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Abstract
PCIe-based Flash is commonly deployed to provide data-
center applications with high IO rates. However, its capa-
city and bandwidth are often underutilized as it is difficult
to design servers with the right balance of CPU, memory
and Flash resources over time and for multiple applications.
This work examines Flash disaggregation as a way to deal
with Flash overprovisioning. We tune remote access to Flash
over commodity networks and analyze its impact on work-
loads sampled from real datacenter applications. We show
that, while remote Flash access introduces a 20% through-
put drop at the application level, disaggregation allows us
to make up for these overheads through resource-efficient
scale-out. Hence, we show that Flash disaggregation allows
scaling CPU and Flash resources independently in a cost
effective manner. We use our analysis to draw conclusions
about data and control plane issues in remote storage.

Categories and Subject Descriptors H.3.4 [Systems and
Software]: Performance Evaluation

General Terms Performance, Measurement

Keywords Network storage, Flash, Datacenter

1. Introduction
Flash is increasingly popular in datacenters of all scales as it
provides high throughput, low latency, non-volatile storage.
Specifically, PCIe-based Flash devices offer 100,000s of IO
operations per second (IOPS) and latencies in the 10s of µs
range [17, 20]. Such devices are commonly used to support
persistent, key-value stores (KVS) with high throughput re-
quirements. At Facebook, for example, many applications
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Figure 1: Sample resource utilization on servers hosting a Flash-
based key-value store service at Facebook, normalized over a 6
month period. Flash and CPU utilization vary over time and scale
according to separate trends.

that generate web-page content use PCIe Flash. Similarly,
LinkedIn reports using PCIe SSDs to scale its distributed
key-value database, Project Voldemort [45], to process over
120 billion relationships per day [28].

Designing server machines with the right balance of
CPU, memory, and Flash is difficult because each applica-
tion has unique and often dynamically varying requirements
for each resource [9]. Figure 1 shows the Flash capacity,
Flash read throughput, and CPU utilization on a set of serv-
ers hosting a real Facebook application that uses Flash for its
key-value store. Each metric is normalized to its maximum
value over a 6 month period. Flash capacity, Flash through-
put, and CPU utilization vary over time and follow separate
trends. For example, mid April to May, Flash capacity util-
ization increases while Flash read throughput decreases and
CPU utilization oscillates. Resource utilization studies of
the Microsoft Azure cloud computing platform and a large



private cloud at Google have also shown that storage capa-
city and IO rates are not necessarily correlated [46, 68].

The lack of balance leads to deploying machines with sig-
nificantly overprovisioned resources, which can increase the
total cost of ownership [25]. In Figure 1, Flash capacity,
IOPS, and compute resources are under-utilized for long
periods of time. Overprovisioning IOPS is particularly com-
mon when deploying PCIe Flash in datacenters because vari-
ous software overheads, referred to as “datacenter tax” by
Kanev et al. [39], often cause storage tier services to saturate
CPU cores before saturating PCIe Flash IOPS. In general,
the performance of PCIe-based Flash is so high that utiliz-
ing the resource effectively is a challenge [15]. Baidu repor-
ted their storage system’s realized IO bandwidth was only
50% of their Flash hardware’s raw bandwidth [56]. Sim-
ilarly, Flash capacity is often underutilized as servers are
deployed with enough Flash to satisfy projected future de-
mands. Deploying high-capacity Flash devices provides on-
demand flexibility as application requirements vary or spike.
High-capacity devices also better amortize the cost of the
Flash controller.

Resource disaggregation has been proposed to deal with
the challenge of imbalanced resource requirements and the
resulting overprovisioning of datacenter resources [26]. By
physically decoupling resources, datacenter operators can
more easily customize their infrastructure to maximize the
performance-per-dollar for target workloads. This approach
is already common for disk storage [18]. Network overheads
are small compared to a disk’s millisecond access latency
and low 100s of IOPS, so it is common for applications to
remotely access disks deployed in other machines.

In this paper, we analyze a similar approach of disaggreg-
ating Flash from CPU and memory in servers hosting data-
store applications. We use the term “disaggregated Flash”
(or remote Flash) to refer to Flash that is accessed over a
high-bandwidth network, as opposed to Flash accessed loc-
ally over a PCIe link. Remote Flash accesses can be served
by a high-capacity Flash array on a machine dedicated to
serving storage requests over the network. Alternatively, we
can enable remote access to Flash on a nearby server, which
itself runs Flash-based applications, but has spare Flash ca-
pacity and IOPS that can be shared over the network. With
either approach, disaggregation can span racks, rows, or the
whole datacenter.

We show that disaggregating Flash can lead to signi-
ficant resource utilization benefits (as high as 40%) by al-
lowing Flash resources to scale independently from com-
pute resources. However, remote access to Flash also intro-
duces performance overheads and requires deploying ex-
tra resources for network protocol processing. With this
performance-cost trade-off in mind, we answer the follow-
ing questions:

1. Can datacenter applications tolerate the performance
overhead of remote access to Flash with existing net-
work storage protocols? We show that key-value store
workloads sampled from real applications at Facebook
have acceptable end-to-end performance when accessing
remote Flash using the iSCSI network storage protocol
(Section 4.2). Remote versus local access to Flash in-
creases tail latency by 260µs, while our target applica-
tions have latency SLAs on the order of several milli-
seconds. Protocol processing overhead reduces the peak
number of queries processed per second by approxim-
ately 20% on average. Although this throughput degrada-
tion is not negligible, we show that disaggregation allows
us to compensate for this throughput loss by independ-
ently and efficiently scaling CPU and Flash resources.

2. How can we optimize the performance of a remote
Flash server? We find the following optimizations par-
ticularly useful for tuning the performance of a remote
Flash server: parallelizing protocol processing across
multiple threads, enabling jumbo frames and packet pro-
cessing offloads on the NIC, spreading interrupt affinity
across CPU cores and pinning protocol processes that
share TCP connection state to the same core. With these
optimizations a remote Flash server shared between 6
IO-intensive tenants can support over 1.5× more IOPS
than with an out-of-the-box setup (Section 3.3). For our
target applications, network and interrupt tuning improve
end-to-end throughput by 24% (Section 4.2).

3. When does disaggregating Flash lead to significant
resource utilization benefits? We compare server re-
source requirements for hosting applications with direct-
attached Flash and disaggregated Flash, showing that dis-
aggregation can lead to 40% resource savings at the same
throughput level (Section 4.3). Disaggregating Flash
is most beneficial when the ratio of compute to stor-
age requirements varies over time and/or differs widely
between applications.

