
Exploring Learning Rate Scaling Rules for
Distributed ML Training on Transient Resources
Joel André ∗

joel.andre@inf.ethz.ch
ETH Zurich

Foteini Strati ∗
foteini.strati@inf.ethz.ch

ETH Zurich

Ana Klimovic
aklimovic@ethz.ch

ETH Zurich

ABSTRACT
Training Machine Learning (ML) models to convergence is a long-
running and expensive procedure, as it requires large clusters of
high-end accelerators such as GPUs and TPUs. Many ML frame-
works have proposed elastic distributed training, which enables
using transient resources such as spot VMs in the cloud, reducing
the overall cost. However, the availability of transient resources
varies over time, creating an inherently dynamic environment that
requires special handling of training hyperparameters. Techniques
such as gradient accumulation enable using the same hyperparam-
eters upon resource preemptions, however sequentially accumulat-
ing gradients stalls synchronous distributed training. On the other
hand, scaling the batch size according to the available resources
requires tuning of other hyperparameters, such as the learning
rate. In this work, we study how learning rate scaling rules per-
form under dynamic environments when the batch size changes
frequently and drastically, as we observed in real cloud clusters.
We build a PyTorch-based system to evaluate Stochastic Gradient
Descent on Image Recognition and Object Detection tasks under
various learning rate scaling rules and resource availability traces.
We observe minor or no degradation in model convergence when
choosing the correct learning rate scaling rule. Identifying the ap-
propriate scaling rule for a given model is non-trivial. Automating
this decision remains an open question.

CCS CONCEPTS
• Computing methodologies → Machine learning.

KEYWORDS
Elastic Deep Learning, Distributed Training, Spot Instances

ACM Reference Format:
Joel André, Foteini Strati, and Ana Klimovic. 2022. Exploring Learning
Rate Scaling Rules for Distributed ML Training on Transient Resources.
In DistributedML (DistributedML ’22), December 9, 2022, Roma, Italy. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3565010.3569067

∗Equal Contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DistributedML ’22, December 9, 2022, Roma, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9922-7/22/12. . . $15.00
https://doi.org/10.1145/3565010.3569067

1 INTRODUCTION
Recent advances in Machine Learning (ML) research have led to the
creation of complex models, trained with massive datasets [1, 2]. In
order to excel at their tasks, state-of-the-art ML models are trained
for long periods of time in a distributed way using large clusters
with high-end accelerators such as GPUs [3] and TPUs [4]. This
leads to very high costs [5], since training can take hours or even
days to complete, even in enormous clusters. Furthermore, most
distributed ML frameworks [6, 7], consider a static, all-or-nothing
allocation of resources for distributed training, meaning that a
training job only gets scheduled when all of its requested resources
are available. This leads to long queuing of training jobs in multi-
tenant clusters, especially when they request a vast amount of
resources [8, 9].

In response, ML training frameworks [10–15] are becoming elas-
tic, meaning that they are able to train over a dynamic set of re-
sources. Jobs can get scheduled before all requested resources are
available, reducing the queuing time of jobs in multi-tenant clusters,
and increasing the overall cluster resource utilization [16]. Further-
more, elastic ML frameworks enable reducing training costs by
leveraging spot Virtual Machines (VMs) offered by cloud providers
[17–19] at a 60%-90% discount. In this setting, the resources of
a training job could be preempted and reclaimed multiple times
during training, according to cluster resource contention. For ex-
ample, Figure 1 shows how frequently and abruptly the number of
available preemptible hardware accelerators can change on Google
Cloud.

One of the most challenging aspects of elastic training is deal-
ing with training hyperparameters as the number of underlying
resources changes. In particular, when the underlying resources
available for training decrease due to preemptions, naively contin-
uing to train without accounting for preempted nodes reduces the
effective batch size of the training job. Varying the batch size during
training affects model accuracy and requires careful tuning of other
hyperparameters. Some elastic frameworks [12] decouple the global
batch size from the available resources and employ techniques such
as gradient accumulation to maintain the same hyperparameters,
which can help guarantee convergence consistency of elastic train-
ing jobs. However, this can introduce stragglers [20] in the case of
uneven partitioning of the same amount of work in fewer resources,
which reduces synchronous training throughput.

Other frameworks [10, 11, 14] employ a simpler approach: scaling
the global batch size according to the number of available resources.
This requires users to decide on how to scale hyperparameters, such
as the learning rate, in response to batch size changes. However,
since users cannot usually predict how the hyperparameter changes
will affect the training dynamics and we lack sufficient empirical

1

https://doi.org/10.1145/3565010.3569067
https://doi.org/10.1145/3565010.3569067
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3565010.3569067&domain=pdf&date_stamp=2022-12-06

DistributedML ’22, December 9, 2022, Roma, Italy Andre et al.

0 1 2 3
time(h)

0

10

20

30

40

50

60

Nu
m

be
r o

f G
PU

s

(a) A100 GPUs (a2-highgpu) in europe-west4-a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
time(h)

0

20

40

60

80

100

120

Nu
m

be
r o

f T
PU

 c
or

es

(b) TPU cores (TPUv2-8) in us-central1-f

Figure 1: Availability of preemptible accelerators in Google
Cloud Platform.

studies and theoretical convergence guarantees, this approach is
rarely used in practice [9, 12].

