
Mixtera: A Data Plane for Foundation Model Training
Maximilian Böther
mboether@ethz.ch

ETH Zurich
Switzerland

Xiaozhe Yao
xiaozhe.yao@ethz.ch

ETH Zurich
Switzerland

Tolga Kerimoglu
tkerimoglu@student.ethz.ch

ETH Zurich
Switzerland

Dan Graur
dan.graur@ethz.ch

ETH Zurich
Switzerland

Viktor Gsteiger
vgsteiger@student.ethz.ch

ETH Zurich
Switzerland

Ana Klimovic
aklimovic@ethz.ch

ETH Zurich
Switzerland

Abstract

State-of-the-art large language and vision models are trained over
trillions of tokens that are aggregated from a large variety of sources.
As training data collections grow, manually managing the samples
becomes time-consuming, tedious, and prone to errors. Yet recent
research shows that the data mixture and the order in which sam-
ples are visited during training can significantly influence model
accuracy. We build and present Mixtera, a data plane for foun-
dation model training that enables users to declaratively express
which data samples should be used in which proportion and in
which order during training. Mixtera is a centralized, read-only
layer that is deployed on top of existing training data collections
and can be declaratively queried. It operates independently of the
filesystem structure and supports mixtures across arbitrary proper-
ties (e.g., language, source dataset) as well as dynamic adjustment of
the mixture based on model feedback. We experimentally evaluate
Mixtera and show that our implementation does not bottleneck
training and scales to 256 GH200 superchips. We demonstrate how
Mixtera supports recent advancements in mixing strategies by im-
plementing the Adaptive Data Optimization (ADO) algorithm in the
system and evaluating its performance impact. We also show how
Mixtera enables exploring the role of mixtures for vision-language
models, which is a growing area of research.

ACM Reference Format:

Maximilian Böther, Xiaozhe Yao, Tolga Kerimoglu, Dan Graur, Viktor
Gsteiger, and Ana Klimovic. 2026. Mixtera: A Data Plane for Founda-
tion Model Training. Proc. ACM Manag. Data 4, 1 (SIGMOD), Article 54
(February 2026), 16 pages. https://doi.org/10.1145/3786668

1 Introduction

Large language and vision models (LLMs/VLMs, often called foun-
dation models) have become omnipresent in our daily lives. They
show enormous capabilities in a diverse set of tasks [9, 11, 39, 47, 53],
such as assistance with writing and coding, video understanding,

Authors’ Contact Information: Maximilian Böther, mboether@ethz.ch, ETH Zurich,
Switzerland; Xiaozhe Yao, xiaozhe.yao@ethz.ch, ETH Zurich, Switzerland; Tolga Keri-
moglu, tkerimoglu@student.ethz.ch, ETH Zurich, Switzerland; Dan Graur, dan.graur@
ethz.ch, ETH Zurich, Switzerland; Viktor Gsteiger, vgsteiger@student.ethz.ch, ETH
Zurich, Switzerland; Ana Klimovic, aklimovic@ethz.ch, ETH Zurich, Switzerland.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).
ACM 2836-6573/2026/2-ART54
https://doi.org/10.1145/3786668

0 k 5 k 10 k 15 k 20 k 25 k 30 k
Training Step

0.3

0.4

A
cc
ur
ac
y

1.6B - Dynamic 1.6B - Static 3.6B - Dynamic 3.6B - Static

Figure 1: Dynamically adjusting the mixture using the ADO

algorithm improves pre-training performance on HellaSwag

over the default static mixture across model scales.

and even agentic interaction with the world. The training of such
language and vision models presents new challenges for managing
training data due to the ever-growing sizes of models and datasets.
To achieve high accuracy, state-of-the-art models train over tril-
lions of tokens. For example, Meta’s Llama 3.3 70B model is trained
on a corpus of 15 trillion tokens [39, 40]. These tokens typically
come from aggregated data collections such as RedPajama [70],
Dolma [62], or FineWeb [49], which include data from various
sources, such as Wikipedia or Common Crawl dumps.

The composition of training data is critical to model quality [12].
Hence, selecting the right proportions of data with particular char-
acteristics (e.g., language, topic, source) has become an active area of
research to improvemodel performance without increasing training
compute budget [14, 71, 75]. For example, Hugging Face’s SmolLM2
model is trained with four stages of data mixtures that combine web
text with specialized math, code, and instruction-following data in
varying proportions [4]. Algorithms such as Adaptive Data Opti-
mization (ADO) [28], Aioli [13], PiKE [33], and Skill-It [14] even
propose adjusting the data mixture dynamically based on the model
behavior (e.g., loss per domain) during training. Figure 1 shows
that ADO increases the accuracy of 1.6B and 3.6B Llama-models
(c.f. Table 2) compared to using a static mixture on the downstream
HellaSwag benchmark [78].

However, the process of composing training data mixtures today
is manual, ad hoc, and error-prone (Figure 2a). Training data is
typically stored on distributed filesystems in GPU clusters or data
lakes in the cloud. ML engineers and researchers write ad hoc
scripts to process the training data, filter relevant subsets with the
properties of interest, often pre-tokenize it, and then mix it for their
use case. For example, a model developer may want to train on 50 %
data fromWikipedia and 50 % frommovie subtitles. This can quickly
become more complex as training data may need to be mixed based
on multiple characteristics. For example, in addition to source data

https://orcid.org/0000-0003-4093-4361
https://orcid.org/0000-0002-4661-533X
https://orcid.org/0009-0004-1175-338X
https://orcid.org/0009-0001-0682-2422
https://orcid.org/0000-0002-6750-5500
https://orcid.org/0000-0001-8559-0529
https://doi.org/10.1145/3786668
https://orcid.org/0000-0003-4093-4361
https://orcid.org/0000-0002-4661-533X
https://orcid.org/0009-0004-1175-338X
https://orcid.org/0009-0004-1175-338X
https://orcid.org/0009-0001-0682-2422
https://orcid.org/0000-0002-6750-5500
https://orcid.org/0000-0001-8559-0529
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786668

SIGMOD’26, June 2026, Bengaluru, India Maximilian Böther, Xiaozhe Yao, Tolga Kerimoglu, Dan Graur, Viktor Gsteiger, and Ana Klimovic

Write filter script Filter the data Tokenize

DS1 / eng
DS1 / ger
DS2 / eng

Materialize on disk Training

20%
30%
50%

(a) Without Mixtera: More developer, CPU, and disk resources needed.