We also discuss the implications of our study for future
work on remote Flash access (Section 5). We show that for
end-to-end application performance, the majority of iSCSI
overhead is masked by CPU overhead above the network
storage layer, which arises from computational intensity in
the datastore application and the generic RPC frameworks
used for inter-tier communication. We motivate the need
for a lower overhead dataplane for remote Flash access,
particularly for applications that issue more than 10,000s
of IOPS or have sub-millisecond latency SLAs. Moreover,
we briefly discuss implications for control plane resource
management at the cluster and storage node level.
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Figure 2: Target application architecture. Datastore tier servers host key-value store services on local or remote Flash.

2. Background
2.1 Flash-Backed, Key-Value Stores
Terabyte and even petabyte-scale key-value store (KVS) ser-
vices have become components of large-scale web applic-
ations. Examples of persistent key-value stores embedded
in datacenter applications include RocksDB, LevelDB, and
Project Voldemort [19, 21, 45]. These Flash-backed data-
stores commonly store various website user state such as
viewing history.

Tiered architecture: Our study targets datacenter applic-
ations with a multi-tier architecture shown in Figure 2a. Ap-
plications divide datasets into replicated partitions, spread
across multiple servers in the datastore tier. The application
tier issues requests to the datastore tier and may also inter-
face with a front-end web tier (not shown in the figure). Serv-
ers in the datastore tier host services with an embedded key-
value store and manage access to Flash storage. In Figure 2a,
the storage is local, direct-attached Flash. Our study looks
at the implications of the architecture shown in Figure 2b,
where datastore servers access Flash over the network on a
remote server in the Flash tier.

Compute intensity: Datastore services are often compute-
intensive, particularly when handling complex queries, com-
pactions or data integrity checks. Serialization and deserial-
ization further increase CPU utilization on datastore serv-
ers as they communicate with application tier clients using
generic frameworks like Thrift or Protocol Buffers [5, 23].
The CPU overhead associated with inter-tier communica-
tion, part of the “datacenter tax” characterized by Kanev et.
al [39], limits IO rates on datastore servers to only a fraction
of the capabilities of today’s PCIe Flash devices.

Use of Flash: Although our target applications do not
saturate the 100,000s of IOPS that PCIe Flash offers, the
workloads still issue high rates of small random reads which

could not be supported by disk (e.g., 10,000s IOPS of 4 kB
random reads). Other characteristics of the applications in-
clude high write throughput (e.g., 500 MB/s of sequential
writes) and round-trip latency SLAs on the order of 5 to
10 ms. Maximizing IOPS is more important than reducing
latency for these applications. PCIe Flash provides high
IOPS by using multiple channels to communicate with the
underlying NAND storage [50]. Multiple channels also help
eliminate the latency associated with requests queuing, an-
other important optimization.

RocksDB: Our study uses the RocksDB database [19],
since it is an example of a KVS deployed at Facebook
and embedded in the real applications we model. RocksDB
is not a distributed service, but rather a high-performance
single-node engine that stores keys and values (arbitrary byte
arrays) in a log-structured merge (LSM) tree. It builds on
LevelDB, scales to multiple cores, uses Flash efficiently,
and exposes parameters for application-specific performance
tuning. RocksDB does not provide failover or consistency
guarantees, but applications can build these features on top
of RocksDB, if required. Our target applications have weak
consistency requirements.

2.2 Remote Storage Protocols
There are many existing protocols and mechanisms that en-
able remote access to data. We outline protocol-level re-
quirements for remote access to Flash in the datacenter
and discuss how existing protocols align with these require-
ments, leading to our choice of protocol for this study.

Requirements: First, we require a protocol that provides
applications with the illusion of a local Flash device, ab-
stracting remote access and requiring minimal changes to
application code. Second, the protocol should run on com-
modity networking hardware. Protocols that leverage the ex-
isting Ethernet infrastructure in datacenters greatly simplify



and reduce the cost of deploying disaggregated Flash. Third,
the protocol should scale to a datacenter scale, enabling
datastore servers to access remote Flash across racks and
even clusters. Fourth, the protocol should have low perform-
ance overhead for our applications, supporting high IOPS
and low latency storage access.

Network file sharing protocols: Network File System
(NFS) [60] and Server Message Block (SMB) are examples
of protocols used in network attached storage (NAS) archi-
tectures. They provide a file abstraction to storage and man-
age consistency. NFS and SMB run on commodity Ether-
net but have limited scalability since clients access storage
through dedicated network file servers. Distributed file sys-
tems like HDFS [66] and the Google File System [22] scale
well but transfer data in large, megabyte-size chunks which
have high overhead for small key-value data accesses.

Block IO protocols: Block IO protocols are commonly
used in storage attached network (SAN) systems to give cli-
ents the illusion of local block storage. Internet Small Com-
puter System Interface (iSCSI) is a widely used protocol
that encapsulates SCSI commands into TCP packets, allow-
ing datacenter-wide communication over commodity Ether-
net networks. Fibre Channel Protocol (FCP) also transports
SCSI commands but requires a dedicated, costly Fibre Chan-
nel network. ATA over Ethernet (AoE) is a less mature pro-
tocol that transmits block IO requests over raw Ethernet.
Since the protocol does not run on top of IP, AoE avoids
TCP/IP overheads but the protocol is not routable, limiting
disaggregation to within a rack.

RDMA-based protocols: Remote Direct Memory Ac-
cess (RDMA) is a remote memory management capabil-
ity that allows server-to-server data movement between ap-
plication memory without involving the CPU. By offload-
ing remote access to the network card, RDMA eliminates
the need to copy data between user and kernel buffers. First
deployed in high-performance computers, RDMA has since
expanded into Ethernet networks [49]. However, RDMA
over Converged Ethernet still requires specialized (RDMA-
capable) NIC hardware and the protocol assumes a lossless
fabric, limiting scalability. RDMA has been used for initial
implementations of NVMe over Fabrics [12]. Non-Volatile
Memory Express (NVMe) is an optimized interface for high-
performance storage and the goal of NVMe over Fabrics is
the provide efficient access to local and remote stroage with
a transport-neutral specification [55].