In this work, we take a first step in studying the effects of dynam-
ically scaling the batch size and learning rate based on the number
of available resources, and empirically understanding whether this
is a viable solution for elastic training.We focus on the learning rate,
due to its heavy influence on training convergence and model gen-
eralization ability [21–23]. A wide variety of learning rate scaling
rules have been proposed, to enable training with large batch sizes.
However, these rules consider a static allocation of resources (and
thus a static global batch size) throughout training, and they have
not been evaluated in environments where the global batch size
changes frequently and drastically, such as cloud-based training
using spot VMs. In this work, we explore the applicability of these
scaling rules in such volatile environments. We study widely used
learning rate scaling rules: linear, square-root, and AdaScale. We
use Image Recognition and Object Detection tasks for our study and
collect traces of spot instances on Google Cloud as representative
environments with dynamic resource availability.

Our preliminary results show that when the correct learning
rate scaling rule is employed, elastic training can lead to minimal,
or no degradation in model convergence. However, the correct rule
depends on the type of model and it is difficult to know which
scaling rule to apply. Our work motivates further exploration to

understand the influence of elasticity across diverse ML jobs and
automate learning rate scaling rule selection for users.

In summary, our work has two key contributions.

(1) We implement a PyTorch-based framework that enables the
evaluation of learning rate scaling rules in environments
with dynamic resource availability. Users can simply plug
in various learning rate scaling rules and arbitrary resource
availability traces, and evaluate howwell these rules perform
under the resource variations modeled by the given traces.

(2) We empirically evaluate how SGD performs in environments
with frequent resource changes, usingwell-known andwidely
used learning rate scaling rules. We base our evaluation on
real transient VM traces collected from Google Cloud.

2 BACKGROUND
2.1 Transient VMs in the cloud
Transient, or low-priority, preemptible resources are found in the
cloud [17–19] as well as in private datacenters [8, 24]. Our study
focuses on transient cloud VMs, however, our analysis is valid for
any environment with preemptible resources.

Transient or spot VMs are offered by most cloud providers today
and can lead to large cost savings (up to 60-90%). However, they
can be preempted at any point in time, depending on the resource
demand, leading to sudden failures. Their availability is heavily
related to the cluster-wide resource contention and each provider’s
policy. Figures 1a and 1b characterize the availability of spot GPU
and TPU VMs in Google Cloud, respectively. The traces were col-
lected in April 2022. For GPU trace collection we used a2-highgpu
VMs with A100 GPUs attached located in zone europe-west4-a
and we try to maintain a constant amount of 56 GPUs using GKE
node pools [25]. For TPU trace collection we used TPUv2-8 nodes
in zone us-central1-fwith 8 TPU cores each, and try to maintain
120 TPU cores, meaning that whenever a machine is preempted,
we try to allocate a new one.

From Figure 1a, and 1b, we see that the available number of
preemptible accelerators varies over time. Node preemption and
reclamation events are unpredictable and can happen in bulks (e.g.
see Figure 1b at time = 4h, and time = 9h), leading to a dynamic
environment. Prior work [13] has also observed high volatility of
transient resources in the cloud.

2.2 Learning rate scaling rules in SGD
We refer to the number of samples given as input in each accelerator
during the forward and backward pass as the local batch size. The
global batch size in synchronous training is defined as the number of
samples taken into account for the optimizer update (e.g. Stochastic
Gradient Descent (SGD)) and is typically the sum of all accelerators’
local batch sizes [20]. The impact of the optimization step is heavily
determined by the learning rate.

In SGD, the global batch size is tightly coupled with the learning
rate hyperparameter, as has been shown in recent studies [21].
Scaling the batch size usually requires scaling the learning rate in
order not to degrade model quality. Multiple learning rate scaling
rules have been proposed to achieve good convergence with large
batch sizes. Here, we present three widely used rules which we

2

Exploring Learning Rate Scaling Rules for
Distributed ML Training on Transient Resources DistributedML ’22, December 9, 2022, Roma, Italy

evaluate in this work, due to their wide applicability and adoption
by the ML research community [26–28], and ease of use [29].

• Linear Rule According to the linear scaling rule, when the
batch size is scaled by a factor 𝑘 , the learning rate should also
scale by 𝑘 . Goyal et al. [26] give an intuitive interpretation of
this rule stating that if the gradients of 𝑘 steps with batch size
𝑛 are identical to the gradients of 1 step with batch size 𝑘 · 𝑛,
they would lead to equivalent weights, if the learning rate
is also scaled by 𝑘 . Even though this is a strong assumption,
this rule has been widely used to scale distributed SGD in
various ML tasks [27, 30].

• Square Root Rule The square root scaling rule states that
when the batch size is scaled by a factor 𝑘 , the learning
rate should scale by

√
𝑘 . Krizhevsky [31] proposed this rule

in order to maintain the scale of weight update variance.
Variations of this rule have been extensively used especially
with the Adam optimizer [32].