Mixtera

“30% from DS1/ger…”

Declare
desired mixture

Pointers to
samples Training

(b) With Mixtera: Declarative mixture specification and low overhead.

Figure 2: Data preparation workflows.

proportions (Wikipedia vs. movie subtitles), the developer may also
want the training data to be 80% in English and 20% in German.
When using mixing algorithms such as ADO, the data mixture may
also need to be adjusted on the fly during training.

Model developers currently lack an open-source solution to effi-
ciently manage and declaratively query vast amounts of training
data based on the characteristics of individual data elements. This
reflects our experience working with ML researchers as part of a
large-scale initiative developing open-source LLMs and our con-
versations with industry teams. Implementing data filtering and
subsequent mixing requires today’s model developers to manually
keep track of metadata. At least in the open-source world, devel-
opers typically implement this as part of the directory structure of
the filesystem, e.g., developers create one subdirectory per source
dataset and then sample from each directory (Figure 2a). This ap-
proach is limited because each data sample has multiple properties
that can be used to determine whether it should be used for train-
ing. Filesystems fundamentally do not offer the right interface for
managing training data and mixing, as they do not provide declar-
ative query interfaces or a native way to track which model was
trained on what data. Running an offline data processing job with
frameworks like Apache Beam or Spark to fully materialize the
mixed training set for each training run makes it difficult to quickly
iterate on different mixtures during the exploration phase and leads
to data duplication, increasing storage costs. While databases offer
a declarative query interface, using a fully-fledged DBMS to track
data properties would burden ML engineers with database adminis-
tration, schema design, and database performance tuning. Having
a simple read-only SQLite table at each training client might seem
like a straightforward solution, but it cannot dynamically adjust
data mixtures and it does not interface with training frameworks
like Torchtitan [34]. We need a flexible data plane that lets users eas-
ily find and combine data based on any characteristic they choose,
without being restricted by how files are organized. This system
should also allow users to change the data mixture on the fly and
work seamlessly with current training frameworks.

We present Mixtera, a data plane that can be deployed on top
of existing LLM/VLM training data collections stored in distributed
filesystems or cloud data lakes. Mixtera follows a client-server
model. The user indexes all sample metadata at the server once. Dur-
ing a training job, the server statically filters out the relevant sam-
ples using SPJ-style predicates, and then continuously distributes
chunks to the clients. Chunks are fixed-size collections of pointers
to samples (Figure 2b) in files that adhere to the current mixture.

The clients fetch the relevant samples and return the relevant data
to the training loop. By storing metadata, and deferring reads to the
clients, Mixtera scales to real-world datasets. Chunks also enable
dynamic data mixing and avoid re-materializing mixed data. This
approach also improves the iteration speed for model developers.
While existing data loaders, as outlined in Table 1, rely on sampling
from filesystem directories, Mixtera supports arbitrary proper-
ties independent of the filesystem, and makes it easy for model
engineers to experiment with different filter criteria, fixed learning
curricula [4, 72], and fully dynamic mixing algorithms that learn
the mixture during training [13, 14, 28]. We design and implement
Mixtera tailored to the needs of foundation model training, and
contribute the following:
(1) Mixtera indexes all samples and their properties, enabling

users to declaratively specify mixtures across properties inde-
pendent of the filesystem structure and training frameworks.

(2) Mixtera enables dynamically changing the data mixture and
the properties used for mixing. It achieves this by generating
and streaming chunks, i.e., fixed-size lists of pointers to samples
following the current mixture.

(3) Mixtera’s data fetching scales to meet the ingestion through-
put demands of large-scale training jobs. We run benchmarks
spanning 256 GH200 superchips and show that Mixtera does
not limit training throughput. As an example for how it enables
model accuracy improvements, we demonstrate how to imple-
ment the ADO dynamic data mixing algorithm in Mixtera and
its positive impact on model accuracy.

2 Background

Foundation models are large-scale deep learning models suitable
for a variety of tasks [9, 17]. We focus on text-generation models,
i.e., autoregressive large language models (LLMs) and multimodal
vision-language models (VLMs). As of 2025, most such models are
based on the Transformer architecture [68]. They are trained on vast
corpora of training data in a self-supervised manner to maximize
the likelihood of predicting the tokens of a training sequence.

Training phases. Training is structured into pre-training and
post-training phases. In pre-training, we train a randomly initialized
model on a general-purpose data corpus (Section 2.1) to derive a base
model. In post-training, common steps include supervised finetuning
(SFT) and alignment. In this paper, we perform only pre-training
experiments due to space constraints, but Mixtera can also be used
for post-training.

Distributed training. Training foundation models requires
distributing computation across multiple GPUs. Training frame-
works typically employ 3D parallelism [6, 23], consisting of pipeline
parallelism (PP), i.e., partitioning the model layers between de-
vices [24, 45, 46], tensor parallelism (TP), i.e., splitting individual
tensor operations within layers across devices [57, 59], and data par-
allelism (DP), i.e., replication of the model across device groups. PP
and TP together are referred to as model parallelism. Nodes within
the same DP group process identical inputs, while nodes across DP
groups receive different data. As an extension to DP, fully-sharded
data parallelism (FSDP) shards model parameters, gradients, and
optimizer states across data-parallel workers [82].

Mixtera: A Data Plane for Foundation Model Training SIGMOD’26, June 2026, Bengaluru, India

2.1 Training Data and Data Mixing

Pre-training data stems from data collections that include samples
from various sources (e.g., Wikipedia, Common Crawl dumps, or
arXiv papers). Public examples of such collections include Red-
Pajama [70], Dolma [62], and FineWeb [49]. Besides aggregating
data from different sources, data engineers typically clean the data,
which usually involves deduplicating, filtering (e.g., removing per-
sonal identifiable information), and applying classifiers to the data
samples (e.g., to obtain a toxicity score for each sample) [37, 49].

Data properties and mixtures. Each data sample has proper-
ties, such as its source (e.g., Wikipedia) or its language (e.g., English).
ML engineers need to define a data mixture, which describes how
the data is combined based on its characteristics, e.g., we can train
on 50% data from Common Crawl and 50% from movie subtitles.
The data can be combined based on multiple characteristics simulta-
neously. For instance, besides Common Crawl and movie subtitles,
we might also use 80 % French and 20% Italian data.

