
Function as a Function
Tom Kuchler

ETH Zurich

Zurich, Switzerland

kuchlert@ethz.ch

Michael Giardino
∗

ETH Zurich

Zurich, Switzerland

mgiardino@ethz.ch

Timothy Roscoe

ETH Zurich

Zurich, Switzerland

troscoe@ethz.ch

Ana Klimovic

ETH Zurich

Zurich, Switzerland

aklimovic@ethz.ch

ABSTRACT
Function as a Service (FaaS) and the associated serverless

computing paradigm alleviates users from resource man-

agement and allows cloud platforms to optimize system in-

frastructure under the hood. Despite significant advances,

FaaS infrastructure still leaves much room to improve per-

formance and resource efficiency. We argue that both higher

performance and resource efficiency are possible — while

maintaining secure isolation — if we are willing to revisit the

FaaS programming model and system software design. We

propose Dandelion, a clean-slate FaaS system that rethinks

the programming model by treating serverless functions as

pure functions, thereby explicitly separating computation

and I/O. This new programming model enables a lightweight

yet secure function execution system. It also makes func-

tions more amenable to hardware acceleration and enables

dataflow-aware function orchestration. Our initial prototype

of Dandelion achieves 45× lower tail latency for cold starts

compared to Firecracker. For 95% hot function invocations,

Dandelion achieves 5× higher peak throughput.

CCS CONCEPTS
• Computer systems organization→ Cloud computing;
• Software and its engineering → Cloud computing.

KEYWORDS
serverless, cloud computing, function as a service

ACM Reference Format:
Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic.

2023. Function as a Function. In ACM Symposium on Cloud Comput-
ing (SoCC ’23), October 30–November 1, 2023, Santa Cruz, CA, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/362067

8.3624648

∗
Currently with Computing Systems Lab, Huawei Technologies, Zurich.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0387-4/23/11.

https://doi.org/10.1145/3620678.3624648

0 500 1000 1500 2000

Requests per Second

0

50

100

150

200

250

300

350

400

P
9
9
.9

 R
e
q
u
e
s
t

L
a
te

n
c
y
 [

m
s
]

Requests

100% hot

99% hot

98% hot

95% hot

90% hot

80% hot

Figure 1: Round-trip tail latency for remote function
executionwith Firecracker, varying % hot requests. Red
dotted lines show local bare-metal function execution
latency (horizontal) and peak throughput (vertical).

1 INTRODUCTION
Serverless computing has the potential to become the dom-

inant paradigm of cloud computing [58, 15], making cloud

facilities easier to use and enabling cloud providers to more

transparently optimize performance and energy efficiency

of their infrastructure. With serverless, users develop ap-

plications as compositions of fine-grained functions, which

execute independently while having access to shared remote

storage. Users invoke functions on-demand and the cloud

platform dynamically allocates the necessary hardware re-

sources to execute them with an appealing pay-for-what-

you-use cost model.

While this model holds promise, the system software in-

frastructure it uses is still rooted in the very different, more

traditional execution model of long-running processes or

virtual machines. Cloud providers typically provide func-

tion isolation by running them inside separate ‘lightweight’

VMs, which still incur significant startup times [62], context

switch overheads [66], and memory duplication [56]. This

practice of bundling each function with its own OS leads to

a very general API, and the need to support this makes it

hard for cloud providers to efficiently use their resources to

run functions with low latency.

https://orcid.org/0009-0002-8091-0313
https://orcid.org/0000-0002-9906-720X
https://orcid.org/0000-0002-8298-1126
https://orcid.org/0000-0001-8559-0529
https://doi.org/10.1145/3620678.3624648
https://doi.org/10.1145/3620678.3624648
https://doi.org/10.1145/3620678.3624648

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

To quantify the performance and energy efficiency left

on the table by current FaaS system software, we run an

experiment using Firecracker [2] as an example of a state-

of-the-art FaaS hypervisor. AWS Lambda uses Firecracker

to run functions inside MicroVMs, which have significantly

lower startup time than traditional VMs. In Figure 1, we

measure round-trip response time for a simple matrix mul-

tiplication function invoked over HTTP and executed on

a Firecracker server running on a 10-core Intel Xeon E5-

2640v4. We use a simple HTTP frontend to relay function

invocation requests to Firecracker, which executes functions

in MicroVMs. Although simplified, our setup captures the

essential functionality of FaaS worker nodes. To estimate

the cost of executing this function on the remote Firecracker

server compared to locally, the horizontal dashed red line

in Figure 1 shows the function’s local bare-metal execution

time (4.75 ms) and the vertical dashed line shows the corre-

sponding peak throughput. Remotely executing the function

significantly reduces peak throughput (and hence energy effi-

ciency), even when all invocations go to hot (already booted)

Firecracker MicroVMs, as seen in the 100% hot curve. As we

increase the percentage of cold starts (i.e., requests for which

a new MicroVM must be booted), tail latency increases sig-

nificantly and saturates at far lower throughput. Although

there are unavoidable networking overheads compared to

local bare-metal function execution, this experiment demon-

strates that state-of-the-art FaaS system software still has

significant overhead, especially when booting a function

sandbox is on the critical path. While prior work has opti-

mized the unloaded startup latency of function sandboxes

(e.g., by restoring state from snapshots [19, 62, 9]), func-

tion execution still suffers at high request loads and with

high churn of function sandboxes. This current approach of

retrofitting existing system software, which is still rooted

in the model of executing long-running virtual machines,

misses the opportunity to harness the true potential of the

serverless computing paradigm.

In this paper, we argue for a different execution environ-

ment better suited to serverless, which permits much more

efficient resource usage and reduced startup latency, while

still supporting the use-cases that make serverless comput-

ing so attractive. Our model is to treat serverless functions as
true functions: bodies of code which take a declared list of

input parameters (e.g. data sets on stable storage) and output

another, declared list of output data sets which can be fed

to other functions. During execution, a function performs

no I/O - indeed, it barely needs to invoke any services from

system software.

This clear separation of computation (the function itself)

and I/O (now handled completely outside the function, log-

ically before or after its execution), immediately leads to

many opportunities to improve both the performance of func-

tions and the efficiency with which they can be supported

by the cloud platform. Moreover, the delegation of I/O to

cloud-implemented functions can provide better isolation,

obviating the need to ensure safety of the broad range of

user-issued system calls. More concretely, moving all I/O

and other system software dependencies out of the function

allows using simplified lightweight thread-like sandboxes

which can leverage a range of different hardware protection

mechanisms for secure isolation, such as CHERI memory

capabilities [68], MMUs, etc.

Scheduling is also greatly simplified, since functions do

not block, and start running when their input is guaranteed

to be available. Dependencies between functions (and their

data) are more explicit, enabling the platform to further op-

timize placement and scheduling. Functions can now also

be replaced with alternative implementations that generate

the same output for a given input, making it possible to

transparently use hardware accelerators when available.

We realize this model in Dandelion, a platform for server-

less function execution. We prototype Dandelion’s function

execution system. In benchmarks, our prototype running on

Arm’s Morello hardware platform [8] using CHERI memory

capabilities [68] for memory isolation, achieves 45× lower

tail latency for cold starts and reaches a 5× higher peak

throughput for 95% hot request load compared to Firecracker.

These gains come from replacing the current bloated worker

node software stack with a lightweight system that lever-

ages modern hardware to improve performance and energy

efficiency, without sacrificing security.

2 FAAS PROPERTIES AND
REQUIREMENTS

The serverless computing execution model — in which the

cloud platform automatically manages and scales resources

to execute user code based on request load — is appealing for

many applications, from event-driven web services to data

analytics [21, 42, 16].