• AdaScale Rule The Adascale rule, proposed by Johnson,
Agrawal et al [33], adapts the learning rate scale depending
on the variance of the gradient. If the batch size is scaled
by a factor 𝑘 , when the gradient’s variance is large, Adas-
cale approximates the linear scaling rule (learning rate scale
close to 𝑘), while when the variance is small, the scale of the
learning rate is also smaller, or even 1. Thus, Adascale trans-
lates into a learning rate warm-up scheme, and has enabled
training with very large batch sizes in a wide variety of ML
tasks [33].

These rules can efficiently scale to larger batch sizes, reducing
the total number of steps needed to reach convergence, and thus
reducing the total training time. However, they have been originally
proposed considering a constant batch size throughout training.
As shown in section 2.1, training with transient resources can lead
to frequent and drastic variation in the global batch size, raising
the question of whether these well-established rules hold in these
scenarios. To the best of our knowledge, the effect of these rules
has not been adequately studied in environments where the batch
size can change so frequently and abruptly.

3 RELATEDWORK
Batch size and learning rate at scale: Shallue, Lee et al. [21]
conduct a detailed empirical study of the effects of large batch
size on training convergence, using models from various ML tasks.
They investigate the optimal learning rate for each batch size scale
and observe huge variations among different workloads, as well as
discrepancies between the actual optimal learning rates, and the
learning rates proposed by scaling rules. Zhang et al. [22] use a
noisy quadratic model to predict the effects of a larger batch size as
well as the optimal learning rate when the batch size is scaled, while
techniques such as LARS [34] and LAMB [23] have managed to
effectively scale the batch size even further in image processing and
Natural Language Processing tasks. These works study the effect of
learning rates with a static amount of resources throughout training.
Lin et al. [30] study the impact of dynamic batch size in SGD with
momentum and propose a momentum compensation technique that
gradually changes the learning rate when the batch size changes,
but they only consider the linear learning rate rule. Since training

Figure 2: Evaluation Framework

is becoming elastic, and the batch size can change very frequently,
we believe that it is important to extend these studies to extremely
dynamic environments as well.

Frameworks for elastic training:TorchElastic [10] andHorovod
Elastic [14] are systems proposed by well-known ML frameworks
to support elastic training. Pollux [11] leverages elastic training to
optimize resource efficiency and average job completion time in a
cluster, by scaling a training job up or down based on its through-
put and convergence rate. In all these frameworks, the user needs
to decide how the learning rate will change in response to batch
size changes, usually by defining plugins in the training procedure.
EasyScale [15] proposes a system for deterministic elastic training
that finds andmitigates the sources of randomness in training. How-
ever, this may negatively impact throughput, as vendor-specific
kernel optimizations that speed up training are disabled. Recently,
Varuna [12] and Bamboo [13] enable elasticity for large models that
are trained using pipeline parallelism. Varuna [12] uses gradient
accumulation to preserve the global batch size but may change the
local batch size, leading either to hardware inefficiencies [35], or
to batch normalization issues, requiring techniques such as Group
Normalization [36].

4 METHODOLOGY
This section describes how we evaluate different learning rate scal-
ing rules with different models. We evaluate the scaling rules by
training ResNet50 [37] and VGG16 [38] on the ImageNet-2012 [39]
dataset and Single Shot MultiBox Detector (SSD) [40] on the MS-
COCO [41] object detection dataset. We implement a framework
that emulates training with synchronous SGD in an elastic environ-
ment, where the batch size varies according to hardware resource
availability. The framework makes it easy to plug in new learning
rate scaling rules, thus enabling future research in this direction,
and is available online 1.

4.1 Framework Design
Our framework lets users specify a learning rate scaling rule, a
local (per-accelerator) batch size, and a batch size trace. The trace
can represent an arbitrary elastic environment. The framework
then trains using a dynamic batch size as specified by the trace,
and adapts the learning rate upon batch size changes as defined by
the given scaling rule. The framework itself runs on a cluster of
normal/non-preemptible resources.

The framework is designed to run on top of PyTorch. As we use
TPU accelerators for our experiments, our framework is designed to

1https://github.com/eth-easl/elastic-learning-rate-evaluation

3

https://github.com/eth-easl/elastic-learning-rate-evaluation

DistributedML ’22, December 9, 2022, Roma, Italy Andre et al.

run with PyTorch-XLA [42]. Any Pytorch XLA training script can
be modified to use our framework by adding our custom sampler
class and wrapping the PyTorch optimizer with one of our custom
optimizers.

Since we only want to evaluate the effect of learning rate scaling
rules, we assume that no data samples are lost when resources
change. This models the case where the dataset can be redistributed
to the active workers after a resource change. We further design
our system to preserve the exactly-once semantics, for the dataset
at each training epoch, regardless of the number of resources. Fi-
nally, our framework requires the trace to specify the batch size
for each step. In contrast, the resource availability measurements
shown in Figure 1 display the number of resources over time. Hence
raw measurement traces must be translated. System characteristics
such as throughput, scaling efficiency, and per-accelerator batch
size must be taken into account during translation. By customizing
these parameters our framework can emulate arbitrary cluster con-
figurations. Note that we assume that the trace is generated such
that the global batch size is always a multiple of the local batch
size that is used per accelerator. Therefore, it is guaranteed that the
global batch size is always greater or equal to the local batch size.