Mixing algorithms. Selecting the best mixture is critical for
model performance [14, 58, 71, 75]. We differentiate static mixtures,
i.e., mixtures that remain constant over the entire training job, and
dynamic mixtures, i.e., mixtures that change during the training
job. Recent research proposes several algorithms for finding the
best static mixture or how to adjust the mixture dynamically dur-
ing training. Algorithms such as DoReMi [71] or the data mixing
laws [75] find a static mixture via small proxy models.

Curriculum learning is an example of a pre-defined dynamic
mixture. Xu et al. [72] order samples from easy to hard to improve
alignment. The SmolLM2 model was trained on 4 stages of mix-
tures [4]. Multilingual models are often first trained on English
data, followed by samples from other languages [54, 73].

Beyond such pre-defined schedules, for text-only models, there
is also work on adapting the data mixture to the model training
dynamics, e.g., by increasing the weight of data domains that have
high loss. Albalak et al. [3] model mixture components as arms
of a multi-armed bandit. Skill-it orders “skills” based on model
feedback [14]. Aioli builds upon Skill-it and provides a unified
framework for estimating the best mixture during training [13].
PiKE relies on gradient interactions [33]. In this paper, we use
Adaptive Data Optimization (ADO) [28] as an example of a dynamic
mixing algorithm.

2.1.1 Adaptive Data Optimization. Adaptive Data Optimization
(ADO) is a dynamic mixing algorithm that adjusts the data mix-
ture during training based on the model’s learning progress on
each domain [28]. The key idea is to prioritize domains where
the model shows rapid improvement while considering how much

each domain benefits from its own samples. ADO uses neural scal-
ing laws to model how the loss 𝐿𝑘 of each domain 𝑘 decreases
with the number of training samples 𝑛. To this end, it fits a power
law 𝐿̂𝑘 (𝑛) = 𝜀𝑘 + 𝛽𝑘𝑛−𝛼𝑘 for each domain. Here, 𝜀𝑘 represents the
irreducible loss of the domain, 𝛽𝑘 is a scaling factor, and 𝛼𝑘 deter-
mines how quickly the loss decreases. The parameters are re-fitted
during training. The algorithm combines two components to de-
termine the mixture weights. First, it estimates the learning speed
for each domain using the derivative of the scaling law. Second,
ADO maintains a credit assignment score 𝜆𝑘 (𝑡) that indicates how
much each domain contributes to its own progress, based on its
recent sampling frequency. These components are combined with
a prior (initial) distribution 𝜇𝑘 to compute an intermediate prefer-
ence distribution 𝜌𝑘 (𝑡). To ensure stability, the final distribution
𝜋𝑘 (𝑡) is then computed as a weighted average between 𝜌𝑘 (𝑡) and
𝜋𝑘 (𝑡)’s temporal average. Additionally, ADO enforces a minimum
sampling probability for each domain.

3 Current Challenges

We identify three challenges in the status quo of training data
management with current open-source infrastructure.

Challenge 1: Today’s training data storage systems lack

expressive, declarative APIs for data mixing. Training data is
typically stored and managed as files on distributed filesystems or
objects on cloud storage. As these systems are not natively built
for foundation model training data [69], they lack operators for
data selection, mixing, and ingestion into a training framework.
This also complicates lineage tracking, as there is no native way of
tracking which model was trained on which data when the data is
accessed via general-purpose filesystem calls.

Challenge 2: Preparing and materializing data mixtures

with offline preprocessing limits flexibility and increases

storage costs. The current approach to preparing training data
involves numerous manual offline steps with general-purpose data
processing and scripting frameworks (Figure 2a). For the offline
cleaning step (Section 2.1), ML engineers typically leverage data
processing frameworks like Spark [77], Beam [1], Data-Juicer [12],
or datatrove [50]. Subsequent data mixing can happen offline or on-
line. Current online data loaders sample data from directories that
reflect the mixing property, e.g., one directory per source dataset
(Table 1), and therefore do not support switching the property we
mix on nor specifying hierarchical mixtures across arbitrary prop-
erties. Due to the limited functionality of current online solutions,
engineers often write ad hoc offline mixing scripts that create a new
mixed copy of the cleaned dataset for each training run, which can

Table 1: Feature comparison of Mixtera and other open-source data loaders.

Mixtera HF Datasets WebDatasets Mosaic Streaming

File formats

jsonl(.zst), parquet,
webdataset

jsonl(.zst), parquet,
webdataset, csv webdataset Mosaic Data Shard,

jsonl, csv
Static filtering declarative using map UDFs using map UDFs using map UDFs
Static mixtures on all properties on filesystem dirs. on filesystem dirs. on filesystem dirs.

Dynamic mixtures on all properties no no no
Native 3D parallelism yes yes, manual rank handling data parallel only yes, for specific rank order

Checkpointing yes using TorchData by replaying, not natively yes

SIGMOD’26, June 2026, Bengaluru, India Maximilian Böther, Xiaozhe Yao, Tolga Kerimoglu, Dan Graur, Viktor Gsteiger, and Ana Klimovic

drastically increase storage usage and cost. As some frameworks
like Megatron [46, 59] even require pre-tokenized data, this leads to
duplication of the even bigger tokenized data files. Offline mixing
also drastically increases the iteration time and makes it difficult
to get a quick sense of how a mixture will impact model training
when exploring different mixing policies.

Challenge 3: Lack of support for dynamicmixtures during

training.How to train the best model on a given dataset is an active
research area, with dynamic mixing emerging as a prominent new
technique. Offline preparation of the mixture or other approaches
such as online mixing based on fixed directory weights or using a
vanilla DBMS without additional infrastructure does not support
dynamic mixture at all. Additionally, even for researchers who are
familiar with the latest mixing techniques, implementing modern
mixing algorithms in a training pipeline is a painful, tedious, and
error-prone task, as the codebases for mixing algorithms are often
tailored directly to the training framework, as well as the data
collection and properties used in the respective papers. This hinders
the adoption of dynamic mixing algorithms and makes researching,
reproducing, and comparing difficult.

4 Mixtera’s Design

We address these challenges for training data management by build-
ing Mixtera, a foundation model training data plane. We derive
the following design goals for such a system.

Goal G1: The system should implement a centralized data layer
that users can conveniently and declaratively query to mix data
across arbitrary properties, independent of the filesystem structure.