Serverless functions have unique characteristics. They

have short execution time, often less than a second [59, 63]

with some platforms [16] seeing median execution time of

only 60 ms. Functions generally have small resource foot-
prints, with a median memory allocation of only 170 MB per

function [59]. FaaS applications tend to have more bursty
load than traditional cloud workloads [28, 20]. For exam-

ple, the peak-to-trough ratio of function invocation can be

as high as 500× [63]. Finally, invocations are sporadic, with
fewer than 20% invoked more than once per minute [59].

The characteristics of FaaS workloads lead to the following

requirements for FaaS platforms:

Function as a Function SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Low end-to-end function execution latency: A func-

tion should complete with minimal overhead compared to

its execution on a dedicated, bare-metal server.

High throughput per CAPEX: To maximize through-

put per capital expenditure, FaaS system software should

serve a high rate of function execution requests per server

to maximize utilization.

Energy efficiency: To minimize operational expenses —

particularly energy consumption — the FaaS system should

minimize CPU cycles for scheduling and executing functions.

Secure isolation: FaaS system software must prevent

untrusted user function code from tampering with the in-

frastructure or accessing the data or code of other functions.

Our threat model assumes that users trust the cloud provider,
as is customary today [4].

3 THE CURRENT STATE OF SERVERLESS
We discuss state-of-the-art system infrastructure for FaaS

function execution and scheduling, highlighting why current

solutions do not fully satisfy the requirements in §2. Prior

work has mainly focused on minimizing unloaded function

latency, but optimizing throughput and energy efficiency

without sacrificing security is particularly challenging.

3.1 Secure Isolation of Functions
Today’s FaaS platforms isolate functions by implementing

sandboxes with one of three key techniques: virtualization,

containerization, or language runtime isolation.

Virtualization: Most commercial FaaS platforms rely on

virtualization to execute and isolate functions [40]. Special-

ized MicroVMs [2] greatly reduce startup times compared to

general-purpose VMs, but still have significant overheads,

particularly with high sandbox churn. MicroVMs also in-

crease a function’s memory footprint (e.g., 3× memory over-

head for a function with a 1 MB working set [57]), which lim-

its the degree of function co-location and thus the throughput

per worker node.

Snapshot restoration [61, 62, 45, 6, 64, 19, 18] andUnikernel-

based VMs [35, 14, 30, 37, 39] reduce startup delays down to

millisecond-range. However, snapshots introduce security is-

sues with random number generator state and address space

layout randomization [13] and neither of these approaches

solves FaaS performance issues at high request load and

sandbox churn.

Containerization: Some FaaS platforms execute func-

tions in containers [24, 46, 32]. Containers rely on OS primi-

tives for resource isolation. Since the OS interface is a known

source of security vulnerabilities [23], most major cloud

providers do not consider traditional containers sufficiently

secure isolation for FaaS. gVisor [24] improves container

security by adding a software interposition layer, however

its performance is similar to MicroVMs [7].

Runtime isolation: To further reduce sandbox initial-

ization and memory overheads, researchers have proposed

non-virtualized sandboxes, such as processes [10, 60, 11] and

isolation via language runtimes [12, 61, 65]. For instance,

WebAssembly runs user code in a sandboxed environment,

with the compiler or interpreter inserting runtime checks,

restricting the code to its ownmemory region [27]. Language

runtime isolation approaches trust the runtime to correctly

set up and tear down sandboxes and implement the sys-

tem interface that programs use to read files, send network

requests, and access other OS resources [26]. This can be

problematic as it involves error-prone low-level memory

management, and bugs in the runtime can break isolation

guarantees. Formally verifying language runtime and system

interfaces is an active area of research [26], but end-to-end

system verification is challenging.

3.2 Function Scheduling and Data Passing
Traditional FaaS platforms are oblivious to the communica-

tion patterns and data dependencies between functions [25].

This simplifies scheduling as the platform treats each func-

tion as a black box, but forces functions to interact with

remote storage to exchange data, which adds latency and

cost [31, 48, 23, 33].

Cloud providers have started offering services, such as

AWS Step Functions [3] and Azure Durable Functions [41],

which allow users to chain functions and express their depen-

dencies. However, specifying a dependency in these systems

is mainly a hint to spin up function sandboxes, rather than a

way to optimize data transfer between them. Intermediate

data that cannot be attached to an invocation request still

must be transferred via storage.

Pheromone [72] proposes a data-centric approach to func-

tion orchestration with a new API of data trigger primitives.

It currently relies on memory sharing for efficient imple-

mentation, which can be problematic in a public cloud envi-

ronment where securely isolating untrusted user code is a

strict requirement. Faa$t [53] and Palette [1] apply caching

to minimize interaction with remote storage, but they rely

on repeated requests from the same user or concurrently

running sandboxes. Boxer [69] enables functions to establish

direct TCP connections with other functions, avoiding round-

trips to storage. However, its programming model does not

reveal function dependencies upfront to the platform, lim-

iting opportunities for data dependency-aware scheduling.

Deng et al. [17] propose separating compute and I/O to en-

able reproducible serverless computations with correctness

guarantees. In §4, we will discuss how separating compute

and I/O enables a step change in FaaS platform efficiency.

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

3.3 Heterogeneous Hardware Support
FaaS system software has not kept up with the tremendous

advances in cloud hardware over the past decade, such as

energy-efficient specialized processors and CPU security

extensions. While serverless computing’s programming and

cost model are appealing to developers, the lack of support

for heterogeneous hardware in today’s FaaS platforms limits

practical use-cases [36]. It is not clear how to map current

FaaS functions, which often intersperse computations with

cloud API calls [49], to non-CPU hardware.

Nevertheless, extending the serverless paradigm to het-

erogeneous hardware is an active area of research. Since

Kubernetes and Docker support GPU nodes, adding GPU-

enabled containers into FaaS frameworks is an obvious step

towards heterogeneous serverless [29, 43, 55, 73]. Another

technique for heterogeneous compatibility is to provide an

API-translating shim as Molecule [18] does for FPGAs and

Zhao et al. [73] does for GPUs. Kernel-as-a-service [47] takes
the approach closest to Dandelion’s separation of compute

and I/O by allowing users to explicitly define GPU kernels,

allowing a FaaS system to mix CPU and GPU functions. We

argue that, in the end, these well-engineered solutions shoe-

horn non-CPU execution units into a cloud that has evolved

for decades around the CPU.

4 DANDELION: A NEW VISION FOR FAAS
Instead of retrofitting existing system software to meet FaaS

application needs, we ask how would we design a clean slate
FaaS system software stack? We propose Dandelion, a server-
less computing platform that rethinks the FaaS program-

ming model and function execution system to improve per-

formance and energy efficiency, while maintaining secure

isolation guarantees.

The key idea of Dandelion is to strictly separate compute

tasks (i.e., arbitrary user computations) and I/O tasks (i.e.,

tasks that prepare the inputs and manage the outputs of

compute tasks) in FaaS applications. Separating compute

and I/O in the programming model (§4.1) and function ex-

ecution model brings three key advantages. First, we can

execute applications — expressed as directed acyclic graphs

(DAGs) of pure compute functions (containing untrusted

user code) and I/O functions (implemented by the trusted

Dandelion platform) — with a more lightweight function

sandbox design, without sacrificing security (§4.2). Functions

can execute as lightweight threads (for performance) with

hardware-enforced memory isolation and no OS interface

for untrusted user code (for security). Second, Dandelion’s

strict separation of compute and I/O functions makes both

more amenable to heterogeneous hardware acceleration to

improve performance and energy efficiency (§4.3). Finally,

expressing applications as DAGs of pure compute and I/O ex-

poses dataflow to the underlying platform, enabling cluster

scheduling and data movement optimizations (§4.4).

