS lambda. In 2023 USENIX An-
nual Technical Conference (USENIX ATC 23) (Boston, MA, July 2023),

USENIX Association, pp. 315–328.

[42] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and Wilkes, J.

Borg, Omega, and Kubernetes: Lessons learned from three container-

management systems over a decade. Queue 14, 1 (jan 2016), 70–93.

[43] Clements, A. T., Kaashoek, M. F., Zeldovich, N., Morris, R. T.,

and Kohler, E. The scalable commutativity rule: designing scalable

software for multicore processors. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (New York, NY, USA,

2013), SOSP ’13, Association for Computing Machinery, p. 1–17.

[44] Delimitrou, C., and Kozyrakis, C. Paragon: Qos-aware scheduling

for heterogeneous datacenters. In Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (2013), ASPLOS ’13.

[45] Delimitrou, C., and Kozyrakis, C. Quasar: Resource-efficient and

qos-aware cluster management. SIGPLANNot. 49, 4 (feb 2014), 127–144.
[46] Delimitrou, C., Sanchez, D., and Kozyrakis, C. Tarcil: Reconciling

scheduling speed and quality in large shared clusters. In Proceedings
of the Sixth ACM Symposium on Cloud Computing (2015), SoCC ’15.

[47] Du, D., Yu, T., Xia, Y., Zang, B., Yan, G., Qin, C., Wu, Q., and Chen,

H. Catalyzer: Sub-millisecond Startup for Serverless Computing with

Initialization-less Booting. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (2020), pp. 467–481.

[48] Fuerst, A., Rehman, A., and Sharma, P. Ilúvatar: A fast control plane

for serverless computing. In Proceedings of the 32nd International
Symposium on High-Performance Parallel and Distributed Computing
(2023), HPDC ’23, p. 267–280.

[49] Fuerst, A., and Sharma, P. Faascache: keeping serverless computing

alive with greedy-dual caching. In ASPLOS ’21: 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Virtual Event, USA, April 19-23, 2021 (2021),
T. Sherwood, E. D. Berger, and C. Kozyrakis, Eds., ACM, pp. 386–400.

[50] Fuerst, A., and Sharma, P. Locality-aware load-balancing for server-

less clusters. In Proceedings of the 31st International Symposium onHigh-
Performance Parallel and Distributed Computing (New York, NY, USA,

2022), HPDC ’22, Association for Computing Machinery, p. 227–239.

[51] Gog, I., Schwarzkopf, M., Gleave, A., Watson, R. N. M., and Hand,

S. Firmament: Fast, centralized cluster scheduling at scale. In 12th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016 (2016), K. Keeton
and T. Roscoe, Eds., USENIX Association, pp. 99–115.

[52] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D.,

Katz, R. H., Shenker, S., and Stoica, I. Mesos: A platform for fine-

grained resource sharing in the data center. In Proceedings of the 8th
USENIX Symposium on Networked Systems Design and Implementation,

14

https://github.com/apache/openwhisk/issues/5449
https://couchdb.apache.org/
https://kafka.apache.org/
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://cloud.google.com/anthos/run
https://cloud.google.com/anthos/run
https://www.cloudlab.us/
https://containerd.io/
https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol#xds-protocol-eventual-consistency-considerations
https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol#xds-protocol-eventual-consistency-considerations
https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol#xds-protocol-eventual-consistency-considerations
https://etcd.io/
https://github.com/openfaas/faasd
https://github.com/openfaas/faasd
https://github.com/fission/fission
https://cloud.google.com/functions/docs/bestpractices/retries
https://www.haproxy.com/
https://www.istio.io/
https://www.istio.io/
https://k3s.io/
https://www.keepalived.org/
https://knative.dev/
https://knative.dev/docs/serving/autoscaling/
https://knative.dev/docs/serving/autoscaling/
https://knative.dev/docs/serving/load-balancing/
https://knative.dev/docs/serving/load-balancing/
https://kubeless.io/
https://kubernetes.io/
https://kubernetes.io/docs/reference/generated/kubernetes-api/
https://kubernetes.io/docs/reference/generated/kubernetes-api/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://www.kubernetes.io/docs/setup/best-practices/cluster-large/
https://www.kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://www.openfaas.com/
https://www.openstack.org/
https://openwhisk.apache.org/documentation.html
https://openwhisk.apache.org/documentation.html
https://github.com/apache/openwhisk/issues/5449
https://github.com/apache/openwhisk/issues/5449
https://redis.io/
https://aws.amazon.com/blogs/compute/understanding-aws-lambdas-invoke-throttle-limits/
https://aws.amazon.com/blogs/compute/understanding-aws-lambdas-invoke-throttle-limits/
https://docs.aws.amazon.com/lambda/latest/operatorguide/retries-failures.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/retries-failures.html


NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011 (2011), D. G.