Goal G2:The system needs to be lightweight, i.e., easily integrate
into existing training deployments without requiring setting up
many components.

Goal G3: The system needs to ensure high-throughput, deter-
minism, and reproducibility, while being user-friendly and flexible.

Goal G4: The system must support adjusting the mixture dy-
namically during training.

4.1 Data Model

Mixtera operates on training datasets of the following structure:
Sample. A sample 𝑠 is the atomic unit of training data, as sup-

plied by the user. In LLM training, the sample unit is typically a
text string or a pre-tokenized sequence; VLM training uses multi-
modal samples (e.g., text-image pairs). Sample granularity varies in
practice, ranging from short texts to full documents.

Property. A property 𝑝 is a named attribute of a sample, with
a domain D𝑝 of possible values. Properties characterize samples
and can be single-valued (each sample has exactly one value, e.g.,
𝑝lang ∈ {English, French, German}), ormulti-valued (each sample
may have multiple values, e.g., 𝑝topic ⊆ {science, politics}).

Data Collection. A data collection C is a tuple (S, P, 𝜙) where
S = {𝑠1, 𝑠2, . . . , 𝑠𝑛} is a finite set of samples, P = {𝑝1, 𝑝2, . . . , 𝑝𝑚} is
a set of properties, and 𝜙 : S × P → P

(
D𝑝

)
maps each (sample,

property) pair to a subset of values from that property’s domain.
We also refer to it as the sample metadata.

Mixtera defines mixtures fully independent of the filesystem–it
is fully based on (logical) properties.

Mixtera Server

Storage Layer
DFS/Cloud/…

Training Node

MixteraDataCollection

Query

TCPServer
Query

QueryResult
ChunkerIndex

via worker pool

one-time
indexing scan

ChunkDistributor

…

…

Chunk
…

Chunk

Chunk

Files

MixteraClient

Dataset

Figure 3: Mixtera system architecture.

Mixture Key.Amixture key 𝑘 is a partial mapping from a subset
of properties P′ ⊆ P to sets of values, i.e., 𝑘 : P′ → ⋃

𝑝∈P′ P
(
D𝑝

)
,

with ∀𝑝 ∈ P′ : 𝑘 (𝑝) ⊆ D𝑝 . For mixture keys 𝑘1 and 𝑘2, we say 𝑘1
matches 𝑘2, if f.a. 𝑝 ∈ dom(𝑘1), 𝑝 ∈ dom(𝑘2) ∧ 𝑘1 (𝑝) ∩ 𝑘2 (𝑝) ≠ ∅.
This relation is non-symmetric.

Component Key. A sample 𝑠 ∈ S induces a component key 𝑘𝑠 ,
s.t. ∀𝑝 ∈ P : 𝑘𝑠 (𝑝) = 𝜙 (𝑠, 𝑝).

Data Mixture. A data mixture 𝑀 is a mapping from mixture
keys to target proportions:𝑀 : K → [0, 1] with ∑

𝑘∈K 𝑀 (𝑘) = 1.

4.2 System Overview

Mixtera is a read-only layer that can be deployed on top of exist-
ing sets of samples S, which are typically stored in a distributed
filesystem or cloud object store. Figure 3 shows the client-server
architecture of the system. The server runs on one node, and each
training node runs client instances. Mixtera manages a central-
ized database which stores the mapping 𝜙 , i.e., the sample metadata
(G1). This database needs to be populated by scanning all samples
once before it can be used for training. Since the metadata typically
consists of integers and floats, it is much smaller than the actual
samples. Mixtera defers the reading of actual sample payloads to
clients. This enables to scale to large-scale training datasets.

Mixtera assigns every sample a unique ID. It allows model de-
velopers to declaratively query the relevant samples for a training
job. To remain lightweight (G2), Mixtera does not reorganize or
modify the data files on disk. It provides a standard iterator for
model training that can be used in conjunction with loaders like
torch.DataLoader. Mixtera is agnostic to the training frame-
work, supports training interruptions using checkpoints, and en-
sures determinism (G3) through careful shuffling, i.e., for identi-
cal queries, Mixtera always provides data in an identical order,
which is important for reproducibility and debugging issues like
loss spikes [18, 29, 51, 66, 83]. It supports adjusting the mixture
during training (G4) by transferring chunks (lists of pointers to
samples) whose mixture can change over time.

Data types.Mixtera supports diverse sample types (e.g., pre-
tokenized text in binary files, strings in jsonl/ parquet, text–image
pairs in webdatasets). This covers many relevant use cases. Even
modern foundationmodels for tabular data treat tables as strings [8].
The sample granularity is inherent to the ingested dataset. As Mix-
tera is a read-only layer, it adopts whatever granularity the data

Mixtera: A Data Plane for Foundation Model Training SIGMOD’26, June 2026, Bengaluru, India

1 client = MixteraClient("127.0.0.1", 8080)
2 job_id = "test_job"
3 query = Query.for_job(job_id).select(("license","==","CC"))
4 mixture = StaticMixture(
5 { MixtureKey({"language": ["JavaScript"]}): 0.7,
6 MixtureKey({"language": ["HTML"]}): 0.3 },
7 chunk_size=1024)
8 qea = QueryExecutionArgs(mixture=mixture, num_workers=4,
9 dp_groups=1, nodes_per_group=1)
10 rsa = ResultStreamingArgs(node_id=0, dp_group_id=0, job_id=job_id)
11 ds = MixteraTorchDataset(client, query, qea, rsa)
12 dl = torch.utils.data.DataLoader(ds, batch_size=1024, num_workers=4)
13
14 for batch in dl:
15 print(batch)

Figure 4: An example query using Mixtera.

already uses. While some features such as tokenization or image de-
coding are modality-specific, the system is fundamentally agnostic
to the sample unit.

Chunks. Chunks are Mixtera’s core abstraction for scheduling
and mixture enforcement. Abstractly, a chunk Cℎ is a collection of
samples {𝑠1, . . . , 𝑠𝑐 } of fixed size 𝑐 = |Cℎ |, and the set conforms to
the current mixture 𝑀 . That is, for each mixture key 𝑘 ∈ K , the
proportion of samples in Cℎ matching 𝑘 is approximately 𝑀 (𝑘).
In implementation, Mixtera does not materialize or transfer the
sample payloads S. Instead, chunks contain only pointers to sam-
ples: metadata specifying which samples in which files to load (e.g.,
“samples 100-150 in wikipedia.jsonl.zst”).