PCIe-based Fabrics: PCI Express (PCIe) was originally
developed as a high-bandwidth point-to-point interconnect
between CPUs and peripherals. Recent PCIe switch designs
enable a unified PCIe backplane interconnect or “fabric”
that enables host-to-host communication and IO resource
sharing [6, 69]. Although high performance, PCIe remains
expensive and its complex tree architecture limits scalability.

For our study, we choose to use the iSCSI protocol1

since it is a widely deployed protocol that satisfies the
first three requirements outlined above: it provides a block
IO abstraction, runs on commodity Ethernet and supports
datacenter-wide communication. The fourth requirement—
performance—is a potential concern with iSCSI since the
protocol involves substantial processing and was originally
designed for remote disk, not Flash [37, 61]. In Section 3.3,
we show how we tune the performance of a remote Flash
server to keep iSCSI overhead low enough for our target
applications. The methodology we present in this paper for
evaluating the implications of remote Flash is applicable to
other storage protocols. By using a higher overhead protocol
in our study, we ensure our conclusions are conservative. We
performed some measurements with the SMB protocol and
found the performance overheads to be similar to iSCSI.

2.3 Related Work
Disaggregated storage: Disaggregation is a well-known ap-
proach for independently scaling resources [26]. Disaggreg-
ating disk storage from compute nodes is common because
network access does not introduce noticeable overhead for
disk, which is slow and low-throughput to begin with [2].
Thus, in cloud and enterprise environments, block storage is
commonly virtualized and backed by remote storage which
can be adjusted to meet application requirements [1, 72].
Systems such as Petal [40], Parallax [75], and Blizzard [51]
implement distributed virtual block stores for disk storage to
abstract the storage layer from clients while providing good
performance and features such as replication and failure re-
covery.

Disaggregating high-performance Flash is more challen-
ging since the network imposes a larger percentage over-
head. Our study differs from previous work on remote stor-
age by focusing on quantifying the remote access overhead
for high-performance PCIe Flash and understanding its end-
to-end impact for real datacenter applications. Contrary to
systems such as CORFU [7] and FAWN [3], which propose
using remote Flash arrays as a distributed shared log, we
analyze performance for remote Flash exposed as a tradi-
tional block device. The block interface is compatible with a
wide variety of applications and offers greater flexibility for
remote Flash use-cases compared to approaches that impose
distributed shared log semantics.

A lot of recent work on disaggregation focuses on the
rack scale [8, 14, 18, 30, 33, 63] whereas in our study,
disaggregation can span the datacenter.

Lim et al. [43, 44] apply disaggregation higher up the
memory hierarchy. They observe that memory footprints of
enterprise workloads vary across applications and over time
and show that adding disaggregated memory as second-tier

1 Although we evaluate the performance of our architecture for workloads
modeled based on Facebook applications, our choice of protocol for this
study is independent and does not reflect Facebook’s choice of protocol for
disaggregated Flash in its datacenters.



capacity can improve application performance. We similarly
observe that Flash utilization varies across datacenter work-
loads and over time. Our study of disaggregated Flash aims
to analyze the tradeoff between performance and resource
utilization.

Remote storage protocols: There is previous work on
iSCSI performance tuning [37, 47, 76] and comparisons
to other storage protocols [59] in the context of enterprise
workloads. Offloading fixed-cost functionality to hardware
using RDMA is an emerging theme [11, 12, 38, 49]. Our ap-
proach to optimizing remote Flash access is orthogonal and
focuses on tuning system settings such as interrupt and pro-
cess affinity, similar to techniques Leverich and Kozyrakis
use to reduce interference of latency critical workloads [42].

Workload-driven modeling: Other studies have ana-
lyzed the performance and cost implications of datacenter
storage architectures. For example, Uysal et al. analyzed re-
placing disks with MEMS [70], Narayanan et al. analyzed
replacing disks with SSDs [53]. To our knowledge, ours
is the first study to specifically examine this trade-off for
high-performance Flash hosting key-value store workloads
sampled from real datacenter applications.

3. Disaggregated Flash Architecture
We describe the disaggregated Flash architecture and pro-
tocol we evaluate in our study.

3.1 Architecture Overview
Figure 2a shows a common architecture used to host Flash-
backed, key-value services described in Section 2.1. The
deployment assumes that each datastore server “owns” a
Flash device, meaning applications hosted on the server have
exclusive access to the direct-attached Flash. We want to
change this constraint with disaggregation. By “disaggreg-
ating Flash”, we mean enabling remote access to Flash over
a high bandwidth network, with the goal of improving Flash
utilization. This involves exposing Flash, with spare capa-
city and IOPS, to applications hosted on servers which may
or may not be in the same rack.

We depict disaggregated Flash in Figure 2b, where Flash
is physically decoupled from the datastore tier. In this archi-
tecture, we have two types of servers: 1) datastore servers
in the datastore tier, which have powerful CPU cores and
memory used for hosting the datastore service, and 2) Flash
storage servers in the Flash tier, which have high-capacity
PCIe Flash arrays and high-bandwidth network ports along
with a limited amount of CPU cores and memory for net-
work processing in the remote block service layer. The two
types of servers can be deployed independently across the
datacenter to meet application requirements. Each applica-
tion is given as many servers of each kind as it needs. Each
Flash server can serve as many applications as its capacity
and IOPS capabilities allow. A Flash server can be a machine
used for other purposes, as long as it has some spare Flash

capacity and IOPS to share over the network and some spare
CPU for protocol processing. Alternatively, a Flash server
can be a high capacity server with multiple Flash devices,
dedicated to serving over-the-network storage requests. This
approach amortizes the cost of Flash controllers, decreas-
ing the cost per gigabyte. As applications demand more ca-
pacity or IOPS, we can incrementally deploy Flash servers
on demand, benefiting from new storage technology as it
becomes available and lower prices as the technology ma-
tures, without waiting for similar advancements in CPU and
memory technology.

Allocating capacity and IOPS on disaggregated Flash re-
quires a coordination manager. The manager is respons-
ible for binpacking applications into the available resources
across the datacenter, under numerous constrains such as
fault-tolerance. We focus on the dataplane for remote Flash,
since achieving sufficiently high performance in the data-
plane is a prerequisite. We discuss implications and future
work for the control plane in Section 5.2.

3.2 Remote Flash Access with iSCSI
The iSCSI protocol introduces several layers of software
overhead for IO operations. Applications issue read and
write system calls, which go through the kernel block
device layer to the SCSI subsystem, as if accessing a local
block device. The iSCSI protocol encapsulates SCSI storage
commands into iSCSI Protocol Data Units (PDUs) which
are transmitted over a TCP connection. The client (often
called an initiator) establishes a long-lived session with the
remote storage server (called the target) [61]. We describe
protocol processing in more detail below.