Andersen and S. Ratnasamy, Eds., USENIX Association.

[53] Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., and

Goldberg, A. Quincy: Fair scheduling for distributed computing clus-

ters. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles (2009), SOSP ’09.

[54] Jia, Z., and Witchel, E. Boki: Stateful serverless computing with

shared logs. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (New York, NY, USA, 2021), SOSP ’21,

Association for Computing Machinery, p. 691–707.

[55] Joosen, A., Hassan, A., Asenov, M., Singh, R., Darlow, L. N., Wang,

J., and Barker, A. How does it function?: Characterizing long-term

trends in production serverless workloads. In Proceedings of the 2023
ACM Symposium on Cloud Computing, SoCC 2023, Santa Cruz, CA, USA,
30 October 2023 - 1 November 2023 (2023), ACM, pp. 443–458.

[56] Kaffes, K., Yadwadkar, N. J., and Kozyrakis, C. Hermod: principled

and practical scheduling for serverless functions. In Proceedings of
the 13th Symposium on Cloud Computing (New York, NY, USA, 2022),

SoCC ’22, Association for Computing Machinery, p. 289–305.

[57] Karanasos, K., Rao, S., Curino, C., Douglas, C., Chaliparambil, K.,

Fumarola, G. M., Heddaya, S., Ramakrishnan, R., and Sakalanaga,

S. Mercury: Hybrid centralized and distributed scheduling in large

shared clusters. In 2015 USENIX Annual Technical Conference (USENIX
ATC 15) (2015).

[58] Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J., and

Kozyrakis, C. Pocket: Elastic ephemeral storage for serverless ana-

lytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18) (Carlsbad, CA, Oct. 2018), USENIX Associa-

tion, pp. 427–444.

[59] Kraft, P., Li, Q., Kaffes, K., Skiadopoulos, A., Kumar, D., Cho, D.,

Li, J., Redmond, R., Weckwerth, N., Xia, B., Bailis, P., Cafarella,

M., Graefe, G., Kepner, J., Kozyrakis, C., Stonebraker, M., Suresh,

L., Yu, X., and Zaharia, M. Apiary: A dbms-integrated transactional

function-as-a-service framework, 2023.

[60] Kuchler, T., Giardino, M., Roscoe, T., and Klimovic, A. Function

as a function. In Proceedings of the 2023 ACM Symposium on Cloud
Computing (New York, NY, USA, 2023), SoCC ’23, Association for

Computing Machinery, p. 81–92.

[61] Lee, S., Guo, Z., Sunercan, O., Ying, J., Kooburat, T., Biswal, S., Chen,

J., Huang, K., Cheung, Y., Zhou, Y., Veeraraghavan, K., Damani, B.,

Ruiz, P. M., Mehta, V., and Tang, C. Shard manager: A generic shard

management framework for geo-distributed applications. In SOSP ’21:
ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021 (2021), R. van Renesse

and N. Zeldovich, Eds., ACM, pp. 553–569.

[62] Liu, Q., Du, D., Xia, Y., Zhang, P., and Chen, H. The gap between

serverless research and real-world systems. In Proceedings of the 2023
ACM Symposium on Cloud Computing, SoCC 2023, Santa Cruz, CA, USA,
30 October 2023 - 1 November 2023 (2023), ACM, pp. 475–485.

[63] Microsoft Azure. Azure functions error handling and retries.

Available at https://learn.microsoft.com/en-us/azure/azure-functions/
functions-bindings-error-pages.

[64] Microsoft Azure. Azure functions reliable event processing.

Available at https://learn.microsoft.com/en-us/azure/azure-functions/
functions-reliable-event-processing.

[65] Mittal, V., Qi, S., Bhattacharya, R., Lyu, X., Li, J., Kulkarni, S. G., Li,

D., Hwang, J., Ramakrishnan, K. K., and Wood, T. Mu: An efficient,

fair and responsive serverless framework for resource-constrained

edge clouds. In Proceedings of the ACM Symposium on Cloud Computing
(New York, NY, USA, 2021), SoCC ’21, Association for Computing

Machinery, p. 168–181.

[66] Mohan, A., Sane, H., Doshi, K., Edupuganti, S., Nayak, N., and

Sukhomlinov, V. Agile cold starts for scalable serverless. In 11th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19)
(Renton, WA, July 2019), USENIX Association.