We build an initial prototype of Dandelion which we eval-

uate in §5. While the rest of this section presents our overar-

ching vision for Dandelion, our current prototype focuses on

demonstrating the benefits of decomposing applications into

compute and I/O using a particular memory isolation mech-

anism (CHERI memory capabilities). Offloading functions

to heterogeneous hardware and exploring dataflow-aware

scheduling policies remain future work.

4.1 Programming Model
Dandelion’s programming model strictly separates compute

and I/O by requiring developers to express their application

as a composition of pure compute and I/O functions. Com-
pute functions contain untrusted user code and have no direct
OS interface during function execution. Prohibiting system

calls for compute functions avoids the risk of untrusted code

exploiting vulnerabilities in the OS interface for privilege es-

calation and tampering with the system. On the other hand,

I/O functions are implemented by the trusted Dandelion plat-

form and exposed to developers as a high-level library. I/O

functions enable interactions with cloud storage, databases,

and other web services, as well as other functions.

While providing I/O functions to support any possible

way of network communication is infeasible,
1
it also is not

necessary as most web services provide HTTP interfaces.

As I/O functions execute trusted code that cannot be modi-

fied by the user, they have permissions for the limited set of

syscalls necessary to carry out their functionality (e.g., net-

working and file system calls). The main difference between

generic syscalls and Dandelion’s I/O API is the abstraction

exposed to the application. Syscalls by design are general

(e.g., sockets) and tightly integrated into the system. Our I/O

library executes isolated functions performing specialized

tasks (e.g., HTTP processing) allowing us to compartmen-

talize I/O functions and perform tailored input sanitization.

Security issues may remain even with higher-level/narrower

APIs but are easier to contain within single-task I/O func-

tions as compared to the much broader Linux ABI. Dandelion

avoids memory management system calls during function

execution by pre-allocating an isolated memory region for

each function, as we will discuss in §4.2.

Dandelion provides a simple domain-specific language for

users to express applications (i.e., compositions) as DAGs

that describe how data flows between functions. The domain-

specific language does not generate any function code; users

provide the implementation of functions as binaries or as

1
As new hardware security primitives emerge, they may enable Dandelion

to support untrusted I/O functions, enabling support for more protocols.

Function as a Function SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

1 input item eventPattern , serverList

2 output item totalSum

3 ephemeral set requestSet , logSet , partialSums

4

5 requestSet = makeGetRequests(serverList)

6 logSet = for each getRequest in requestSet :

system_HTTPGet(getRequest)

7 partialSums = for each log in logSet :

sumOccurance(log , eventPattern)

8 totalSum = sumSet(partialSums)

Figure 2: Example of a composition counting occur-
rences of a pattern in service responses

source code to be compiled by the platform. Since compute

functions cannot directly interact with the OS, Dandelion

requires each function’s inputs and outputs to be explicitly

specified. Inputs and outputs can be direct data, meaning data

that enters or leaves the platform attached to the function

invocation request, or ephemeral data, which is produced

by one function and consumed by another. Developers also

specify the input and output data types either as items, which

are contiguous arrays of bytes, or sets of items.

Figure 2 shows an example map-reduce style composi-

tion that counts the occurrences of a specific event in a

set of log files. The composition uses three compute func-

tions (makeGetRequests, sumOccurance, sumSet) and one

I/O function (system_HTTPGet). We assume the user has al-

ready registered each compute function with the Dandelion

platform by providing each function’s source code
2
(which

consists of pure computations) along with the function’s

number and type of input and output arguments. The com-

position takes two direct inputs: eventPattern is a string

pattern identifying an event and serverList is list of servers
to query. The composition has one direct output, totalSum,
which will contain the number of events found. The composi-

tion also includes ephemeral variables that express dataflow

between functions and are only in scope during the compo-

sition execution. Line 5 parses the input serverList and

prepares a HTTP GET request for each server. In line 6, the

composition calls the system_HTTPGet I/O library function

to issue the GET requests. The for each _ in _ syntax

invokes parallel functions. Line 7 sums all occurrences of the

event pattern for each log. Line 8 sums occurrences across

all logs and stores them into the output variable totalSum.
To simplify porting existing applications to Dandelion’s

programming model and to support developing compute

functions in high-level languages, such as Python whose

runtime interacts extensively with the file system, Dande-

lion provides a custom libc library. This allows functions to

2
Users could also upload binaries, but would need to do so for each type of

hardware they want their function to be potentially run on.

network
queue

dispatcher
compute driver

memory domain

...engine
wait pool

ready pool

done pool

requests

responses

1

2
3

45

d
a
ta

engine engine

c
o
n
te

x
t

Figure 3: Dandelion function lifecycle

call traditional libc APIs, which provide a variety of mem-

ory and file management functionality. Under the hood, the

custom library implements memory and file management

as regular function calls that operate on the memory region

pre-allocated to the function by the Dandelion platform, in-

stead of as traditional syscalls. Dandelion’s custom low-level

library also keeps track of a simple structure that contains

information about the memory layout and locations of the

function’s inputs and outputs.

For now, Dandelion expects developers to manually ex-

press their applications as compositions of pure compute

functions and I/O functions. As future work, we will explore

automating decomposition [22]. For example, we can use

continuations [52] to split applications at I/O boundaries.

4.2 Function Execution System
We now describe how Dandelion leverages strict separation

of compute and I/O to execute functions efficiently with

secure isolation.

System architecture: Each worker node in a Dandelion

cluster runs Dandelion’s function execution system, which

consists of a dispatcher, memory domain managers, and com-
pute drivers. The dispatcher is the core part of a Dandelion
worker, responsible for demultiplexing incoming function

invocation requests for the worker, assigning sandboxes for

function execution, and keeping track of the run state and

data dependencies of a worker’s functions. The memory do-

main managers and compute drivers provide the dispatcher

with a high-level interface for memory and compute resource

management, respectively, which the dispatcher uses to cre-

ate and teardown sandboxes. A memory domain manager

controls a memory region and is responsible for enforcing

memory isolation between each context (i.e., subpart) of the

memory domain. A compute driver is responsible for sched-

uling function sandboxes on a group of compute resources

(i.e., compute engines), such as CPU cores.

The memory domain manager and compute driver allow

us to explore and support different isolation mechanisms and

hardware. For example, a memory domain manager can im-

plement memory isolation by using page-level permissions

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

in an MMU or more fine-grained mechanisms such as CHERI

memory capabilities [68], which are available on some ex-

perimental CPU architectures [8, 67]. As an alternative to

hardware isolation we could also consider software solutions

such as verified WebAssembly. Pure compute functions do

not need the WebAssembly System Interface, which shrinks

the necessary trusted compute base by a significant margin

and eliminates some of the composability problems men-

tioned in §3.1. Additionally we plan to leverage the higher

abstraction level the memory domain manager and compute

driver provide to extend the system to less conventional

hardware such as GPUs, TPUs, SmartNICs or FPGAs.

Furthermore, with the narrow and clearly scoped func-

tionality of the dispatcher, memory domain managers, and

compute drivers, there is potential to formally verify these

components. Rather than relying on the defense-in-depth

approach to security for traditional VMs, Dandelion can in-

crease trustworthiness by relying on a small layer of provably

correct software and a few hardware primitives.

Life of a request: When a function composition invo-

cation request arrives at a Dandelion server, the dispatcher

demultiplexes the request and adds all functions that are

part of the composition to the waiting pool (1○ in Figure 3).