Deferred reading. Storing only metadata and distributing point-
ers to samples (as opposed to ingesting the actual sample payloads
into the system) has several advantages. First, users can store data
in their locations of choice (e.g., an object store, or a distributed
filesystem). Chunks are independent of the filesystem structure
(G1). Second, it allows Mixtera to support dynamic mixtures (G4),
as the data composition of chunks can change over time. Third,
the pointer-model avoids creating a data fetching bottleneck at the
Mixtera server. The server only creates chunks and each client
fetches the data they need. Fourth, we avoid a lock-in effect and
allow for easy adoption on existing data collections (G2). Last, we
natively support other modalities (whereas image or video payloads
would not be straightforward to ingest at scale into a database).

Query interface. In Figure 4, we show an example query that
statically selects only Creative Commons data, and then mixes
HTML and JavaScript data in a 70:30 ratio during training. Mixtera
takes care of executing the query and obtaining the samples without
needing to worry about correctness, even in distributed training.
The user only needs to provide the ID of the node and its data
parallel group, which is obtained from the training framework.

Mixtera allows expressing static filter operations on properties
via SPJ-style predicates, and static as well as dynamic mixtures
across all properties (G4). The static filter defines the ground set of
all potential data (e.g., only CC), while the mixture describes the
proportions of how the data from this set is mixed during training
(JavaScript:HTML ratio). The MixtureKey class operationalizes its
formal definition (Section 4.1) in a user-friendly Python API.

Executing a query. Before submitting a query, users catalog all
samples at the server. This involves defining the data schema as a
Python class, which allows Mixtera workers to scan all samples
and populate the database. Users then can submit queries. A query
is executed at the server in two phases. First, Mixtera applies static

filters from the query (e.g., English-only) to obtain all samples eligi-
ble for training (QueryResult). Second, during training, the server
distributes chunks of that query result to the client(s), which spec-
ify which samples to train on. The server ensures that the chunks
are distributed correctly, i.e., tensor- and pipeline parallel stages
receive the same input data. The server generates chunks according
to the current mixture, i.e., it iteratively takes samples from the
query result such the chunk abides by the current mixture. As an
iterable data loader, Mixtera faces the challenges of determinism
and checkpointing. We address this by shuffling based on the query
and support to load/store the query state.

High-throughput data fetching. The challenge with not re-
organizing the user’s data files is that Mixtera needs to handle
suboptimal data layout. Files may have arbitrary distributions of
data properties (e.g., even if a file only contains Wikipedia data,
data in different languages might be distributed randomly across
files). Formats like jsonl were not built with random access in
mind, yet chunks force clients to load individual samples from files.
To avoid data stalls (G3), Mixtera reads subsequent samples in files
if the samples follow the same properties (e.g., same language). This
is achieved through intervals (𝑓 , [𝑖, 𝑗), 𝑘) identifying consecutive
samples in file 𝑓 that share the same component key 𝑘 . A chunk is
thus represented as a collection of intervals whose total size equals
𝑐 and whose union satisfies the mixture. We use nested CTEs in
DuckDB to find these intervals as fast as possible (Section 5.3).
Users are not required to use sequential file formats.

Alternative design considerations. A metadata SQLite data-
base at each client might seem like a simple alternative. While DBs
can federate and query external sources with SPJ-style predicates,
we still need an interface between the storage, query engine, and
training framework, which can turn query results into input tensors
(G1, G2). Furthermore, using a database at each client would not
enable dynamic mixing algorithms (G4). Mixtera serves as the
interface that connects a metadata database to the training frame-
work, with a full feature set for dynamic model training. It also
alleviates ML engineers from manually maintaining the database.
We do not find centralized metadata management to be a bottleneck
even for large-scale training jobs, because the work at the service
is minimal (occasional chunk creation and distribution). Mixtera
maintains high training throughput for large training jobs (Sec-
tion 6.3). Industry frameworks like Google’s Pathways [5] also rely
on a single Python process to coordinate large-scale training. A
current limitation of Mixtera’s design is that it does not enable
incorporating new data into an existing query. However, this (i)
affects nearly all dataloaders as they all build some internal state,
and (ii) and can in all cases be dealt with by executing a new query,
e.g., in continual pretraining from a model checkpoint.

Open source ecosystem. Mixtera comes as a Python package
that provides the entry point for the server and abstractions for
the client. The codebase, consisting of approximately 11 k lines of
Python and C++ (excluding tests), is open-source1. It is rigorously
tested with a full set of unit and integration tests. We are continuing
to add features and welcome contributions.

1Available at https://github.com/eth-easl/mixtera.

https://github.com/eth-easl/mixtera

SIGMOD’26, June 2026, Bengaluru, India Maximilian Böther, Xiaozhe Yao, Tolga Kerimoglu, Dan Graur, Viktor Gsteiger, and Ana Klimovic

5 Implementation

We explain how Mixtera ingests sample metadata (Section 5.1),
how it executes queries and creates chunks (Section 5.2), how those
chunks are parsed at the client (Section 5.3), and describeMixtera’s
integration into training frameworks (Section 5.4).

5.1 Metadata Insertion

Mixtera manages the metadata 𝜙 in an MixteraDataCollection
(MDC) which uses DuckDB [52] as the underlying DBMS to ef-
ficiently store and query sample properties. The implementation
itself is agnostic to the DBMS. While DuckDB’s pluggable exten-
sion architecture (or similar approaches like PostgreSQL’s Foreign
Data Wrappers or SQLite’s Virtual Tables) would allow to query the
sample files directly, to defer reading (Section 4.2) to the training
nodes, the MDC serves as a metadata index.

Initial ingestion. To populate the MDC, users need to define a
MetadataParser. A MetadataParser operationalizes the property
set P and extraction of 𝜙 (𝑠, 𝑝) for each sample 𝑠 . It defines the
schema specifying P and domains D𝑝 for each property. In Python,
the schema is a list of properties which have a type (e.g., string
or enum), a nullable field, and a multiple field, describing whether
a single sample can take multiple values for this properties (e.g.,
several languages). Mixtera adjusts the underlying database table
by mapping the Python schema to a proper database schema. The
system comes with a set of pre-defined parsers for common datasets
and enables users to define custom parsers.