[67] Oakes, E., Yang, L., Zhou, D., Houck, K., Harter, T., Arpaci-Dusseau,

A. C., andArpaci-Dusseau, R. H. SOCK: Rapid Task Provisioningwith

Serverless-Optimized Containers. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18) (2018), pp. 57–70.

[68] Ongaro, D., and Ousterhout, J. In search of an understandable

consensus algorithm. In 2014 USENIX Annual Technical Confer-
ence (USENIX ATC 14) (Philadelphia, PA, 2014), USENIX Association,

pp. 305–319.

[69] Ousterhout, K., Wendell, P., Zaharia, M., and Stoica, I. Sparrow:

distributed, low latency scheduling. InACMSIGOPS 24th Symposium on
Operating Systems Principles, SOSP ’13, Farmington, PA, USA, November
3-6, 2013 (2013), M. Kaminsky and M. Dahlin, Eds., ACM, pp. 69–84.

[70] Qi, S., Liu, X., and Jin, X. Halfmoon: Log-optimal fault-tolerant

stateful serverless computing. In Proceedings of the 29th Symposium
on Operating Systems Principles (New York, NY, USA, 2023), SOSP ’23,

Association for Computing Machinery, p. 314–330.

[71] Rasley, J., Karanasos, K., Kandula, S., Fonseca, R., Vojnovic, M.,

and Rao, S. Efficient queue management for cluster scheduling. In

Proceedings of the Eleventh European Conference on Computer Systems
(2016), EuroSys ’16.

[72] Roy, R. B., Patel, T., and Tiwari, D. IceBreaker: warming serverless

functions better with heterogeneity. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (2022), pp. 753–767.

[73] Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J.,

Yadwadkar, N. J., Popa, R. A., Gonzalez, J. E., Stoica, I., and Pat-

terson, D. A. What serverless computing is and should become: the

next phase of cloud computing. Commun. ACM 64, 5 (apr 2021), 76–84.
[74] Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., and Wilkes,

J. Omega: flexible, scalable schedulers for large compute clusters. In

SIGOPS European Conference on Computer Systems (EuroSys) (Prague,
Czech Republic, 2013), pp. 351–364.

[75] Shahrad, M., Fonseca, R., Goiri, I., Chaudhry, G., Batum, P., Cooke,

J., Laureano, E., Tresness, C., Russinovich, M., and Bianchini, R.

Serverless in the wild: Characterizing and optimizing the serverless

workload at a large cloud provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), USENIX Association, pp. 205–218.

[76] Singhvi, A., Balasubramanian, A., Houck, K., Shaikh, M. D.,

Venkataraman, S., and Akella, A. Atoll: A Scalable Low-Latency

Serverless Platform. In Proceedings of the ACM Symposium on Cloud
Computing (2021), pp. 138–152.

[77] Sreekanti, V., Wu, C., Chhatrapati, S., Gonzalez, J. E., Heller-

stein, J. M., and Faleiro, J. M. A fault-tolerance shim for serverless

computing, 2020.

[78] Sreekanti, V., Wu, C., Lin, X. C., Schleier-Smith, J., Gonzalez, J.,

Hellerstein, J. M., and Tumanov, A. Cloudburst: Stateful functions-

as-a-service. Proc. VLDB Endow. 13, 11 (2020), 2438–2452.
[79] Sun, X., Luo, W., Gu, J. T., Ganesan, A., Alagappan, R., Gasch, M.,

Suresh, L., and Xu, T. Automatic reliability testing for cluster man-

agement controllers. In 16th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 22) (Carlsbad, CA, July 2022),

USENIX Association, pp. 143–159.

[80] Sun, X., Ma, W., Gu, J. T., Ma, Z., Chajed, T., Howell, J., Lattuada,

A., Padon, O., Suresh, L., Szekeres, A., and Xu, T. Anvil: Verifying

liveness of cluster management controllers. In 18th USENIX Symposium
onOperating Systems Design and Implementation (OSDI 24) (Santa Clara,
CA, July 2024), USENIX Association, pp. 649–666.

[81] Suresh, L., Loff, J., Kalim, F., Jyothi, S. A., Narodytska, N., Ryzhyk,

L., Gamage, S., Oki, B., Jain, P., and Gasch, M. Building Scalable and

Flexible Cluster Managers Using Declarative Programming. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20) (2020), pp. 827–844.