If the code for a function is not already in memory from a

prior execution, the dispatcher will either load it from local

disk (if available) or initiate fetching the code from remote

storage. The dispatcher will fetch function executables com-

patible with one or more locally-available compute drivers.

A function becomes ready (2○) when all its inputs and code

are available in memory. This can happen immediately on

arrival if the request includes all of a function’s inputs or

when other functions complete and their outputs become

available. To start executing a ready function, the dispatcher

selects an engine type on which to run the function. It then

asks a memory domain manager for a context compatible

with that engine type and fills in the function’s input data at

a pre-specified memory address. The fully prepared context

is run on an engine supplied by the corresponding compute

driver. (3○). To minimize the risk of side-channel attacks,

engines run each function to completion. This is akin to how

cloud providers like AWS minimize side channel risks by not

sharing physical CPU cores between tenants [5]. When the

function exits, it transitions from running to done state (4○).

The dispatcher cleans up the completed function’s context.

(5○). Clean up involves extracting all outputs from the con-

text and passing them on, either to other waiting functions

on the worker node or as part of a response to the user. After

handling all outputs, the dispatcher returns the context and

engine to the memory domain manager and compute driver,

respectively, to be sanitized and prepared for reuse.

4.3 Hardware Acceleration
By strictly separating compute and I/O, Dandelion makes

function execution more amenable to hardware acceleration.

Accelerating I/O functions: I/O functions are only ex-

posed to users as a library, allowing for transparent use of

modern networking hardware to offload protocol processing

or even entire I/O functions to SmartNICs. In addition to

optimizing I/O latency and throughput, leveraging modern

networking hardware can benefit the platform in several

ways. Offloading frees up CPU cycles, which can be used to

increase compute function throughput. Additionally, offload-

ing can decrease total energy consumption by processing

I/O requests on more energy-efficient devices. Furthermore,

ensuring that I/O functions (and potentially other trusted

platform code, such as the dispatcher) execute on physically

separate hardware than the CPU cores running untrusted

compute functions provides extra protection against attacks.

This is akin to the AWS Nitro [5] approach to I/O security

and performance, which offloads I/O virtualization to spe-

cialized hardware and physically separates this functionality

from the software hypervisor.

Accelerating compute functions: As Dandelion com-

pute functions are pure functions, they can be compiled and

optimized for heterogeneous hardware platforms more eas-

ily than functions that interleave computation with I/O or

other OS interaction. To maintain a “serverless” paradigm,

Dandelion can keep the selected hardware execution plat-

form abstracted from users. For example, Google’s XLA [54]

compiles Python code to execute on CPUs, GPUs, and TPUs.

Dandelion users can write code for compute functions that

is compatible with heterogeneous hardware compiler in-

frastructure to leverage CPU extensions like SIMD or trans-

parently offload entire compute functions to accelerators

like GPUs, TPUs, or FPGAs. Even if the user does not code

specifically for hardware acceleration, compilers can more

effectively apply optimizations on pure functions as they

allow for stronger assumptions about side effects.

At first glance, short-running functions with small re-

source footprints may not seem like an ideal workload for

hardware acceleration: loading/unloading state to a PCI-

attached accelerator is slow and a single function may not

make use of the numerous available compute units. How-

ever, many types of applications that stand to benefit from

serverless resource management (e.g., real-time DNN infer-

ence) require heterogeneous hardware like GPUs to meet

performance and energy consumption objectives. Hence,

heterogeneous hardware support for compute functions can

improve FaaS application latency. Furthermore, although

a single function may not consume an entire accelerator,

multi-tenancy support is becoming common in GPUs [44]

and FPGAs [50, 51, 34]. Offloading compute functions to

Function as a Function SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

hardware accelerators can help improve specialized hard-

ware’s currently low average utilization in datacenters [70,

71]. Overall, heterogeneous hardware support gives greater

flexibility for function scheduling, to optimize hardware uti-

lization, energy consumption, and overall throughput.

4.4 Dataflow-Aware Scheduling
As Dandelion users develop applications as compositions of

compute and I/O functions, the dataflow between functions

is made explicit to the execution platform. Dandelion can

leverage dataflow information to avoid or minimize data

movement in several ways.

Just in time scheduling: Since function inputs are ex-

plicit, the dispatcher only schedules functions whose inputs

are guaranteed to be available. This ensures that functions

do not consume compute resources, which could have been

used more efficiently by other functions, while waiting for

inputs. Once a compute function begins executing, it does

not block. Hence, compute functions can also be run to com-

pletion, which improves cache locality [11] and reduces the

risk of side channel attacks by avoiding executing untrusted

functions concurrently on a physical core [5].

Data locality: For compositions that pass data between

functions, the cluster manager can prioritize scheduling pro-

ducers and consumers on the same machine. This avoids

transmitting ephemeral data over the network and enables

further optimizations, like zero-copy in-memory data pass-

ing between functions [61].

Efficient distributed processing: Running all functions

of a composition on a single machine is not always optimal.

For example, when a composition has a high degree of par-

allelism, its functions can be executed concurrently across

machines [38]. In such cases, the cluster manager can use

information in the dataflow graph to split the composition

into smaller parts in a way that minimizes the number of

data items exchanged between sub-compositions.

Caching: Given the same inputs, pure functions will pro-

duce the same outputs.
3
Hence, Dandelion can cache the

outputs of functions that are often invoked with the same

arguments and avoid re-computation. Dandelion can also

cache the outputs of I/O functions (e.g., data fetched from

external storage services like S3) if the data is not expected

to change and no side effects are lost.

Near storage computation: As function inputs are ex-

plicitly specified, Dandelion can identify in advance what

data a composition needs to access. Compute functions can

be scheduled on worker nodes close to storage nodes that

hold the data or even directly on storage nodes if they have

sufficient resources, thus eliminating network transfers.

3
Randomness or time also need to be inputs to the function if they are used

for computation, otherwise the function would not be pure.

5 PROOF OF CONCEPT
As a proof of concept, we prototype Dandelion’s worker

node function execution system. Our goal is to demonstrate

Dandelion’s potential to close the performance and energy

efficiency gap between state-of-the-art FaaS system software

and bare-metal function execution. A cluster manager for

Dandelion for dataflow-aware scheduling and supporting

hardware acceleration are future work.

Dandelion prototype: Our current prototype consists
of 2500 lines of Rust and 740 lines of C with some inline

assembly. We focused on implementing support to execute

compute functions with inputs available in memory. We

are actively working on adding support for I/O functions

and compositions, to realize our full vision of Dandelion’s

function execution system.

For memory isolation, we leverage Capability Hardware

Enhanced RISC Instructions (CHERI) [68] to run multiple

compute functions concurrently in a single address space.

CHERI is a set of CPU extensions that implements memory

capabilities as an alternative to traditional pointers, adding

a bounded memory range and set of permissions to each

integer pointer. CHERI enforces memory bounds and per-

mission checks for each memory access and ensures these ca-

pability bounds and permissions cannot be increased. While

Dandelion can implement memory isolation with other hard-

ware mechanisms, including traditional memory manage-

ment units (MMUs), CHERI is a good fit for our use case

as it enables isolation of fine-grained and arbitrarily sized

memory regions.

We build and evaluate our prototype on top of Linux run-

ning on an Arm Morello [8] platform, an experimental archi-

tecture that adds CHERI support to ARMv8 CPU cores. The

dispatcher in our prototype runs a simple multi-threaded

HTTP service that accepts requests and prepares two mini-

mal capabilities for each function: one for the function’s code

region and one for its data region. Cold requests are those

for which the function’s code is loaded from disk, whereas

hot requests already have the code in memory.