In our experiments we assume that the time per step Δ𝑡 is con-
stant independently of the batch size (perfect scaling). In this case
the batch size trace can be computed from the trace of available
resources over time as follows: The resource availability trace de-
fines a function 𝑔 : time → #accelerators. The batch size at step 𝑖
is 𝑔(𝑖 · Δ𝑡 +𝑇) · 𝐵, where 𝑇 is an optional starting offset and 𝐵 is
the local per-accelerator batch size.

Implementation Details. We scale the global batch size ac-
cording to the given trace by dynamically adjusting the number
of accelerators involved in a step and accumulating gradients if
needed. The local batch size stays constant. In other words, the
number of accumulated local batches at each accelerator varies dy-
namically during training. Our framework takes care of distributing
the right batches to accelerators so that each sample is seen once
per epoch.

4.2 Batch Size Traces
We evaluate the scaling rules with traces based on data gathered
from real GPU and TPU spot instances in Google Cloud (Figure 1a
and 1b). We choose starting offsets so that the resulting traces are
both representative and interesting.

ResNet50 and VGG16. For both models we assume that each
accelerator (GPU or TPU core) can efficiently handle a local batch
size of 128. That is, a batch size of 1024 in a trace indicates that eight
accelerators were available at this point in time. For simplicity, we
assume that each step takes 0.6s independently of the batch size.
This is a value that we got from running the two models under vari-
ous GPU cluster configurations. With this configuration, a training
run of 90 epochs on ImageNet-2012 with the traces corresponds
to 200 to 275 minutes of cloud availability measurements. Fig. 3a
corresponds to the batch size trace based on available A100 GPUs
(Figure 1a), and Figure 3b shows the trace sampled from the the

(a) GPU Trace

(b) TPU Trace

Figure 3: Batch size trace for models trained on ImageNet

TPU v2-8 availability data (Figure 1b)

SSD. We assume that each accelerator handles a batch size of 32.
Each step takes 0.3s independently of the batch size. The resulting
batch size traces are shown in Figure 4.

Reproducibility. The traces that we used for our experiments
can be considered snapshots of the GCP resource availability. In
general, there are multiple sources of randomness in ML training,
such as multi-worker data loading, hardware-specific implementa-
tions, and the non-associative nature of floating point operations.
Elasticity adds another source of randomness in training, since the
experienced resource availability varies over time. Related work
[15] attempts to enforce reproducibility in elastic training, at the
cost of increased runtime.

4.3 Model Training Configurations
ResNet50. We train ResNet50 according the training procedure
described in [26]. The model is trained for 90 epochs. The learning
rate is linearly warmed up during the first five epochs. At epochs 30,
60, and 80, the learning rate is scaled by 1/10. The reference learning
rate used for the learning rate scaling rules is 0.1 for batch size 256.
The local batch size is always 32. As a baseline for the linear scaling
rule, we reproduce the result of [26] by training with batch size
8192 and a linearly scaled learning rate (8192/256 · 0.1 = 3.2). Goyal
et al.[26] report a Top-1 accuracy of 73.27% for static batch size
8192. For the root scaling rule, batch size 8192 implies a learning
rate of

√︁
8192/256 · 0.1 = 0.57.

VGG16. We opt to evaluate a modified version of VGG16 that in-
cludes batch-normalization as defined in [43]. We train VGG16 with
the same training procedure as ResNet50, which also follows the of-
ficial PyTorch recipe [44]. We again establish a baseline using batch
size 8192. In our experiments, the reference learning rate of 0.1 for
batch size 256 leads to exploding gradients when linearly scaled to

4

Exploring Learning Rate Scaling Rules for
Distributed ML Training on Transient Resources DistributedML ’22, December 9, 2022, Roma, Italy

(a) GPU Trace

(b) TPU Trace

Figure 4: Batch size trace for models trained on MS-COCO

batch size 8192. Hence, for the linear scaling rule, we change the
reference learning rate so that the learning rate obtained with the
linear scaling rule is equivalent to the learning rate obtained with
the root scaling rule at batch size 8192. That is, we use reference
learning rate 0.0177 instead of 0.1 (at batch size 256) for the linear
scaling rule. Note that for batch sizes below 8192, the linear scaling
rule will thereby dictate a lower learning rate than the root scaling
rule. The reference learning rate for AdaScale is changed identically.