Write processing: The iSCSI initiator determines when to
transmit data based on flow-control messages from the tar-
get. The initiator maintains a pointer to the SCSI buffer with
data for the next PDU. The iSCSI layer constructs an iSCSI
header and a gather list describing the header and payload
of the iSCSI PDU. The kernel’s TCP/IP stack then processes
and sends the PDU to the target, which may involve copy-
ing data between SCSI and NIC buffers, depending on the
implementation of the TCP/IP stack.

Read processing: The initiator receives packets from the
target and uses direct memory access (DMA) to transfer
packets from the NIC to kernel memory. The kernel pro-
cesses network interrupts, performs TCP/IP processing to
strip off Ethernet, IP and TCP headers, and enqueues the
iSCSI PDU payload in a socket descriptor structure. Based
on the payload headers, the iSCSI layer creates a scatter-list
which the socket layer uses to copy iSCSI PDU data from
TCP segments into a SCSI buffer. A final copy occurs from
the SCSI buffer to a user-space buffer where the application
can access the data.

Similar processing occurs at the target in the TCP/IP,
iSCSI and SCSI layers. The target also translates SCSI com-
mands to NVMe commands [55], a task the Linux NVMe
driver implements for compatibility.



3.3 Remote Flash Performance Tuning
As described in Section 3.2, iSCSI introduces significant
overhead as each Flash request traverses multiple layers
of the operating system on both the tenant (initiator) and
the remote server (target). Protocol processing adds latency
to each request and, more importantly, can saturate CPU
resources, leading to queuing and throughput degradation.
Hence, it is necessary to optimize the system to achieve high
IOPS for remote Flash accesses.

Setup: For the purposes of this study, our experimental
setup consists of a dozen 2-socket Xeon E5-2630 @ 2.30GHz
servers with 6 cores (12 hyperthreads) on each socket. Each
server has 64 GB of DRAM and a SolarFlare SFC9020
10 GbE network card. For application tier servers we use
both sockets, while for the datastore servers and remote
Flash servers we use 1 socket. The servers are connected
with a 64× 10 GbE Arista switch. Our Flash devices are In-
tel P3600 PCIe cards with 400 GB capacity [34]. All servers
run Ubuntu LTS 14.0.3 distribution, with a 3.13 Linux ker-
nel and 0.8 version NVMe driver. We use the iscsitarget
Linux software package to run the iSCSI block service on
a remote Flash server. We use the open-iscsi package as
the iSCSI initiator stack, which we run on datastore servers
(more generally referred to as tenants in this section). To
expose Flash to multiple tenants, we statically partition the
storage device and run a separate iSCSI target service for
each partition.

For our tuning experiments, tenants use FIO [35] to gen-
erate an IO-intensive 4 kB random read workload. With
a single tenant, our baseline iSCSI Flash server supports
10.5K IOPS. The bottleneck is CPU utilization on the Flash
server for network processing. When we run the same FIO

workload locally on the Flash server, we saturate the Flash
device at 250K IOPS. We tune several system knobs to im-
prove the iSCSI Flash server’s throughput. Figure 3 shows
the performance benefit of each optimization applied to a
Flash server serving 1, 3, and 6 tenants.

Multi-processing: The bottleneck in the single-tenant
baseline test is CPU utilization on one of the Flash server’s
6 cores. The iSCSI service at the remote Flash server con-
sists of 1 istd process per iSCSI session (each tenant estab-
lishes 1 session) and a configurable number of istiod pro-
cesses per session which issue IO operations to the device
based on iSCSI commands. Using multiple istiod pro-
cesses to parallelize IO processing improves throughput to
46.5K IOPS for a single tenant (4.5× improvement). The de-
fault iscsitarget setting invokes 8 istiod processes. We
empirically find that using 6 processes leads to 10% higher
performance. However, parallelism is still limited by the
istd process’s use of a single TCP connection per session.2

When multiple tenants access the Flash server, processing is
spread over multiple sessions (thus, multiple TCP connec-

2 There exist proprietary versions of iSCSI that are multi-path, but the open-
source iSCSI package in Linux is limited to 1 TCP connection per session.
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Figure 3: Datastore servers issue 4 kB random reads to a remote
Flash server with 6 cores and a Flash device that supports up to
250K IOPS. We apply several optimizations to maximize IOPS.

tions). With 6 tenants and 6 istiod processes per tenant,
we achieve 2.3× IOPS improvement compared to using 1
istiod process per tenant. With 8 tenants, we saturate the
PCIe device’s 250K IOPS. In addition to improving through-
put, multi-processing reduces queuing latency by making the
Flash server a multi-server queuing system. Hyper-threading
does not improve performance so we disable it for our tests.

NIC offloads: Enabling Transmit Segmentation Offload
(TSO) and Large Receive Offload (LRO) on the NIC al-
lows TCP segmentation to be processed in hardware, redu-
cing CPU overhead and interrupts associated with dividing
(assembling) 4 kB messages into (from) 1500-byte Ethernet
frames. We find that TSO/LRO offloads increase aggregate
IOPS on the remote Flash server by 8% with a single tenant
(single TCP connection). The benefits of TSO/LRO increase
with the number of tenants since multiple TCP connections
benefit from the offload. In addition, the more loaded the
server, the more important it is to reduce CPU utilization
with NIC offloads. With 6 tenants, TSO/LRO provides a
22% increase in IOPS on the Flash server. For this read-only
workload, we find it most beneficial to enable TSO only on
the server (which sends data) and LRO only on the tenant
(which receives data).

Jumbo frames: Enabling jumbo frames allows Ether-
net frames up to 9000 bytes in length to be transmitted in-
stead of the standard Ethernet maximum transfer unit (MTU)
size of 1500 bytes. Although segmentation offloads on the
NIC already eliminate most of the CPU overheads associ-
ated with splitting 4 kB blocks into multiple frames, jumbo
frames eliminate the need for segmentation altogether and
reduce the TCP header byte overhead, further increasing
IOPS at the Flash server by 3 to 12%.

Interrupt affinity: We find it beneficial to distribute net-
work traffic to separate queues on the NIC by hashing packet
headers in hardware using Receive Side Scaling (RSS) [52].