Metrics: To evaluate the benefits of lightweight isolation

we consider two metrics: end-to-end request latency and

peak achievable throughput. Tail latency is an important

user performance metric, while the peak throughput indi-

cates how efficiently the provider can serve requests per

machine. Higher throughput implies lower cost and energy

consumption as fewer machines are needed to support a

given load.

Firecracker baseline: We run the Firecracker baseline

on the same Morello board as the Dandelion prototype Our

HTTP frontend relays requests to functions running in Mi-

croVMs. The functions inside MicroVMs also run a simple

HTTP server that accepts requests and responds with the

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

0 200 400 600 800

Requests per Second

100

101

102

103

P
9
9
 R

e
q

u
e
s
t

L
a
te

n
c
y
 [

m
s
]

Dandelion

100% hot

95% hot

90% hot

Firecracker

100% hot

95% hot

90% hot

Figure 4: Dandelion and Firecracker have similar
throughput for 100% hot requests, but for 95% hot Dan-
delion achieves 5× higher throughput.

function output. For hot requests, we relay these requests

to already running MicroVMs whereas for cold requests, we

boot a new MicroVM using the Firecracker VMM [2] and a

Linux kernel compiled with the recommended configuration.

Function workload: All functions in our experiments

perform 64 bit integer matrix multiplication𝑀 ×𝑀𝑇
, where

𝑀 ∈ Z128×128. For both systems we send requests containing

the size of the matrix and generate the input data on the

machine to avoid saturating the low-bandwidth network

link on the Morello board.

Experiment results: Figure 4 plots 99th percentile latency
vs. throughput for Dandelion and Firecracker. We observe

that Dandelion and Firecracker support similar throughput

for 100% hot requests, with Dandelion showing lower la-

tency even at high load. Dandelion also achieves 45× lower

tail latency for cold starts. Thus at 95% hot requests Dande-

lion supports 5× higher throughput compared to Firecracker.

This is because creating a function execution environment

in Dandelion (i.e., allocating a compute engine and initial-

izing a memory context) requires significantly fewer CPU

cycles than booting a Firecracker MicroVM. The latency and

throughput for Dandelion do not significantly change with

lower rates of hot requests, because the only difference be-

tween hot and cold requests is that the binary for the function

needs to be loaded from disk, which is a very cheap operation

compared to booting a MicroVM.

Figure 5 plots the median response latency. In the presence

of cold starts, Firecraker baseline’s median latency saturates

at approximately the same load as its corresponding tail

latency due to the high CPU load of booting new VMs. Com-

pute functions compete for CPU cycles to make progress

0 200 400 600 800

Requests per Second

100

101

102

M
e
d

ia
n

 R
e
q

u
e
s
t

L
a
te

n
c
y
 [

m
s
]

Dandelion

100% hot

95% hot

90% hot

Firecracker

100% hot

95% hot

90% hot

Figure 5: Firecracker median latencies for 90% and 95%
hot requests degrade at the same point as tail latency,
while Dandelion stays stable.

and experience high queueing delays when too many VMs

are trying to boot at the same time. In contrast, Dandelion’s

median latency stays low, similar to its tail latency.

6 CONCLUSION
Although significant effort has gone into retrofitting and

optimizing legacy cloud infrastructure for FaaS, we argue

that unlocking the true potential of FaaS requires revisiting

assumptions in the programming model and system software

design. Dandelion revisits the FaaS programming model and

leverages modern hardware to provide a fast, secure, and

resource-efficient serverless computing platform. The key

design principle is to treat serverless functions as true func-

tions, with a clear separation of compute and I/O. This en-

ables a lightweight function sandbox design that maintains

secure isolation while reducing tail latency by over 45× and

increasing peak throughput by 5× compared to Firecracker.

Dandelion’s design also makes functions more amenable to

hardware acceleration and dataflow-aware scheduling opti-

mizations.

ACKNOWLEDGMENTS
The authors would like to thank Roberto Starc for his help

with evaluating the Dandelion prototype. Thank you also to

Gustavo Alonso, Andrea Lattuada, Lazar Cvetković, Michael

Wawrzoniak, Dmitrii Ustiugov, Shweta Shinde, and Patrick

Stuedi for fruitful discussions and feedback. Finally, wewould

like to thank the SoCC’23 reviewers and our shepherd, Ryan

Marcus, for their helpful suggestions.

Function as a Function SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

REFERENCES
[1] Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose Faleiro, Go-

har Irfan Chaudhry, Inigo Goiri, Ricardo Bianchini, Daniel S Berger,

and Rodrigo Fonseca. 2023. Palette load balancing: locality hints

for serverless functions. In Proceedings of the Eighteenth European
Conference on Computer Systems (EuroSys ’23). Association for Com-

puting Machinery, Rome, Italy, 365–380. isbn: 9781450394871. doi:

10.1145/3552326.3567496.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.

Firecracker: lightweight virtualization for serverless applications.

In 17th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 20). USENIX Association, Santa Clara, CA, (Feb.

2020), 419–434. isbn: 978-1-939133-13-7. https://www.usenix.org/co

nference/nsdi20/presentation/agache.

[3] Amazon Web Services. 2023. AWS step functions: visual workflows

for distributed applications. Amazon Web Services. Retrieved Sept. 4,

2023 from https://aws.amazon.com/step-functions/.

[4] Amazon Web Services. 2023. Security overview of AWS Lambda:

AWS whitepaper. AmazonWeb Services. Retrieved June 1, 2023 from

https://aws.amazon.com/lambda/security-overview-of-aws-lambd

a/.

[5] Amazon Web Services. 2022. The security design of the AWS Nitro

system. Amazon Web Services. (Nov. 18, 2022). Retrieved June 1,

2023 from https://docs.aws.amazon.com/whitepapers/latest/security

-design-of-aws-nitro-system/security-design-of-aws-nitro-syste

m.html.

[6] Android Developers. 2023. Overview of memory management. An-

droid Developers. (May 9, 2023). Retrieved Sept. 4, 2023 from https:

//developer.android.com/topic/performance/memory-overview.

[7] Anjali, Tyler Caraza-Harter, and Michael M. Swift. 2020. Blending

containers and virtual machines: a study of firecracker and gvisor.

In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE ’20). Association

for Computing Machinery, Lausanne, Switzerland, 101–113. isbn:

9781450375542. doi: 10.1145/3381052.3381315.

[8] Arm Ltd. 2023. Arm morello program. Arm Ltd. Retrieved June 1,

2023 from https://www.arm.com/architecture/cpu/morello.

[9] Jeff Barr. 2022. Accelerate your lambda functions with Lambda Snap-

Start. Amazon Web Services. (Dec. 9, 2022). Retrieved June 1, 2023

from https://aws.amazon.com/blogs/aws/new-accelerate-your-lamb

da-functions-with-lambda-snapstart/.

[10] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David

Mazières, and Christos Kozyrakis. 2012. Dune: safe user-level access

to privileged CPU features. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12). USENIX Association,

Hollywood, CA, (Oct. 2012), 335–348. isbn: 978-1-931971-96-6. https:

//www.usenix.org/conference/osdi12/technical-sessions/presentat

ion/belay.

[11] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-

tos Kozyrakis, and Edouard Bugnion. 2014. IX: a protected data-

plane operating system for high throughput and low latency. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). USENIX Association, Broomfield, CO, (Oct. 2014), 49–65.

isbn: 978-1-931971-16-4. https://www.usenix.org/conference/osdi14

/technical-sessions/presentation/belay.