SSD. Single Shot MultiBox Detector[40] is an object detection
network. We use the PyTorch implementation given in [45]. As a
backbone the network internally uses ResNet50 with weights pre-
trained on ImageNet. We train the model using the MS-COCO[41]
dataset. We use the 118k samples from train2017 to train and val-
idate our model using the val2017 dataset. Images are resized to
300x300px. The model is trained for 65 epochs as described in [45].
The reference learning rate for scaling is 2.7e-3 for batch size 32.
The learning rate is decayed by 1/10 at epochs at 43 and 54 and
linear warmup is used for the first 1000 steps. As evaluation metric
we use mAP[0.5:0.95] as used in [40]. mAP[0.5:0.95] is defined as
the average mAP over different IoU thresholds ranging from 0.5
to 0.95. From here on we refer to this metric simply as mAP. [45]
report a final mAP of 0.25-0.26 when training SSD on MS-COCO
for different batch sizes ranging from 128 to 2048.

5 EVALUATION
In this section we present the results of our empirical evaluation
of how the presented learning rate scaling rules perform when
the batch size varies during training. We evaluate all three scaling
rules, on all batch size traces with all models, except for SSD. We
omit results with AdaScale on SSD since training did not properly
converge in our experiments. All experiments are run with full
precision on TPUv3-8 virtual machines using all eight cores. Each
experiment is run three times, and the reported numbers are the
mean and standard deviation of the runs. For ResNet50 and VGG16,

each run’s reported accuracy is the mean of the last three epochs’
validation accuracy. To get a precise baseline for ResNet50 and
VGG16 we evaluate the rules using a static 8192 batch size. For SSD
on the MS-COCO dataset we consider the results in [45], where
0.25-0.26 mAP is reached for different batch sizes, to be our baseline.
The results are presented in tables 1, 2, 3.

Trace Linear Rule Root Rule AdaScale
Static 76.02 ± 0.11 73.70 ± 0.14 76.31 ± 0.18
GPU 76.15 ± 0.12 74.38 ± 0.07 76.39 ± 0.23
TPU 76.20 ± 0.10 74.84 ± 0.19 76.31 ± 0.03

Table 1: Final Top-1 (validation) accuracy of ResNet50 for all
combinations of traces and scaling rules. Standard deviation
displayed based on three runs.

Trace Linear Rule Root Rule AdaScale
Static - 72.62 ± 0.14 72.37 ± 0.10
GPU 72.71 ± 0.11 73.05 ± 0.12 72.37 ± 0.03
TPU 72.63 ± 0.09 73.21 ± 0.14 72.58 ± 0.10

Table 2: Final Top-1 (validation) accuracy of VGG16 for com-
binations of traces and scaling rules. Standard deviation dis-
played based on three runs.

Trace Linear Rule Root Rule
Static 0.25-0.26
GPU 0.247 ± 0.002 0.200 ± 0.001
TPU 0.250 ± 0.001 0.204 ± 0.001

Table 3: Final Top-1 (validation) mAP[0.5:0.95] of SSD300 for
combinations of traces and scaling rules. Standard deviation
displayed based on three runs.

Impact on final accuracy ResNet50. Our results show that for
ResNet50, model quality does not degrade with the linear scaling
rule on both traces. The root scaling rules performs worse on both
traces, but final accuracy is inferior with the baseline too. The
learning rate computed by the root scaling rule is most likely too
small for this setting. The AdaScale optimizer outperforms both
other rules on all traces.

Impact on final accuracy VGG16. In contrast to our obser-
vations with ResNet50, the linear learning rate scaling rule does
not perform well with the VGG architecture. If we use the same
reference learning rate as for the root scaling rule to scale the batch
size, training loss diverges. Yet, even if we reduce the learning rate
as described in 4.3, the linear learning rate performs worse on all
traces. The root learning rate, on the other hand, has a convergent
baseline, and model quality does not degrade on any of the traces.

5

DistributedML ’22, December 9, 2022, Roma, Italy Andre et al.

We hypothesize that smaller batch sizes help training convergence
more than batch size changes harm it. AdaScale performs worse
than the root scaling rule. Like the linear scaling rule, AdaScale
training did not properly converge with the standard learning rate.
With the adjusted learning rate, the final accuracy is still inferior
to what we observe with the root scaling rule.

Impact on final mAP SSD. We observe that for SSD training
the linear scaling rule results in minimal model quality degradation.
The root scaling rule performs inferiorly.

Impact on training curves. In Figure 5 we further display the
training curves for all combinations of rules and traces on ResNet50.
Note that the batch size changes are hardly visible on the training
curve plots.

Takeaways. Overall, we observe that the best learning rate scal-
ing rule is workload-dependent. The fact that linear scaling works
better with ResNet50 and root scaling is better with VGG16 matches
the results in [21], where Shallue et al. empirically investigate the
optimal learning rate for different batch sizes and various models.
They find that for ResNet50 the optimal learning rate closely fol-
lows the linear scaling rule and for VGG16 the optimal learning rate
is closer to the root scaling rule. Hence if practitioners care about
not affecting training dynamics, they should profile their model
to find the appropriate scaling rule. Our preliminary results show
that, for some jobs, where accuracy drops of 1-3% are tolerable,
compensating for changing batch size with an appropriate scaling
rule is sufficient.