We disable the irqbalance service in Linux and manu-
ally set the interrupt affinity for NIC and NVMe queues.
To tune interrupt affinity, we consider the number of CPU
cores available on the Flash server per tenant. We assume
the number of tenants per Flash server is known (it is de-
termined by the control plane). We describe how we manage
interrupts on our 6-core Flash server in the case of 1, 3 and
6 tenants. With a single tenant, spreading NIC and NVMe
Flash interrupts across all cores on the Flash server improves
parallelism and leads to 21% more IOPS. With 3 tenants,
for fairness, we allocate 2 server cores per tenant. To optim-
ize performance in this scenario, we use taskset in Linux
to pin the istd process associated with a tenant onto one
core. We steer interrupts for the tenant’s network queue to
this core by manually setting rules in the NIC’s flow table3.
On the second core, we pin the session’s istiod processes
and steer NVMe Flash interrupts, achieving a 6% increase
in IOPS. With 6 tenants, we only have 1 core available per
tenant so we pin each session’s istd and istiod processes
on the same core and steer both NIC and NVMe interrupts
for the corresponding tenant’s traffic to that core. This helps
minimize interference and improves IOPS by 11%.

In summary, we find that tuning system and network
settings on a remote Flash server leads to substantial per-
formance improvements. For 6 tenants, our optimized Flash
server achieves 1.5× more IOPS than an out-of-the-box
iSCSI setup (which uses the default 8 istiod processes
per session). Our guidelines for tuning settings like interrupt
affinity depend on the number of cores available per ten-
ant on a remote Flash server. For IO-intensive workloads,
iSCSI saturates 1 server core per tenant and benefits from
additional cores for parallelizing interrupt management.

4. Evaluation
Given a tuned iSCSI setup for remote Flash access, we now
evaluate the end-to-end impact of remote Flash on applica-
tion performance and quantify the resource utilization bene-
fits of disaggregation in various scenarios.

4.1 Experimental Methodology
Cluster: We use the same set of Xeon E5-2630 servers de-
scribed in Section 3.3 to implement the architecture shown
in Figure 2. Application tier clients generate get and put

requests to the datastore tier which is made up of one or
more datastore servers running a service with the embedded
RocksDB key-value store [19]. The Flash tier in our experi-
ments consists of a single server with a 400GB Intel P3600
PCIe Flash card and the 10GbE network infrastructure de-
scribed in Section 3.3. Since RocksDB is a C++ library de-
signed to be embedded directly into application code, we

3 Flow Director [32], an advanced feature that establishes a unique asso-
ciation between a flow and a CPU core with the consuming network ap-
plication, would automatically steer a tenant’s network traffic to the core to
which we pinned the associated istd process.

run a simple application called SSDB [31] as our datastore
service to interface with RocksDB. SSDB is an event-based
server wrapper for key-value stores like RocksDB which
listens on a socket for requests coming from application tier
clients and serializes and deserializes requests according to
a text-based protocol.

To generate client load on the RocksDB datastore servers,
we use the mutilate load generator [41]. The mutilate

tool coordinates a large number of client threads across mul-
tiple machines to generate the desired QPS load, while a
separate unloaded client measures latency by issuing one re-
quest at the time. By setting get:put ratios, key and value
sizes, and key distributions in mutilate and also controlling
the SSDB application’s CPU intensity and memory utiliza-
tion, we configure our setup to create workloads similar to
real applications built on top of RocksDB at Facebook.

Workloads: Table 1 summarizes the IO patterns of four
Facebook workloads which use the RocksDB key-value
store. These applications typically issue 2,000 to 10,000 read
operations to Flash per second per TB. Reads are random
access and generally under 50 kB in size. Write operations
occur when RocksDB flushes a memtable or performs a
database compaction. Writes are sequential and significantly
larger in size (up to 2MB) but less frequent than reads. Data-
store servers hosting these applications with direct-attached
PCIe Flash saturate CPU cores before saturating Flash IOPS
due to the computational intensity of application code and
inter-tier communication. Since the IO characteristics of the
workloads in Table 1 do not differ significantly, we present
results for Workload A and sweep various parameters like
CPU intensity and the get:put ratio to better understand
performance sensitivity to workload characteristics.

For our workloads, RocksDB keys are short strings (17
to 21 bytes), which can be used to store information such as
user IDs. Values are longer strings which store various user
state such as vieweing history. Data is continuously appen-
ded to values, up to a maximum length per value. In the case
of Workload A, 100 byte user state is appended up to a total
maximum of 10 kB. get requests processed by the SSDB
application are issued to RocksDB reader threads, resulting
in random read IOs up to 10 kB in size. set requests are
interpreted as “append” operations by the SSDB application
which uses RocksDB’s merge operator to issue requests to
writer threads. For our experiments, the SSDB application

Table 1: Facebook Flash Workload Characteristics

Workload Read Read Write Write
IOPS/TB size (kB) IOPS/TB size (kB)

A 2k - 10k 10 100 500
B 2k - 6k 50 1000 700
C 2k - 4k* 15 500 2000
D 2k - 4k 25 150 500

*75K read IOPS are also observed 1% of the time
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(b) For a single SSDB server, remote vs. local Flash decreases client QPS
by 20% on average. The percentage overhead is 10% for requests at the tail.

Figure 4: Client application performance with local vs. remote Flash (with optimizations enabled).

hosted on each datastore server uses 16 reader threads and
16 writer threads to manage a 24GB RocksDB database of
2.4 million key-value pairs. The RocksDB-managed block
cache has a 10–15% hit rate. RocksDB workloads also typ-
ically benefit from the OS page cache. To avoid the unpre-
dictability of the OS page cache, we use Linux containers
(cgroups) to limit the memory available for page caching to
only 4GB. Hence, we see a higher number of Flash accesses
than a regular deployment, which is pessimistic in terms of
the overhead induced by remote Flash accesses.

The main performance metric for our model workloads is
the number of queries per second (QPS) processed. In par-
ticular, the number of get requests per second is an import-
ant performance metric, since read operations are blocking
whereas writes are batched in RocksDB’s memory buffer
and return asynchronously to the client before being per-
sisted, as is common in LSM database architectures. Al-
though the rate or latency of write operations does not dir-
ectly determine application performance, write operations
are still important to model since they interfere with read
operations at the Flash device and can significantly increase
request queuing delays. From a storage perspective, we aim
to maximize random read IOPS for these applications, so we
apply the optimizations presented in Section 3.3 on the re-
mote Flash server and show their impact on end-to-end per-
formance.