[12] Zach Bloom. 2018. Cloud computing without containers. CloudFlare.

(Nov. 9, 2018). Retrieved Sept. 4, 2023 from https://blog.cloudflare.co

m/cloud-computing-without-containers/.

[13] Marc Brooker, Adrian Costin Catangiu, Mike Danilov, Alexander

Graf, ColmMacCarthaigh, and Andrei Sandu. 2021. Restoring unique-

ness in microvm snapshots. (2021). arXiv: 2102.12892 [cs.CR]. doi:
10.48550/arXiv.2102.12892.

[14] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,

and Jonathan Appavoo. 2020. Seuss: skip redundant paths to make

serverless fast. In Proceedings of the Fifteenth European Conference on
Computer Systems (EuroSys ’20) Article 32. Association for Comput-

ing Machinery, Heraklion, Greece, 15 pages. isbn: 9781450368827.

doi: 10.1145/3342195.3392698.

[15] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander

Slominski. 2019. The rise of serverless computing. Commun. ACM,

62, 12, (Nov. 2019), 44–54. doi: 10.1145/3368454.

[16] Datadog. 2021. The state of serverless (2021). Datadog. (May 1, 2021).

Retrieved June 1, 2023 from https://www.datadoghq.com/state-of-s

erverless-2021/.

[17] Yuhan Deng, Angela Montemayor, Amit Levy, and Keith Winstein.

2022. Computation-centric networking. In Proceedings of the 21st
ACM Workshop on Hot Topics in Networks (HotNets ’22). Association
for ComputingMachinery, Austin, Texas, 167–173. isbn: 9781450398992.

doi: 10.1145/3563766.3564106.

[18] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang,

and Haibo Chen. 2022. Serverless computing on heterogeneous com-

puters. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’22). Association for ComputingMachinery, Lausanne,

Switzerland, 797–813. isbn: 9781450392051. doi: 10.1145/3503222.35

07732.

[19] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Cheng-

gangQin, QixuanWu, andHaibo Chen. 2020. Catalyzer: sub-millisecond

startup for serverless computing with initialization-less booting. In

Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’20). Association for Computing Machinery, Lausanne,

Switzerland, 467–481. isbn: 9781450371025. doi: 10.1145/3373376.33

78512.

[20] Simon Eismann, Joel Scheuner, Erwin van Eyk,Maximilian Schwinger,

Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexan-

dru Iosup. 2022. The state of serverless applications: collection, char-

acterization, and community consensus. IEEE Transactions on Soft-
ware Engineering, 48, 10, 4152–4166. doi: 10.1109/TSE.2021.3113940.

[21] Simon Eismann, Joel Scheuner, Erwin van Eyk,Maximilian Schwinger,

Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexan-

dru Iosup. 2021. Serverless applications: why, when, and how? IEEE
Software, 38, 1, 32–39. doi: 10.1109/MS.2020.3023302.

[22] Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whit-

taker, Parveen Patel, Ivan Posva, and Amin Vahdat. 2023. Towards

modern development of cloud applications. In Proceedings of the 19th
Workshop on Hot Topics in Operating Systems (HOTOS ’23). Associa-
tion for Computing Machinery, Providence, RI, USA, 110–117. isbn:

9798400701955. doi: 10.1145/3593856.3595909.

[23] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum.

2012. Enhanced operating system security through efficient and

fine-grained address space randomization. In 21st USENIX Security
Symposium (USENIX Security 12). USENIX Association, Bellevue, WA,

(Aug. 2012), 475–490. isbn: 978-931971-95-9. https://www.usenix.or

g/conference/usenixsecurity12/technical-sessions/presentation/gi

uffrida.

[24] gVisor. 2023. What is gvisor? gVisor. Retrieved Sept. 4, 2023 from

https://gvisor.dev/docs/.

[25] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann

Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang

https://doi.org/10.1145/3552326.3567496
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://aws.amazon.com/step-functions/
https://aws.amazon.com/lambda/security-overview-of-aws-lambda/
https://aws.amazon.com/lambda/security-overview-of-aws-lambda/
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/topic/performance/memory-overview
https://doi.org/10.1145/3381052.3381315
https://www.arm.com/architecture/cpu/morello
https://aws.amazon.com/blogs/aws/new-accelerate-your-lambda-functions-with-lambda-snapstart/
https://aws.amazon.com/blogs/aws/new-accelerate-your-lambda-functions-with-lambda-snapstart/
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://arxiv.org/abs/2102.12892
https://doi.org/10.48550/arXiv.2102.12892
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1145/3368454
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/
https://doi.org/10.1145/3563766.3564106
https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1109/TSE.2021.3113940
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1145/3593856.3595909
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/giuffrida
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/giuffrida
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/giuffrida
https://gvisor.dev/docs/

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

Wu. 2019. Serverless Computing: One Step Forward, Two Steps Back.

In Proceedings of the 9th Biennial Conference on Innovative Data
Systems Research (CIDR). (Jan. 2019). http://cidrdb.org/cidr2019/pape
rs/p119-hellerstein-cidr19.pdf.

[26] Evan Johnson, Evan Laufer, Zijie Zhao, DanGohman, ShravanNarayan,

Stefan Savage, Deian Stefan, and Fraser Brown. 2023. WaVe: a verifi-

ably secure WebAssembly sandboxing runtime. In 2023 IEEE Sympo-
sium on Security and Privacy (SP), 2940–2955. doi: 10.1109/SP46215
.2023.10179357.

[27] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser

Brown, Sorin Lerner, Tyler McMullen, Stefan Savage, and Deian

Stefan. 2021. Trust but verify: SFI safety for native-compiledWasm. In

Network and Distributed System Security Symposium (NDSS). Internet
Society, (Feb. 2021).

[28] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019.

Centralized core-granular scheduling for serverless functions. In

Proceedings of the ACM Symposium on Cloud Computing (SoCC ’19).

Association for Computing Machinery, Santa Cruz, CA, USA, 158–

164. isbn: 9781450369732. doi: 10.1145/3357223.3362709.

[29] Jaewook Kim, Tae Joon Jun, Daeyoun Kang, Dohyeun Kim, and Daey-

oung Kim. 2018. GPU enabled serverless computing framework. In

2018 26th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), 533–540. doi: 10.1109/PDP2018
.2018.00090.

[30] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El,

Don Marti, and Vlad Zolotarov. 2014. OSv—Optimizing the operat-

ing system for virtual machines. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14). USENIX Association, Philadelphia, PA,

(June 2014), 61–72. isbn: 978-1-931971-10-2. https://www.usenix.org

/conference/atc14/technical-sessions/presentation/kivity.

[31] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas

Pfefferle, and Christos Kozyrakis. 2018. Pocket: elastic ephemeral

storage for serverless analytics. In 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18). USENIX Associ-

ation, Carlsbad, CA, (Oct. 2018), 427–444. isbn: 978-1-939133-08-3.

https://www.usenix.org/conference/osdi18/presentation/klimovic.

[32] Knative. 2023. Knative serverless containers. Knative. Retrieved

Sept. 4, 2023 from https://knative.dev/docs/.

[33] Marcin Kolny. 2023. Scaling up the Prime Video audio/video mon-

itoring service and reducing costs by 90%. Amazon Web Services.

(Mar. 22, 2023). Retrieved June 1, 2023 from https://www.primevide

otech.com/video-streaming/scaling-up-the-prime-video-audio-vi

deo-monitoring-service-and-reducing-costs-by-90.

[34] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS

abstractions make sense on FPGAs? In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). USENIX
Association, (Nov. 2020), 991–1010. isbn: 978-1-939133-19-9. https:

//www.usenix.org/conference/osdi20/presentation/roscoe.