File scanning. Metadata ingestion is a one-time preprocessing
step. The MDC first accumulates all data files and prepares the
database schema. Mixtera then parallelizes metadata extraction
using a worker pool. Workers process files in batches, where each
worker sequentially reads samples from its assigned files and ap-
plies the MetadataParser to extract property values (e.g., parsing
JSON fields). Since DuckDB does not support concurrent insertions
from multiple processes, Mixtera aggregates worker results in the
main process. To optimize insertion throughput, we convert the
collected metadata to columnar PyArrow in-memory tables before
bulk insertion into DuckDB. Importantly, metadata extraction is
decoupled from training. Users must define properties upfront, but
can later add new properties by re-scanning the dataset with an
updated parser without affecting existing metadata.

5.2 Server-Side Query Execution

After registering data, users can execute queries. When a client
sends a query, the server executes it in two phases. The first phase
is performed via the MDC and applies static filters to identify all
relevant samples, and groups consecutive samples into intervals.
The second phase constructs a data structure called ChunkerIndex
that enables efficient, mixture-aware chunk generation.

5.2.1 SQL generation and interval detection. After receiving an
object representation of the query (c.f. Figure 4), similar to ORM
frameworks like sqlalchemy, the Mixtera server generates a base
SQL query from this object. This query returns a table in which
each row represents a sample that the user is interested in. Mixtera
ensures that the generated SQL matches the MDC’s table schema,
e.g., whether a property can have multiple values or not.

A key challenge for Mixtera is efficient random access to sam-
ples within files. File formats like jsonl or parquet are optimized
for sequential reading rather than random access. To address this,
Mixtera implements an interval-based approach: the server wraps
the base filtering query in an outer query that identifies continuous
ranges of samples sharing identical properties within the same file.
Consider the following example result of a base filtering query:

Sample ID File ID Language License

1 1 JavaScript MIT
2 1 JavaScript MIT
3 1 JavaScript MIT
4 1 Python Apache
5 1 Python Apache
1 2 Python Apache

Instead of treating these as six individual samples, Mixtera
identifies three intervals:

• Interval 1: Samples 1-3 (File 1, JavaScript, MIT)
• Interval 2: Samples 4-5 (File 1, Python, Apache)
• Interval 3: Sample 1 (File 2, Python, Apache)

Even though samples 4-5 (file 1) and 1 (file 2) share the same
properties (Python, Apache), they are in different files and thus
form separate intervals. The primary key is formed by the sample
and file ID. Mixtera constructs a SQL query that processes the
data in multiple stages:
(1) First, Mixtera establishes a Common Table Expression (CTE)

named base_data that contains the filtered samples:
WITH base_data AS (

-- Our generated base filtering query here, e.g.,
SELECT * FROM samples WHERE license = 'MIT'),

(2) Next, Mixtera identifies breaks in the sample sequence us-
ing window functions. The grouped_samples CTE calculates
the difference between consecutive sample IDs within groups
sharing the same properties:
grouped_samples AS (

SELECT *, sample_id - LAG(sample_id, 1, sample_id)
OVER (PARTITION BY file_id, lang, license

ORDER BY sample_id) AS diff
FROM base_data),

Here, a diff value of 1 indicates consecutive samples, while
any other value indicates a break in the sequence.

(3) The intervals CTE then groups the sequences into intervals:
intervals AS (

SELECT file_id, lang, license,
SUM(CASE WHEN diff != 1 THEN 1 ELSE 0 END)

OVER (PARTITION BY file_id, lang, license
ORDER BY sample_id) AS group_id,

MIN(sample_id) as int_strt, MAX(sample_id)+1 as int_end
FROM grouped_samples
GROUP BY file_id, lang, license, diff, sample_id)

The group_id is incremented when there is a break in the
sequence, creating unique identifiers for each interval.

(4) Finally, Mixtera aggregates the results to get the final intervals:
SELECT file_id, lang, license, group_id,
MIN(int_strt) as interval_start, MAX(int_end) as interval_end

FROM intervals
GROUP BY file_id, lang, license, group_id
ORDER BY file_id, interval_start;

Mixtera: A Data Plane for Foundation Model Training SIGMOD’26, June 2026, Bengaluru, India

Using intervals of samples can only improve I/O if sampleswithin
files are clustered by properties and not randomly distributed. Since
Mixtera is read-only by design, it does not re-shuffle data.

5.2.2 Chunk generation. After obtaining the query result with all
relevant intervals, the server next runs the chunk generation algo-
rithm. This algorithm is based on the ChunkerIndex data structure,
which organizes sample ranges by their properties. We re-visit the
MixtureKey concept from an implementation perspective.

MixtureKey abstraction. A MixtureKey represents a set of
properties and their values. The class implements the formal defini-
tion from Section 4.1: a partial mapping 𝑘 : P′ → ⋃

𝑝∈P′ P(D𝑝) for
some P′ ⊆ P. The matching relation enables flexible querying: 𝑘1
matches𝑘2 if∀𝑝 ∈ dom(𝑘1) : 𝑝 ∈ dom(𝑘2)∧𝑘1 (𝑝)∩𝑘2 (𝑝) ≠ ∅. This
matching is crucial as the resulting interval table from DuckDB con-
tains the full cross-product of all properties—a sample might have
values for language, license, size, topic, and more—while a mixture
specification may consider only a subset of these properties, as we
discuss in the next paragraph. It also allows us to define mixtures on
multiple properties with multiple values, instead of being limited to
a single property (c.f. Section 3). To ensure deterministic behavior,
we implement a total ordering over keys based on the number of
properties, property names, and their values. We sometimes refer to
a specific MixtureKey as a domain, e.g., the key for lang:English
defines the domain of English samples.

The ChunkerIndex. Recall from Section 4.1 that each sample
𝑠 ∈ S induces a component key 𝑘𝑠 defined f.a. 𝑝 ∈ P as 𝑘𝑠 (𝑝) =
𝜙 (𝑠, 𝑝). The ChunkerIndex organizes intervals by these component
keys, i.e., ChunkerIndex :

{
𝑘𝑠 | 𝑠 ∈ S′

}
→ DatasetID→ FileID→

List [[𝑖, 𝑗)], whereS′ is the filtered subset from the query, and inter-
vals [𝑖, 𝑗) group consecutive samples sharing the same 𝑘 . While the
index maintains the complete property information of samples, it
enables efficient sample lookup: given a mixture key 𝑘 , we identify
all component keys 𝑘 where 𝑘 matches 𝑘 , and retrieve their associ-
ated intervals. Consider a simplified example with MixtureKeys as
strings. A fragment of the ChunkerIndex might look like:
{ "language:JavaScript,HTML;license:MIT": {

ds_1: {
file_1: [(1,4), (10,15)], # half (right) open ranges
file_2: [(1,2)]

}},
"language:Python;license:Apache": { ds_1: { file_1: [(1,2)] }}}

In this example, a query for language:JavaScriptwouldmatch
the first key despite it having the additional license property and
two assigned languages. This demonstrates how the MixtureKey
matching allow to work with the full property/value cross-product
in the index while supporting mixtures on subsets of properties.