Cost. Using transient resources in the cloud can bring significant
cost reductions, which might compensate for small accuracy drops.
For example, according to our simulations, training ResNet50 on
ImageNet to convergence in a cluster of 64 V100 on-demand GPUs
costs around 344 USD. On the other hand, training the same model
over spot V100 GPUs (around 70% cheaper than on-demand [19]),
can reduce the training cost to 112 USD if the GPU availability varies
according to the trace 1a. However, as the results from the three
different models show, users might need to profile the convergence
of their models under the various learning rate rules if they wish
to use spot VMs and let batch size scale accordingly, which might
add up to the training cost.

6 LIMITATIONS AND FUTURE WORK
Although in this work we focused on Image Classification and Ob-
ject Detection tasks, extending our analysis with more models from
diverse domains would help build a more in-depth understanding of
the relationship between learning rate and batch sizes in volatile en-
vironments. Furthermore, layerwise adaptive learning rates scaling
rules such as LARS [34] and LAMB [23] could be evaluated, as they
have enabled training with very large batch sizes and are widely
used [46]. Our system enables further experimentation, since users
can simply plug in new learning rate rules and arbitrary availability
traces.

Our study also assumes no sample dropping, meaning that all
samples in a dataset are always available, regardless of node fail-
ures. This is true for GB-sized datasets such as ImageNet [39] and

(a) GPU Trace

(b) TPU Trace

Figure 5: Training set accuracy convergence of ResNet50 us-
ing different scaling rules for each trace (Single Run)

WikiCorpus [47], but may not hold for TB-sized datasets [2], where
samples might be physically partitioned across nodes. In that case,
some samples might become unreachable after a node failure, lead-
ing to sample dropping [13]. In cases where dropping training
examples does not harm model quality, it could lead to lower train-
ing time [48] compared to dataset repartitioning. For future work,
we plan to evaluate how sample dropping affects the training in
elastic environments when matched with dynamic batch size.

7 CONCLUSION
In this work, we explored the effect of various learning rate scaling
rules when training using transient resources, where the batch
size is scaled according to resource availability. We implemented
a PyTorch-based framework that enables evaluating learning rate
scaling rules over arbitrary traces of dynamic batch sizes and used
it to evaluate widely used rules in Object Detection and Image
Recognition tasks. Our experiments show that when the correct
learning rate scaling rule is employed, training is hardly (or not at
all) affected by batch size variability. However, there is no one-size-
fits-all rule, and users need to profile their model for selecting the
most appropriate one. Alternatively, techniques such as gradient
accumulation should be used to avoid changing hyperparameters,
but they can introduce extra complexity or inefficiency. In future
work, we plan to investigate a wider range of models and learning
rate scaling rules to better understand the effects of elasticity on
model accuracy for diverse ML tasks.

ACKNOWLEDGEMENT
We thank our anonymous reviewers for their valuable feedback.
We also thank Google TPU Research Cloud for giving us free access
to cloud TPUs.

6

Exploring Learning Rate Scaling Rules for
Distributed ML Training on Transient Resources DistributedML ’22, December 9, 2022, Roma, Italy

REFERENCES
[1] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali,

S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari, “The open images
dataset v4,” International Journal of Computer Vision, vol. 128, no. 7, pp. 1956–1981,
mar 2020. [Online]. Available: https://doi.org/10.1007%2Fs11263-020-01316-z

[2] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann, L. Shao, S. He,
T. Karna, D. Moise, S. J. Pennycook, K. Maschoff, J. Sewall, N. Kumar, S. Ho,
M. Ringenburg, Prabhat, and V. Lee, “Cosmoflow: Using deep learning to learn
the universe at scale,” 2018. [Online]. Available: https://arxiv.org/abs/1808.04728

[3] “Meta works with nvidia to build massive ai research supercomputer,” https:
//blogs.nvidia.com/blog/2022/01/24/meta-ai-supercomputer-dgx/, accessed: 2022-
09-10.

[4] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H.
Yoon, “In-datacenter performance analysis of a tensor processing unit,” SIGARCH
Comput. Archit. News, vol. 45, no. 2, p. 1–12, jun 2017. [Online]. Available:
https://doi.org/10.1145/3140659.3080246

[5] O. Sharir, B. Peleg, and Y. Shoham, “The cost of training nlp models: A concise
overview,” 2020. [Online]. Available: https://arxiv.org/abs/2004.08900

[6] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018. [Online]. Available:
https://arxiv.org/abs/1802.05799

[7] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp.
8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[8] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and F. Yang,
“Analysis of Large-Scale Multi-Tenant GPU clusters for DNN training
workloads,” in 2019 USENIX Annual Technical Conference (USENIX ATC 19).
Renton, WA: USENIX Association, Jul. 2019, pp. 947–960. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/jeon

[9] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “MLaaS in the wild: Workload analysis and scheduling
in Large-Scale heterogeneous GPU clusters,” in 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22). Renton,
WA: USENIX Association, Apr. 2022, pp. 945–960. [Online]. Available:
https://www.usenix.org/conference/nsdi22/presentation/weng

[10] “Torch distributed elastic,” https://pytorch.org/docs/stable/distributed.elastic.
html, accessed: 2022-09-10.