[35] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan San-

thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,

Ştefan Teodorescu, Costi Răducanu, Cristian Banu, Laurent Mathy,

Răzvan Deaconescu, Costin Raiciu, and Felipe Huici. 2021. Unikraft:

fast, specialized unikernels the easy way. In Proceedings of the Six-
teenth European Conference on Computer Systems (EuroSys ’21). As-
sociation for Computing Machinery, Online Event, United Kingdom,

376–394. isbn: 9781450383349. doi: 10.1145/3447786.3456248.

[36] Xiayue Charles Lin, Joseph E. Gonzalez, and Joseph M. Hellerstein.

2020. Serverless boom or bust? an analysis of economic incentives. In

12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
20). USENIX Association, (July 2020). https://www.usenix.org/confe

rence/hotcloud20/presentation/lin.

[37] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David

Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,

and Jon Crowcroft. 2013. Unikernels: library operating systems for

the cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). Association for Computing Machinery, Hous-

ton, Texas, USA, 461–472. isbn: 9781450318709. doi: 10.1145/245111

6.2451167.

[38] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, So-

mali Chaterji, and Saurabh Bagchi. 2021. SONIC: application-aware

data passing for chained serverless applications. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21). USENIX Association,

(July 2021), 285–301. isbn: 978-1-939133-23-6. https://www.usenix.o

rg/conference/atc21/presentation/mahgoub.

[39] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon

Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe

Huici. 2017. My vm is lighter (and safer) than your container. In

Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP ’17). Association for Computing Machinery, Shanghai, China,

218–233. isbn: 9781450350853. doi: 10.1145/3132747.3132763.

[40] Holly Mesrobian and Marc Brooker. 2019. AWS re:Invent: a server-

less journey: AWS Lambda under the hood. Amazon Web Services.

(Dec. 9, 2019). Retrieved June 1, 2023 from https://www.youtube.co

m/watch?v=xmacMfbrG28.

[41] Microsoft Azure. 2023. What are durable functions? Microsoft Azure.

Retrieved June 1, 2023 from https://learn.microsoft.com/en-us/azure

/azure-functions/durable/durable-functions-overview.

[42] IngoMüller, RenatoMarroquıHEREHEREHEREn, andGustavoAlonso.

2020. Lambada: interactive data analytics on cold data using server-

less cloud infrastructure. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’20). As-

sociation for Computing Machinery, Portland, OR, USA, 115–130.

isbn: 9781450367356. doi: 10.1145/3318464.3389758.

[43] Diana M. Naranjo, Sebastián Risco, Carlos de Alfonso, Alfonso Pérez,

Ignacio Blanquer, and Germán Moltó. 2020. Accelerated serverless

computing based on GPU virtualization. Journal of Parallel and Dis-
tributed Computing, 139, 32–42. doi: https://doi.org/10.1016/j.jpdc.20
20.01.004.

[44] NVIDIA Corporation. 2023. NVIDIA Corporation. Retrieved Sept. 4,

2023 from https://www.nvidia.com/en-us/technologies/multi-instan

ce-gpu/.

[45] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Har-

ter, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018.

SOCK: rapid task provisioning with serverless-optimized containers.

In Proceedings of the 2018 USENIX Conference on Usenix Annual Tech-
nical Conference (USENIX ATC ’18). USENIX Association, Boston,

MA, USA, 57–69. isbn: 9781931971447. https://www.usenix.org/con

ference/atc18/presentation/oakes.

[46] OpenFaas. 2023. Openfaas: serverless functions made simple. Open-

Faas Ltd. Retrieved Sept. 4, 2023 from https://www.openfaas.com/.

[47] Nathan Pemberton, Anton Zabreyko, Zhoujie Ding, Randy Katz, and

Joseph Gonzalez. 2022. Kernel-as-a-service: a serverless interface to

GPUs. (2022). arXiv: 2212.08146 [cs.DC]. doi: 10.48550/arXiv.2212
.08146.

[48] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,

fast and slow: scalable analytics on serverless infrastructure. In Pro-
ceedings of the 16th USENIX Conference on Networked Systems Design
and Implementation (NSDI’19). USENIX Association, Boston, MA,

USA, 193–206. isbn: 9781931971492. https://www.usenix.org/confer

ence/nsdi19/presentation/pu.

http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://doi.org/10.1109/SP46215.2023.10179357
https://doi.org/10.1109/SP46215.2023.10179357
https://doi.org/10.1145/3357223.3362709
https://doi.org/10.1109/PDP2018.2018.00090
https://doi.org/10.1109/PDP2018.2018.00090
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://knative.dev/docs/
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://doi.org/10.1145/3447786.3456248
https://www.usenix.org/conference/hotcloud20/presentation/lin
https://www.usenix.org/conference/hotcloud20/presentation/lin
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://doi.org/10.1145/3132747.3132763
https://www.youtube.com/watch?v=xmacMfbrG28
https://www.youtube.com/watch?v=xmacMfbrG28
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://doi.org/10.1145/3318464.3389758
https://doi.org/https://doi.org/10.1016/j.jpdc.2020.01.004
https://doi.org/https://doi.org/10.1016/j.jpdc.2020.01.004
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.openfaas.com/
https://arxiv.org/abs/2212.08146
https://doi.org/10.48550/arXiv.2212.08146
https://doi.org/10.48550/arXiv.2212.08146
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu

Function as a Function SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

[49] Giuseppe Raffa, Jorge Blasco Alis, Dan O’Keeffe, and Santanu Kumar

Dash. 2023. AWSomePy: a dataset and characterization of server-

less applications. In Proceedings of the 1st Workshop on SErverless
Systems, Applications and MEthodologies (SESAME ’23). Association

for Computing Machinery, Rome, Italy, 50–56. isbn: 9798400701856.

doi: 10.1145/3592533.3592811.

[50] Francesco Restuccia, Andres Meza, and Ryan Kastner. 2021. Aker:

a design and verification framework for safe and secure soc access

control. In 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE Press, Munich, Germany, 1–9. doi: 10.1

109/ICCAD51958.2021.9643538.

[51] Francesco Restuccia, Andres Meza, Ryan Kastner, and Jason Oberg.

2023. A framework for design, verification, and management of SoC

access control systems. IEEE Transactions on Computers, 72, 2, 386–
400. doi: 10.1109/TC.2022.3209923.

[52] John C. Reynolds. 1993. The discoveries of continuations. Lisp Symb.
Comput., 6, 3–4, (Nov. 1993), 233–248. doi: 10.1007/BF01019459.

[53] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa,

Paul Batum, Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis,

and Ricardo Bianchini. 2021. Faa$T: a transparent auto-scaling cache

for serverless applications. In Proceedings of the ACM Symposium on
Cloud Computing (SoCC ’21). Association for Computing Machinery,

Seattle, WA, USA, 122–137. isbn: 9781450386388. doi: 10.1145/34728

83.3486974.

[54] Amit Sabne. 2020. XLA : compiling machine learning for peak per-

formance. (2020). https://research.google/pubs/pub50530/.

[55] Klaus Satzke, Istemi EkinAkkus, RuichuanChen, Ivica Rimac,Manuel

Stein, Andre Beck, Paarijaat Aditya, Manohar Vanga, and Volker Hilt.

2021. Efficient GPU sharing for serverless workflows. In Proceedings
of the 1st Workshop on High Performance Serverless Computing (HiPS

’21). Association for Computing Machinery, Virtual Event, Sweden,

17–24. isbn: 9781450383882. doi: 10.1145/3452413.3464785.