Building the ChunkerIndex. The index is built in parallel in a
C++ extension, processing the interval table fromDuckDB provided
in Apache Arrow format. Operating on the Arrow table in Python
would be too slow due to Global Interpreter Lock (GIL) constraints.
Using multiprocessing to circumvent the GIL would require ex-
pensive pickling of nested dictionaries. Our C++ implementation
uses multithreading and only acquires the GIL at the end.

Each C++ worker thread maintains a local index for a subset of
the data. For each row (interval), each worker constructs a C++-
representation of the MixtureKey, inserts the interval into its local

Algorithm 1: Chunk generation algorithm. Some early
exits and details are omitted for readability.
1 Initialize remaining_counts from mixture;
2 chunk← ∅;
3 progress← true;
4 while ∃key : remaining_counts[key] > 0 and progress do
5 progress← false;
6 foreach mixture_key in remaining_counts do
7 foreach component_key in chunker_index do

8 if mixture_key matches component_key then

9 Take up to remaining_counts[mixture_key]
samples from
chunker_index[component_key];

10 if got > 0 samples then
11 Add samples to chunk;
12 Update remaining_counts;
13 progress← true;

14 if remaining_counts[key] > 0 and is best-effort then
15 Redistribute remaining counts to other keys;

16 if ∀key : remaining_counts[key] = 0 then
17 return chunk;

index under this key, maintaining sorted order within each file’s
interval list. After parallel processing, the local indices are merged,
combining interval lists while preserving their sorted order. In the
end, we convert the index to Python objects, which often is the
most expensive operation of this process.

Chunk generation. As defined in Section 4.2, a chunk Cℎ is
abstractly a collection of 𝑐 samples conforming to mixture 𝑀 :
K → [0, 1]. In implementation, Cℎ contains only interval pointers
(𝑓 , [𝑖, 𝑗), 𝑘) rather than materializing samples. Given𝑀 and chunk
size 𝑐 , Algorithm 1 constructs Cℎ such that for each mixture key
𝑘 ∈ K , the number of samples with component keys matching 𝑘
approximates𝑀 (𝑘) ·𝑐 . Users can set a mixture to be strict, requiring
exact proportions, or best-effort (continue to generate chunks even
if the mixture cannot be exactly fulfilled). The algorithm iterates
through each 𝑘 ∈ K , identifies all matching component keys 𝑘 in
the ChunkerIndex, and extracts intervals until the target count is
reached. This algorithm supports dynamic mixture, as the mixture
can be changed between chunks.

For each key in the mixture, the algorithm keeps track of how
many samples we still need to put into the chunk that is currently
being generated (remaining_sizes). For each key in the mixture
(line 6), it checks whether it matches a component key in the chun-
ker index (lines 7-8). If we find a match, we try and obtain samples
(ranges) from the ChunkerIndex for this component key (lines 9+).
A call to obtain samples for a component key can return fewer
samples than requested, e.g., if we are looking for JavaScript data
and we need 5 samples, but we only have 3 JavaScript/MIT licensed
samples, the according component key can only return 3 samples.
Requesting 𝑛 samples is implemented as requesting 𝑚 intervals
(from potentially multiple files) such that the overall number of

SIGMOD’26, June 2026, Bengaluru, India Maximilian Böther, Xiaozhe Yao, Tolga Kerimoglu, Dan Graur, Viktor Gsteiger, and Ana Klimovic

samples in the returned list of intervals is ≤ 𝑛. The lists of intervals
per file are merged into the existing sorted list of intervals.

If, after traversing all component keys, we did not find sufficient
samples for a key in the mixture, in strict mode, chunk generation
fails. In best-effort mode, the algorithm redistributes any unfulfilled
counts to the remaining mixture components proportionally to
their original ratios. For example, if we need 100 JavaScript samples
but only find 80, the remaining 20 samples would be proportionally
distributed among other components. To avoid infinite loops, we
only distribute samples to keys on which we were able to find any
samples in the last iteration. This redistribution mechanism can be
enabled or disabled, allowing users to either prioritize strict mixture
fidelity (which may stop training when samples are exhausted) or
training as long as possible with approximated proportions.

Implementation details. The take samples operation (line 9) is
implemented using Python generators that yield ranges of samples
and accept the number of samples needed as input through the
generator’s send mechanism. This hides the complexity of range
management and allows for efficient, stateful iteration over avail-
able ranges while maintaining control over sample counts. There is
one generator per component key that returns ranges containing
𝑁 samples based on the ChunkerIndex, ensuring ranges are split
such that excess data is never returned.

Determinism. Mixtera’s implementation of this algorithm
ensures determinism because (1) the keys are processed in a consis-
tent order and (2) when multiple component keys match a mixture
key, they are considered in a deterministic order based on a seeded
shuffle of all possible keys. This ensures that identical queries with
identical mixtures always produce identical chunks, which is im-
portant for debugging and reproducibility [18, 29, 51, 66, 83].

Sampling and randomness. Chunks are generated randomly,
but not completely i.i.d.: (i) each chunk must contain the propor-
tions specified by the mixture𝑀 , and (ii) all matching component
keys are considered equal. Consider a mixture key 𝑘 = {lang: JS}
that matches component keys 𝑘1 = {lang: JS, license: MIT} and
𝑘2 = {lang: JS, license: Apache}. The order in which 𝑘1 and 𝑘2 are
processed is determined by a seeded shuffle, ensuring determinism
across runs while providing randomization across different match-
ing keys. Once a component key is selected, samples are drawn from
its intervals. Within each file, intervals are used for I/O efficiency,
but the order in which files are processed is shuffled.