[11] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho, H. Zhang, G. R.
Ganger, and E. P. Xing, “Pollux: Co-adaptive cluster scheduling for goodput-
optimized deep learning,” in 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21). USENIX Association, Jul. 2021, pp. 1–18. [Online].
Available: https://www.usenix.org/conference/osdi21/presentation/qiao

[12] S. Athlur, N. Saran, M. Sivathanu, R. Ramjee, and N. Kwatra, “Varuna: Scalable,
low-cost training of massive deep learning models,” in Proceedings of the
Seventeenth European Conference on Computer Systems, ser. EuroSys ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p. 472–487. [Online].
Available: https://doi.org/10.1145/3492321.3519584

[13] J. Thorpe, P. Zhao, J. Eyolfson, Y. Qiao, Z. Jia, M. Zhang, R. Netravali, and G. H.
Xu, “Bamboo: Making preemptible instances resilient for affordable training of
large dnns,” 2022. [Online]. Available: https://arxiv.org/abs/2204.12013

[14] “Horovod elastic,” https://horovod.readthedocs.io/en/stable/elastic_include.html,
accessed: 2022-09-10.

[15] M. Li, W. Xiao, B. Sun, H. Zhao, H. Yang, S. Ren, Z. Luan, X. Jia, Y. Liu, Y. Li,
D. Qian, and W. Lin, “Easyscale: Accuracy-consistent elastic training for deep
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2208.14228

[16] C. Hwang, T. Kim, S. Kim, J. Shin, and K. Park, “Elastic resource sharing
for distributed deep learning,” in 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). USENIX Association, Apr. 2021,
pp. 721–739. [Online]. Available: https://www.usenix.org/conference/nsdi21/
presentation/hwang

[17] “Amazon ec2 spot,” https://aws.amazon.com/ec2/spot/, accessed: 2022-09-10.
[18] “Azure spot virtual machines,” https://azure.microsoft.com/en-us/services/

virtual-machines/spot/#overview, accessed: 2022-09-10.

[19] “Google cloud spot vms,” https://cloud.google.com/compute/docs/instances/spot,
accessed: 2022-09-10.

[20] A. Or, H. Zhang, and M. N. Freedman, “Virtualflow: Decoupling deep learning
models from the underlying hardware,” in Proceedings of Machine Learning
and Systems, D. Marculescu, Y. Chi, and C. Wu, Eds., vol. 4, 2022, pp.
126–140. [Online]. Available: https://proceedings.mlsys.org/paper/2022/file/
2723d092b63885e0d7c260cc007e8b9d-Paper.pdf

[21] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl,
“Measuring the effects of data parallelism on neural network training,” 2018.
[Online]. Available: https://arxiv.org/abs/1811.03600

[22] G. Zhang, L. Li, Z. Nado, J. Martens, S. Sachdeva, G. E. Dahl, C. J. Shallue, and
R. Grosse, Which Algorithmic Choices Matter at Which Batch Sizes? Insights from
a Noisy Quadratic Model. Red Hook, NY, USA: Curran Associates Inc., 2019.

[23] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel,
K. Keutzer, and C.-J. Hsieh, “Large batch optimization for deep learning: Training
bert in 76 minutes,” 2019. [Online]. Available: https://arxiv.org/abs/1904.00962

[24] P. Sharma, A. Ali-Eldin, and P. Shenoy, “Resource deflation: A new
approach for transient resource reclamation,” ser. EuroSys ’19. New York,
NY, USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3302424.3303945

[25] “Gke node pools,” https://cloud.google.com/kubernetes-engine/docs/concepts/
node-pools, accessed: 2022-09-10.

[26] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training imagenet
in 1 hour,” 2017. [Online]. Available: https://arxiv.org/abs/1706.02677

[27] C. Peng, T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia, G. Yu, and J. Sun,
“Megdet: A large mini-batch object detector,” 2017. [Online]. Available:
https://arxiv.org/abs/1711.07240

[28] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better: Closing the
generalization gap in large batch training of neural networks,” in Proceedings of
the 31st International Conference on Neural Information Processing Systems, ser.
NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, p. 1729–1739.

[29] “Fairscale,” https://github.com/facebookresearch/fairscale, accessed: 2022-09-10.
[30] H. Lin, H. Zhang, Y. Ma, T. He, Z. Zhang, S. Zha, and M. Li, “Dynamic mini-batch

sgd for elastic distributed training: Learning in the limbo of resources,” 2019.
[Online]. Available: https://arxiv.org/abs/1904.12043

[31] A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,”
2014. [Online]. Available: https://arxiv.org/abs/1404.5997

[32] Y. You, J. Hseu, C. Ying, J. Demmel, K. Keutzer, and C.-J. Hsieh, “Large-batch
training for lstm and beyond,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, ser. SC ’19.
New York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356137

[33] T. B. Johnson, P. Agrawal, H. Gu, and C. Guestrin, “Adascale sgd: A
user-friendly algorithm for distributed training,” 2020. [Online]. Available:
https://arxiv.org/abs/2007.05105

[34] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel,
K. Keutzer, and C.-J. Hsieh, “Large batch optimization for deep learning: Training
bert in 76 minutes,” 2019. [Online]. Available: https://arxiv.org/abs/1904.00962

[35] “Troubleshooting tensorflow - tpu,” https://cloud.google.com/tpu/docs/
troubleshooting/trouble-tf#batch-too-small, accessed: 2022-09-10.