[82] Tang, C., Yu, K., Veeraraghavan, K., Kaldor, J., Michelson, S.,

Kooburat, T., Anbudurai, A., Clark, M., Gogia, K., Cheng, L.,

15

https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://learn.microsoft.com/en-us/azure/azure-functions/functions-reliable-event-processing
https://learn.microsoft.com/en-us/azure/azure-functions/functions-reliable-event-processing


Christensen, B., Gartrell, A., Khutornenko, M., Kulkarni, S.,

Pawlowski, M., Pelkonen, T., Rodrigues, A., Tibrewal, R., Venkate-

san, V., and Zhang, P. Twine: A unified cluster management system

for shared infrastructure. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20) (2020).

[83] Thomas, S., Ao, L., Voelker, G.M., and Porter, G. Particle: ephemeral

endpoints for serverless networking. In SoCC ’20: ACM Symposium
on Cloud Computing, Virtual Event, USA, October 19-21, 2020 (2020),

R. Fonseca, C. Delimitrou, and B. C. Ooi, Eds., ACM, pp. 16–29.

[84] Ustiugov, D., Park, D., Cvetković, L., Djokic, M., Hè, H., Grot,

B., and Klimovic, A. Enabling in-vitro serverless systems research.

In Proceedings of the 4th Workshop on Resource Disaggregation and
Serverless (New York, NY, USA, 2023), WORDS ’23, Association for

Computing Machinery, p. 1–7.

[85] Ustiugov, D., Petrov, P., Kogias, M., Bugnion, E., and Grot, B.

Benchmarking, analysis, and optimization of serverless function snap-

shots. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (2021), pp. 559–572.

[86] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S.,

Konar, M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., Saha,

B., Curino, C., O’Malley, O., Radia, S., Reed, B. C., and Balde-

schwieler, E. Apache hadoop YARN: yet another resource negotiator.

In ACM Symposium on Cloud Computing, SOCC ’13, Santa Clara, CA,
USA, October 1-3, 2013 (2013), G. M. Lohman, Ed., ACM, pp. 5:1–5:16.

[87] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E.,

and Wilkes, J. Large-scale cluster management at google with borg.

In Proceedings of the Tenth European Conference on Computer Systems,
EuroSys 2015, Bordeaux, France, April 21-24, 2015 (2015), L. Réveillère,
T. Harris, and M. Herlihy, Eds., ACM, pp. 18:1–18:17.

[88] Verma, A., Pedrosa, L., Korupolu, M. R., Oppenheimer, D., Tune,

E., and Wilkes, J. Large-scale cluster management at Google with

Borg. In Proceedings of the European Conference on Computer Systems
(EuroSys) (2015).

[89] Wang, A., Chang, S., Tian, H., Wang, H., Yang, H., Li, H., Du, R.,

and Cheng, Y. FaaSNet: Scalable and Fast Provisioning of Custom

Serverless Container Runtimes at Alibaba Cloud Function Compute.

In 2021 USENIX Annual Technical Conference (USENIX ATC 21) (2021).
[90] Wanninger, N. C., Bowden, J. J., Shetty, K., Garg, A., andHale, K. C.

Isolating functions at the hardware limit with virtines. In Proceedings
of the Seventeenth European Conference on Computer Systems (2022),
EuroSys ’22.

[91] Young, E. G., Zhu, P., Caraza-Harter, T., Arpaci-Dusseau, A. C.,

and Arpaci-Dusseau, R. H. The True Cost of Containing: A gVisor

Case Study. In Proceedings of the 11th USENIX Conference on Hot Topics
in Cloud Computing (2019).

[92] Zhang, H., Cardoza, A., Chen, P. B., Angel, S., and Liu, V. Fault-

tolerant and transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20) (Nov. 2020), USENIX Association, pp. 1187–1204.

[93] Zhang, J., Jin, C., Huang, Y., Yi, L., Ding, Y., and Guo, F. KOLE:

breaking the scalability barrier for managing far edge nodes in cloud.

In Proceedings of the 13th Symposium on Cloud Computing (2022),

pp. 196–209.

16


	1 Introduction
	2 Background and Motivation
	2.1 FaaS Cluster Management Requirements
	2.2 The Kubernetes – FaaS Mismatch
	2.3 Related Work

	3 cmDesign Approach
	3.1 System Overview
	3.2 Design Principles
	3.3 Life of a Request
	3.4 Fault Tolerance

	4 Implementation and Limitations
	5 Evaluation
	5.1 Experimental Methodology
	5.2 Microbenchmarks
	5.3 End-to-End Performance on Azure Trace
	5.4 Fault Tolerance

	6 Future Directions
	7 Conclusion
	Acknowledgments
	References