4.2 End-to-end Application Performance
We quantify the performance overheads associated with dis-
aggregating Flash on datastore servers, from the end-to-end
perspective of the application tier. We first measure per-
formance with a datastore tier consisting of a single server
with local versus remote Flash. We then scale the datastore
tier to multiple servers and compare end-to-end application

performance in the scenario where each datastore server ac-
cesses its own local Flash device and the scenario where
datastore servers access remote Flash on a shared server in
the Flash tier. Unless otherwise noted, latency refers to read
latency measured by the application tier and QPS refers to
the queries per second (both read and write).

Single Datastore Server:
Latency: To evaluate the impact of remote Flash on end-

to-end request latency, we measure round-trip read latency
for requests issued to a single, unloaded datastore server.
Figure 4a shows the cumulative distribution of end-to-end
read latency with local and remote Flash on datastore serv-
ers. The overhead of remote Flash access on the 95th per-
centile latency observed by the application tier is 260µs. The
inherent latency overhead of iSCSI is well within the accept-
able range for our target applications, since latency SLAs are
between 5 to 10ms rather than the sub-millisecond range. We
discuss throughput-induced latency below.

Throughput: We sweep the number of queries per second
issued by the application tier and plot the average and
tail latency in Figure 4b. On average, end-to-end request
latency with remote Flash saturates at 80% of the through-
put achieved with local Flash on datastore servers. In both
the local and remote Flash scenarios, latency saturates due
to high CPU utilization on datastore servers. A 20% aver-
age drop in QPS with remote versus local Flash may sound
like a high overhead, but with a disaggregated architecture,
we can compensate for throughput loss by independently
scaling datastore server CPUs from Flash. We analyze the
performance-cost trade-off in detail in Section 4.3 to show
that disaggregation can still lead to significant resource sav-
ings even with these performance overheads.



Online services are more likely to be provisioned based
on tail, rather than average, performance requirements [42].
Figure 4b shows that tail latency (we plot the 95th percent-
ile) is not as heavily impacted by remote Flash access as
average latency. This is because read requests at the tail are
requests serviced at the Flash during a RocksDB compaction
or memtable flush which generates large write IOs, creating
backlog in Flash queues. Read requests caught behind write
operation at the Flash device experience high queuing delay
because Flash writes take significantly longer than reads.
Read-write performance asymmetry is a well-known char-
acteristic of Flash storage technology [13, 57]. For read re-
quests interfering with writes, iSCSI processing introduces a
lower percentage overhead of 10%.

Impact of optimizations: Figure 5 shows the impact of
the optimizations discussed in Section 3.3 on end-to-end ap-
plication performance. The baseline in Figure 5 shows the
average latency versus throughput curve with a single iSCSI
process setup. Using 6 iSCSI processes instead of 1 allows
the application to achieve over 3× higher QPS before aver-
age end-to-end latency spikes beyond 1.5 ms (see the curve
labeled multi-process). Application QPS is 14% higher with
the 6 istiod process iSCSI configuration than the default
8 process configuration (not shown in the figure). Next, we
apply network optimizations and steer interrupts to achieve
over 24% increase in average throughput (assuming a 1.5 ms
latency SLA). More specifically, enabling segmentation of-
floads on the NIC increases QPS by 7% and jumbo frames
increases QPS by an additional 13%. Finally, interrupt affin-
ity tuning increases end-to-end QPS by 4%. The dotted blue
line represents the performance limit, measured with local
Flash (this is the same as the solid blue curve in Figure 4b).

Sensitivity analysis: To understand how disaggregating
Flash impacts a variety of key-value store applications, we
sweep workload parameters in our setup. We model varying
degrees of compute intensity for the datastore service and the
serialization/deserialization tasks it performs by adding busy
loop iterations in SSDB, which execute before requests are
issued to RocksDB. Figure 6a plots peak QPS as a function
of the number of busy loop iterations inserted in the SSDB
wrapper, showing that iSCSI overheads become negligible
for client performance as the compute intensity on datastore
servers increases. For all other experiments in this paper, we
do not insert busy cycles in SSDB. We also evaluate per-
formance sensitivity to the percentage of write requests (the
application’s get:set ratio). As we increase the percent-
age of write requests, the peak QPS in Figure 6b increases
because write operations return asynchronously (writes are
batched in the RocksDB memtable buffer and do not propag-
ate immediately to Flash). We find that irrespective of their
get:set ratio, application clients observe roughly the same
QPS degradation when the datastore server they communic-
ate with has remote versus local Flash.
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Figure 5: End-to-end impact of optimizations on average latency
vs. throughput of key-value store application.
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Figure 6: Workload parameter sensitivity sweep.
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interference on shared Flash degrades tail read performance by 25%.
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(b) With 3 SSDB servers sharing remote Flash, average QPS still degrades by
20% with remote Flash but tail performance degrades even further (55%) due
to increased write interference.

Figure 7: Client application performance on shared remote Flash server (with optimizations enabled).

Multiple Datastore Servers: Next, we scale the num-
ber of servers in the datastore tier that share a remote Flash
server and evaluate the impact of sharing Flash on applic-
ation performance. Figure 7a shows the aggregate perform-
ance of 2 datastore servers, where local means each datastore
server has its own direct-attached Flash drive and remote
means each datastore server accesses separate partitions of
a shared remote Flash server. Doubling the number of serv-
ers in the datastore tier doubles the application’s aggregate
average QPS. Even though the two datastore servers share
a remote Flash server (thus using half the Flash resources
compared to the local Flash deployment), the throughput
overhead of remote Flash access remains 20% on average.
Thus, we observe the same average throughput overhead for
remote Flash with and without sharing.

However, the performance of tail latency requests de-
grades more noticeably when sharing remote Flash com-
pared to the single-tenant scenario. Performance degrad-
ation at the tail is due to higher write throughput at the
Flash. When a Flash server is shared between multiple data-
store servers, the Flash device handles writes associated with
write buffer flushes and database compactions of all tenants.
When more write IOs are queued at the Flash device, read
operations are more likely to get caught behind slow writes.
This effect is even more pronounced in Figure 7b where a
remote Flash server is shared between 3 datastore servers.
To confirm that the tail effect is indeed due to write interfer-
ence, we ran experiments with a SSDB server sharing remote
Flash with 2 read-only tenants and found that tail latency did
not degrade (performance was similar to the single-tenant
experiment in Figure 4b).