[36] Y. Wu and K. He, “Group normalization,” 2018. [Online]. Available: https:
//arxiv.org/abs/1803.08494

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv, 2014.

[39] J. Deng,W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in CVPR09, 2009.

[40] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:
Single shot multibox detector,” in Computer Vision – ECCV 2016. Cham: Springer
International Publishing, 2016, pp. 21–37.

[41] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision –
ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer
International Publishing, 2014, pp. 740–755.

[42] “Pytorch xla package,” https://github.com/pytorch/xla/, accessed: 2022-09-10.
[43] “Pytorch vgg-bn implementation,” https://pytorch.org/vision/stable/models/

generated/torchvision.models.vgg16_bn.html, accessed: 2022-09-10.
[44] “Pytorch: Vgg pretraining recipe,” https://github.com/pytorch/vision/tree/main/

references/classification, accessed: 2022-09-10.
[45] “Nvidia deep learning examples: Ssd,” https://github.com/NVIDIA/

DeepLearningExamples/tree/master/PyTorch/Detection/SSD, accessed:
2022-09-20.

[46] T. Wang, Y. Zhu, C. Zhao, W. Zeng, Y. Wang, J. Wang, and M. Tang, “Large batch
optimization for object detection: Training coco in 12 minutes,” in Computer
Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXI. Berlin, Heidelberg: Springer-Verlag, 2020, p. 481–496.

7

https://doi.org/10.1007%2Fs11263-020-01316-z
https://arxiv.org/abs/1808.04728
https://blogs.nvidia.com/blog/2022/01/24/meta-ai-supercomputer-dgx/
https://blogs.nvidia.com/blog/2022/01/24/meta-ai-supercomputer-dgx/
https://doi.org/10.1145/3140659.3080246
https://arxiv.org/abs/2004.08900
https://arxiv.org/abs/1802.05799
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/nsdi22/presentation/weng
https://pytorch.org/docs/stable/distributed.elastic.html
https://pytorch.org/docs/stable/distributed.elastic.html
https://www.usenix.org/conference/osdi21/presentation/qiao
https://doi.org/10.1145/3492321.3519584
https://arxiv.org/abs/2204.12013
https://horovod.readthedocs.io/en/stable/elastic_include.html
https://arxiv.org/abs/2208.14228
https://www.usenix.org/conference/nsdi21/presentation/hwang
https://www.usenix.org/conference/nsdi21/presentation/hwang
https://aws.amazon.com/ec2/spot/
https://azure.microsoft.com/en-us/services/virtual-machines/spot/#overview
https://azure.microsoft.com/en-us/services/virtual-machines/spot/#overview
https://cloud.google.com/compute/docs/instances/spot
https://proceedings.mlsys.org/paper/2022/file/2723d092b63885e0d7c260cc007e8b9d-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/2723d092b63885e0d7c260cc007e8b9d-Paper.pdf
https://arxiv.org/abs/1811.03600
https://arxiv.org/abs/1904.00962
https://doi.org/10.1145/3302424.3303945
https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools
https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1711.07240
https://github.com/facebookresearch/fairscale
https://arxiv.org/abs/1904.12043
https://arxiv.org/abs/1404.5997
https://doi.org/10.1145/3295500.3356137
https://arxiv.org/abs/2007.05105
https://arxiv.org/abs/1904.00962
https://cloud.google.com/tpu/docs/troubleshooting/trouble-tf#batch-too-small
https://cloud.google.com/tpu/docs/troubleshooting/trouble-tf#batch-too-small
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1512.03385
https://github.com/pytorch/xla/
https://pytorch.org/vision/stable/models/generated/torchvision.models.vgg16_bn.html
https://pytorch.org/vision/stable/models/generated/torchvision.models.vgg16_bn.html
https://github.com/pytorch/vision/tree/main/references/classification
https://github.com/pytorch/vision/tree/main/references/classification
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD

DistributedML ’22, December 9, 2022, Roma, Italy Andre et al.

[Online]. Available: https://doi.org/10.1007/978-3-030-58589-1_29
[47] “Wikipedia datasets,” https://en.wikipedia.org/wiki/Wikipedia:Database_

download, accessed: 2022-09-22.

[48] T. Wang, J. Huan, and B. Li, “Data dropout: Optimizing training data for
convolutional neural networks,” 2018. [Online]. Available: https://arxiv.org/abs/
1809.00193

8

https://doi.org/10.1007/978-3-030-58589-1_29
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://arxiv.org/abs/1809.00193
https://arxiv.org/abs/1809.00193

	Abstract
	1 Introduction
	2 Background
	2.1 Transient VMs in the cloud
	2.2 Learning rate scaling rules in SGD

	3 Related Work
	4 Methodology
	4.1 Framework Design
	4.2 Batch Size Traces
	4.3 Model Training Configurations

	5 Evaluation
	6 Limitations and Future Work
	7 Conclusion
	References