[56] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya

Akella. 2022. Memory deduplication for serverless computing with

Medes. In Proceedings of the Seventeenth European Conference on
Computer Systems (EuroSys ’22). Association for Computing Machin-

ery, Rennes, France, 714–729. isbn: 9781450391627. doi: 10.1145/349

2321.3524272.

[57] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sand-

berg, and Boris Grot. 2022. Lukewarm serverless functions: char-

acterization and optimization. In Proceedings of the 49th Annual
International Symposium on Computer Architecture (ISCA ’22). As-

sociation for Computing Machinery, New York, New York, 757–770.

isbn: 9781450386104. doi: 10.1145/3470496.3527390.

[58] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao

Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,

Ion Stoica, and David A. Patterson. 2021. What serverless computing

is and should become: the next phase of cloud computing. Commun.
ACM, 64, 5, (Apr. 2021), 76–84. doi: 10.1145/3406011.

[59] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild:

characterizing and optimizing the serverless workload at a large

cloud provider. In Proceedings of the 2020 USENIX Conference on
Usenix Annual Technical Conference (USENIX ATC’20) Article 14.

USENIX Association, USA, 14 pages. isbn: 978-1-939133-14-4. https:

//www.usenix.org/conference/atc20/presentation/shahrad.

[60] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina

Delimitrou, Robbert Van Renesse, and Hakim Weatherspoon. 2019.

X-containers: breaking down barriers to improve performance and

isolation of cloud-native containers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’19). Associa-
tion for Computing Machinery, Providence, RI, USA, 121–135. isbn:

9781450362405. doi: 10.1145/3297858.3304016.

[61] Simon Shillaker and Peter Pietzuch. 2020. FAASM: lightweight iso-

lation for efficient stateful serverless computing. In Proceedings of
the 2020 USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC’20) Article 28. USENIX Association, USA, 15 pages.

isbn: 978-1-939133-14-4. https://www.usenix.org/conference/atc20

/presentation/shillaker.

[62] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,

and Boris Grot. 2021. Benchmarking, analysis, and optimization

of serverless function snapshots. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’21). Association for

Computing Machinery, Virtual, USA, 559–572. isbn: 9781450383172.

doi: 10.1145/3445814.3446714.

[63] AoWang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang,

Huiba Li, Rui Du, and Yue Cheng. 2021. FaaSNet: scalable and fast

provisioning of custom serverless container runtimes at Alibaba

cloud function compute. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). USENIX Association, (July 2021), 443–457. isbn:

978-1-939133-23-6. https://www.usenix.org/conference/atc21/prese

ntation/wang-ao.

[64] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable

execution optimized for page sharing for a managed runtime envi-

ronment. In Proceedings of the Fourteenth EuroSys Conference 2019
(EuroSys ’19) Article 39. Association for ComputingMachinery, Dres-

den, Germany, 16 pages. isbn: 9781450362818. doi: 10.1145/3302424

.3303978.

[65] Sutao Wang. 2021. Thin Serverless Functions with GraalVM Native
Image. Master’s thesis. ETH Zurich, (Apr. 22, 2021). doi: 10.3929/eth

z-b-000480335.

[66] Nicholas C. Wanninger, Joshua J. Bowden, Kirtankumar Shetty,

Ayush Garg, and Kyle C. Hale. 2022. Isolating functions at the hard-

ware limit with virtines. In Proceedings of the Seventeenth European
Conference on Computer Systems (EuroSys ’22). Association for Com-

puting Machinery, Rennes, France, 644–662. isbn: 9781450391627.

doi: 10.1145/3492321.3519553.

[67] Robert N. M. Watson. 2023. CHERI RISC-V Project Page. University

of Cambridge. Retrieved Sept. 4, 2023 from https://www.cl.cam.ac.u

k/research/security/ctsrd/cheri/cheri-risc-v.html.

[68] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon

W. Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks

Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton,

Michael Roe, Stacey Son, and Munraj Vadera. 2015. CHERI: a hybrid

capability-system architecture for scalable software compartmental-

ization. In 2015 IEEE Symposium on Security and Privacy, 20–37. doi:
10.1109/SP.2015.9.

[69] Michal Wawrzoniak, Ingo Müller, Gustavo Alonso, and Rodrigo

Bruno. 2021. Boxer: data analytics on network-enabled serverless

platforms. In 11th Conference on Innovative Data Systems Research,
CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2021/papers/cidr2021%5C_pa

per12.pdf.

[70] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,

Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS

in the wild: workload analysis and scheduling in Large-Scale het-

erogeneous GPU clusters. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). USENIX Association,

https://doi.org/10.1145/3592533.3592811
https://doi.org/10.1109/ICCAD51958.2021.9643538
https://doi.org/10.1109/ICCAD51958.2021.9643538
https://doi.org/10.1109/TC.2022.3209923
https://doi.org/10.1007/BF01019459
https://doi.org/10.1145/3472883.3486974
https://doi.org/10.1145/3472883.3486974
https://research.google/pubs/pub50530/
https://doi.org/10.1145/3452413.3464785
https://doi.org/10.1145/3492321.3524272
https://doi.org/10.1145/3492321.3524272
https://doi.org/10.1145/3470496.3527390
https://doi.org/10.1145/3406011
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1145/3297858.3304016
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.1145/3445814.3446714
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://doi.org/10.1145/3302424.3303978
https://doi.org/10.1145/3302424.3303978
https://doi.org/10.3929/ethz-b-000480335
https://doi.org/10.3929/ethz-b-000480335
https://doi.org/10.1145/3492321.3519553
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-risc-v.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-risc-v.html
https://doi.org/10.1109/SP.2015.9
http://cidrdb.org/cidr2021/papers/cidr2021%5C_paper12.pdf
http://cidrdb.org/cidr2021/papers/cidr2021%5C_paper12.pdf

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

Renton, WA, (Apr. 2022), 945–960. isbn: 978-1-939133-27-4. https:

//www.usenix.org/conference/nsdi22/presentation/weng.

[71] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi

Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: dynamic

scaling onGPU clusters for deep learning. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, (Nov. 2020), 533–548. isbn: 978-1-939133-19-9. https://w

ww.usenix.org/conference/osdi20/presentation/xiao.

[72] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2023. Fol-

lowing the data, not the function: rethinking function orchestration

in serverless computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association,

Boston, MA, (Apr. 2023), 1489–1504. isbn: 978-1-939133-33-5. https:

//www.usenix.org/conference/nsdi23/presentation/yu.

[73] Ming Zhao, Kritshekhar Jha, and Sungho Hong. 2023. GPU-enabled

function-as-a-service for machine learning inference. (2023). arXiv:

2303.05601 [cs.DC]. doi: 10.48550/arXiv.2303.05601.

https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/osdi20/presentation/xiao
https://www.usenix.org/conference/osdi20/presentation/xiao
https://www.usenix.org/conference/nsdi23/presentation/yu
https://www.usenix.org/conference/nsdi23/presentation/yu
https://arxiv.org/abs/2303.05601
https://doi.org/10.48550/arXiv.2303.05601

	Abstract
	1 Introduction
	2 FaaS Properties and Requirements
	3 The Current State of Serverless
	3.1 Secure Isolation of Functions
	3.2 Function Scheduling and Data Passing
	3.3 Heterogeneous Hardware Support

	4 Dandelion: A new vision for FaaS
	4.1 Programming Model
	4.2 Function Execution System
	4.3 Hardware Acceleration
	4.4 Dataflow-Aware Scheduling

	5 Proof of concept
	6 Conclusion
	Acknowledgments