In summary, we have shown that the latency overhead
of iSCSI processing is not a concern for end-to-end per-
formance of our target application. Processing overhead has
a more substantial impact on throughput. On average, for
our target application, a datastore server accessing remote
Flash supports 80% of the QPS it could with local Flash.
We will show in the next section how we can make up for
this throughput loss by scaling the number of datastore serv-
ers independently from Flash with a disaggregated architec-
ture. Our observation that sharing Flash among tenants with
bursty write workloads degrades tail read latency has im-
portant implications for the control plane. The coordination
manager responsible for allocating Flash capacity and IOPS
in the datacenter needs to carefully select compatible tenants
to share Flash based on workload write patterns and tail read
latency SLAs, as we discuss in Section 5.2.

Resource overhead: In addition to performance over-
head, we also evaluate the resource overhead for disaggreg-
ated Flash, namely the number of cores required for iSCSI
protocol processing at a remote Flash server. In Section 3.3,
for our IO-intensive microbenchmark, we found it best to
allocate at least 1 CPU core per tenant. However, for our
workloads modeled based on real datacenter applications,
we find that a Flash tier server with a single CPU core4 can
support up to 3 datastore tenants running at peak load. With
4 datastore tenants per core on the Flash server, we observe
that CPU utilization on the Flash server becomes a bottle-
neck and application performance drops. Application per-
formance recovers with 4 datastore tenants if we allocate an
additional core on the Flash server.

4 We turn cores on and off on our Linux server by setting the value in
/sys/devices/system/cpu/cpuX/online to 1 and 0, respectively.



4.3 Disaggregation Benefits
Our evaluation thus far has focused on the overheads of
disaggregation. In this section, we model, to a first-order
approximation, the impact of disaggregation on resource
efficiency to show when the benefits of independent resource
scaling outweigh the overheads of remote access to Flash.

For this part of our analysis, we assume that disaggreg-
ated Flash is on dedicated storage servers, which only pro-
cess network storage requests and do not host local Flash-
based applications. For simplicity, we also assume that re-
source costs scale linearly. In reality, CPU cost may increase
exponentially with performance for high-end servers and
Flash is often cheaper per GB when purchased with larger
capacity. Our cost model is intended for a first-order ana-
lysis.

Cost model: We formulate the resource cost of hosting an
application with a target performance QPSt, a data set of size
GBt, and an IOPS requirement IOPSt. Cdirect and Cdisagg

represent the capital cost for a cluster of servers with direct-
attached Flash and disaggregated Flash, respectively:

Cdirect = max

(
GBt

GBs
,

IOPSt

IOPSs
,

QPSt

QPSs

)
·
(
f + c

)
(1)

Cdisagg = max

(
GBt

GBs
,

IOPSt

IOPSs

)
·
(
f + δ

)
+

(
QPSt

QPSs

)
c (2)

where:
f : cost of Flash on a server
c: cost of CPU, RAM and NIC on datastore server
δ: cost of CPU, RAM and NIC on Flash tier server,

i.e. resource “tax” for disaggregation
xs: x provided by a single server, x={GB, IOPS, QPS}
xt: x required in total for the application

With a direct-attached Flash server architecture, servers
consist of CPU, memory and Flash resources. The number
of servers deployed depends on the maximum of the com-
pute, capacity and IOPS requirements of the application. In
contrast, with a disaggregated Flash server architecture, the
amount of CPU and memory deployed depends solely on the
compute and memory requirements of the application while
the amount of Flash deployed depends solely on the Flash
capacity and IOPS requirements of the application. The costs
Cdirect and Cdisagg differ significantly when there is a sub-
stantial difference between the application’s compute and
storage requirements, QPSt

QPSs
and max

(
GBt

GBs
, IOPSt

IOPSs

)
respect-

ively.
Example calculation for target application: The ap-

plications we model in this study are compute-intensive
rather than capacity or IOPS-limited. Thus the number of
datastore servers deployed to host an application with tar-
get performance QPSt depends on the number of queries

handled by CPUs per server, QPSs. We showed in Sec-
tion 4.2 that datastore servers accessing remote Flash have
a 20% lower QPSs due to iSCSI overhead, compared to
datastore servers with direct-attached Flash. To make our
example calculation of server costs with Equations 1 and 2
more concrete, we assume our application has target per-
formance QPSt = 10M and a data set of size 100TB. We
assume 1.2TB capacity PCIe Flash drives. For the purposes
of this study, we consulted online retail catalogs, which
provided the following ballpark costs for CPU, memory,
PCIe Flash resources on servers: c = $2, 400, f = $2, 400,
and δ = $50/tenant since we assume 3 tenants share each
$100 CPU core on a remote Flash server and we add some
cost overhead for the NIC and memory. Note that memory
requirements on the remote Flash server are low since the
block-IO protocol does not rely on caching. Our example re-
source costs align with Cully et al.’s observations that PCIe
Flash often costs as much as (or even more than) the rest of
the components on a storage server [15]. Substituting these
costs and our QPS performance measurements from Sec-
tion 4.2 into Equations 1 and 2, we have:

Cdirect =
10× 106

50× 103
(2400 + 2400) = 960, 000

Cdisagg =
100× 109

1.2× 109
(2400 + 3(50)) +

10× 106

40× 103
2400

= 812, 500

Cost benefits of disaggregation: The example calcula-
tion above shows a 14% cost benefit using disaggregated
Flash versus direct-attached Flash for an application at a
snapshot in time. We expect the true benefits of disaggreg-
ation to become apparent as application requirements scale
over time. When CPU intensity scales differently than stor-
age requirements for an application, the flexibility to scale
CPU and memory on datastore servers independently from
Flash storage can lead to long-term cost benefits.

Figure 8 plots the savings of disaggregating Flash as a
function of the scaling factor for an application’s storage
capacity requirements on the horizontal axis and compute
requirements on the vertical axis. The origin represents a
baseline server deployment for an application, where Flash
and CPU utilization are balanced. Figure 8 highlights the
scenarios where disaggregation is most beneficial: 1) when
compute intensity scales at a higher rate than Flash capa-
city (top left corner) because we can deploy compute servers
and share Flash among them, or 2) when capacity scales at
a higher rate than compute intensity (bottom right corner)
because then we can deploy more Flash without needing
to add expensive CPU and memory resources. Disaggreg-
ating Flash does not make sense when compute and storage
requirements remain approximately balanced (diagonal line
from origin), since then we pay for the overheads of disag-
gregation without reaping the benefits of better resource util-
ization compared to a direct-attached Flash architecture.
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Figure 8: Percentage resource savings of disaggregated Flash as
a function of compute intensity and storage capacity requirement
scaling. The origin represents an architecture with balanced util-
ization of CPU and direct-attached Flash. Disaggregation can be
cost-effective when compute and storage scale at different rates.

The percentage resource savings in Figure 8 assume that
the cost of PCIe Flash and other resources on a datastore
server are approximately equal, as in the example calculation
above where f ≈ c. We perform a sensitivity analysis to un-
derstand how resource savings vary with different assump-
tions about the cost ratio between Flash and other server re-
sources. If we assume the price of Flash decreases in com-
parison to CPU and memory, disaggregation becomes even
more beneficial for workloads with high storage require-
ments since the flexibility to deploy Flash without adding
unnecessary CPU and memory is even more advantageous
when these resources cost more in comparison to Flash. On
the other hand, if we assume PCIe Flash is more expensive
than compute and memory resources on a datastore server,
then compute-intensive applications with low storage re-
quirements benefit more from disaggregation. For example,
doubling the price of PCIe Flash in our calculations leads
to 50% resource savings in the top left corner of Figure 8.
Finally, if we assume a higher δ, the resource tax associated
with disaggregation, then hosting applications with balanced
CPU and storage requirements becomes around 20% more
expensive with disaggregated Flash architectures compared
to local Flash architectures (as opposed to 12% in Figure 8)
but applications with imbalanced resource requirements still
have similar percentage resource savings.

5. Discussion
We summarize key insights from our study to guide future
work on remote Flash, discussing implications for both the
dataplane and control plane.

5.1 Dataplane implications
Our analysis of remote Flash in the context of a datacenter
application using a traditional iSCSI storage stack reveals
opportunities to improve the storage dataplane.

Reduce overhead in application software: Our analysis
showed that most of the overhead associated with accessing
Flash remotely using a heavy-weight protocol like iSCSI is
masked by CPU overhead in upper layers of datacenter ap-
plication software. For our target application, remote versus
local access to Flash decreases end-to-end throughput by
20%. However, for a 4kB IO intensive microbenchmark, a
single tenant experiences 70% overhead for remote access.
The datacenter application experiences 50% less overhead
because it saturates CPU resources even when accessing
local Flash. This shows it is important to reduce compute
intensity in datastore processing and serialization for inter-
tier communication with generic RPC frameworks.

Reduce overhead in network storage stack: There is
also significant overhead to cut down at the remote storage
protocol layer. For our target application, the throughput
overhead with iSCSI is 20%. However, for applications that
issue more than 10,000s of IOPS, the CPU intensity of
iSCSI introduces more noticeable performance overhead.
For example, we observed 70% throughput overhead for
our IO intensive microbenchmark which can saturate local
PCIe Flash with 100,000s of IOPS. In addition to throughput
overhead, there is latency overhead. The 260µs that iSCSI
adds to tail latency is acceptable for our application which
has latency SLAs > 1ms, but the overhead is too high for
applications sensitive to latency at the microsecond scale.

One approach for reducing CPU overheads for remote
Flash access is to optimize network processing either within
the kernel or in a user-level stack. For example, mTCP is a
user-level TCP/IP stack that improves network throughput
compared to Linux by batching events and using lock-free,
per-core data structures [36]. Other user-level network stacks
implement similar techniques [48, 67]. Network processing
can be optimized within the kernel too. For example, IX
provides a protected data plane that achieves higher through-
put and lower latency than mTCP [10]. Key design prin-
ciples in IX that enable high performance are run to com-
pletion, adaptive batching, zero-copy APIs and flow-based,
synchronization-free processing. Other kernel-level efforts
apply similar techniques [27, 58]. It is worth exploring the
benefits of these techniques in the context of remote storage.

Another approach for reducing the CPU overhead of re-
mote Flash access is to use a lightweight network protocol.
RDMA-based protocols such as RoCE reduce CPU over-
head by offloading protocol processing to hardware and
avoiding data copies to and from memory buffers [49]. How-
ever, RDMA requires more expensive network hardware
(RDMA-capable NICs) and protocols commonly assume
a lossless fabric, thus limiting the scale of disaggregation.

5.2 Control plane implications
Our study has focused on the dataplane for remote access to
Flash. We discuss implications for resource management by
the control plane at both the cluster and storage node level,
which we leave to future work.



Cluster resource management: Given an application’s
requirements for storage capacity, IOPS, and latency, the
control plane must decide which storage servers to allocate.
This is a typical bin packing problem that all cluster man-
agers address [16, 29, 62, 71]. Selecting specific workloads
to collocate on specific servers is a multi-diemnsional prob-
lem with constantly evolving constraints as application re-
quirements vary over time (as shown in Figure 1). Assigning
resources to stateful applications is particularly challenging
since correcting mistakes is expensive. Our study showed
that to avoid high tail read latency, the control plane should
consider each workload’s read and write patterns when as-
signing applications to shared storage servers.

Storage node resource isolation: While the cluster man-
ager should try to assign applications with compatible IO
patterns to share Flash, mechanisms for performance isola-
tion and quality of servers at the storage node are also im-
portant for improving performance in a disaggregated Flash
deployment. Previous work in shared storage management
has shown the benefits of techniques such as time-slicing,
rate limiting, request amortization, and QoS-aware schedul-
ing with feedback [4, 24, 54, 64, 65, 73, 74]. It is worth re-
visiting QoS mechanisms in the context of modern, multi-
queue PCIe Flash devices. For example, managing multiple
hardware Flash queues exposed by the NVMe interface may
be useful for enforcing priorities and performance isolation.

6. Conclusion
PCIe-based Flash is increasingly being deployed in data-
center servers to provide high IOPS. However, the capacity
and bandwidth of these high-performance devices are com-
monly underutilized due to imbalanced resource require-
ments across applications and over time. In this work, we
have examined disaggregating Flash as a way of improving
resource efficiency and dealing with Flash overprovision-
ing. We demonstrated how to tune remote access to Flash
over commodity networks through techniques like interrupt
steering. We also analyzed the end-to-end performance im-
plications of remote Flash for workloads sampled from real
datacenter applications. Our analysis showed that although
remote Flash access introduces a 20% throughput drop at
the application level, disaggregation allows us to make up
for these overheads by independently scaling CPU and Flash
resources in a cost effective manner.
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