Importantly, if the sample count for mixture key 𝑘 is satisfied by
samples from 𝑘1, samples from 𝑘2 may never be selected for that
chunk. This is not a sampling bias but rather reflects the mixture
specification. By omitting the license property from 𝑘 , the user
declares all JavaScript samples equivalent regardless of license. To
ensure unbiased sampling across all relevant dimensions, users
should include all properties they care about in the mixture.

Mixture types. All mixture classes implemented in Mixtera
share a common interface that converts their specifications into a
mapping from MixtureKeys to sample counts per chunk, used by
the chunk generation algorithm:
– Static Mixture: Users explicitly specify fixed proportions for dif-

ferent property combinations (Figure 4). This supports arbitrary
properties and is not limited by, e.g., directory boundaries.

– Inferring Mixture: Automatically derives mixture proportions
from the data distribution in the query result: This is useful when
users want to maintain the natural distribution of properties.

– Hierarchical Mixture: An advanced static mixture that allows
specifying nested property relationships. For example, users can
define that 50 % of the data should be legal texts, and within that,
60 % should be in English and 40% in French. Mixtera automati-
cally flattens this hierarchy into appropriate MixtureKeys.

– Mixture Schedule: A “meta mixture” that allows for temporal
changes in mixture composition by defining a sequence of mix-
tures that activate at specific training steps. This enables curricu-
lum learning with predefined schedules.

– Dynamic Mixture: Allows adaptation of mixture proportions dur-
ing training based on feedback (e.g., loss) from the model. If an
algorithm is already supported by Mixtera (e.g., ADO), it can
be used directly.
Chunk distribution. In distributed training, it is important

to guarantee that all nodes within the same data parallel group
operate on the same input tensors. Mixtera’s ChunkDistributor
wraps around the chunk generation component, and hands out
chunks correctly to the training nodes, i.e., the same chunks in the
same order to nodes within the same group, and different chunks
to nodes in different groups for data parallelism. To this end, the
clients need to register at the server with their respective node and
group identifiers. To avoid redundant serialization overhead, the
distributor caches chunks in serialized form until all nodes in a
group have received them.

5.2.3 Networking. We implement a TCP-based client-server proto-
col. The server uses Python’s asyncio framework to handle multiple
concurrent client connections. The protocol is message-based, with
eachmessage consisting of a task identifier followed by task-specific
payload data. Tasks, for example, include the execution of a query
or sending out a new chunk to a client. To handle network issues
gracefully, the client implementation includes automatic reconnec-
tion with exponential backoff and configurable timeouts. Note that
only small objects such as chunks and not actual training data is
transferred via Mixtera, to avoid training bottlenecks.

5.3 Client-Side Reading

Mixtera’s client-side abstractions provide a generator that, given
a chunk from the server, yields the actual sample payloads 𝑠 ∈ S.
This generator follows a two-level nested iteration pattern: an outer
iteration over chunks and an inner iteration over samples within
each chunk. The outer iteration hides the complexity of network
transfer and chunk generation, while the inner iteration hides the
complexity of going from pointers in the chunk to actual samples.
The previous section discussed the outer step, and we now discuss
this inner step, i.e., how, given a chunk, we yield sample payloads.

Sample granularity. A critical aspect of Mixtera’s client-side
reading is understanding the sample unit. As defined in Section 4.1,
a sample 𝑠 is the atomic unit of training data as supplied by the
user. The sample granularity is inherent to the ingested dataset
S. Mixtera is a read-only layer and does not modify or redefine
this granularity. In practice, sample granularity varies significantly,
from books to partial sentences.

Mixtera: A Data Plane for Foundation Model Training SIGMOD’26, June 2026, Bengaluru, India

Varying granularities creates a challenge for mixture enforce-
ment. If samples come in different lengths, enforcing mixture pro-
portions at the sample level may not reflect the actual mixture at
the token level seen during training. A single long sample from one
domain may contribute orders of magnitude more tokens than a
short sample from another domain. To address this, Mixtera pro-
vides three processing modes that offer different trade-offs between
mixture guarantee granularity and sample utilization.

Processing modes. A chunk can be processed in three mixture
processing modes with different trade-offs. The modes influence in
what order samples are yielded, i.e., in what granularity the mixture
is guaranteed, and whether string samples or tokenized sequences
are yielded. All modes begin by instantiating one active iterator per
property combination. These iterators traverse files and ranges for
their respective properties in a randomized order while maintaining
sequential reading within consecutive ranges for I/O efficiency.

Overall mixture mode. This mode processes active iterators
in a randomized round-robin fashion until depletion. This ensures
the mixture ratio is maintained at the chunk level.

Window mixture mode. This mode guarantees the mixture
on a window smaller than the chunk size. Similarly to chunk gen-
eration, we determine how many samples per property we yield
within a window. We then go through the properties in a random-
ized, round robin fashion until a window has been yielded, and
start again. This mode can operate in best-effort (continues after
mixture cannot be guaranteed) or strict mode (stops at the first
window where the mixture cannot be maintained). In strict mode,
the number of overall samples yielded from the chunk might be
smaller than the chunk size.

Tokenized mixture mode. This mode addresses the sample
granularity issue identified above by enforcing mixture ratios at
the token level rather than the sample level. It wraps the active
iterators with a tokenizing iterator that takes the incoming string
samples, tokenizes them, and yields tokenized samples (integer
lists) with the correct sequence length. By setting the window size
equal to the chunk size we guarantee that each chunk yields at least
one window of tokenized samples. This ensures that the mixture
𝑀 is respected in terms of actual training tokens, regardless of the
varying lengths of the underlying samples 𝑠 ∈ S.

While this mode ensures precise mixture ratios at the token
level, it may result in partial utilization of longer samples. This
is an inherent issue of unbalanced datasets, and while Mixtera
provides flexibility to handle it, the best approach is to process the
datasets such that samples are (roughly) of similar size.

File reading. The active iterators wrapped by the processing it-
erators shuffle the file order but maintain sequential reading within
files. This acknowledges that formats like jsonl and parquet are
optimized for sequential rather than random access, and enables
us to linearly iterate through the sorted lists of ranges per file. The
complexity of reading different file formats internally is hidden by
abstractions for each format. Using the xopen library we support
both compressed and uncompressed jsonl. We optimize the read-
ing of parquet files by calculating and loading only the relevant the
row groups, and build upon pyarrow’s parquet-batched-reading
implementation. WebDatasets is the only format supporting ran-
dom access to samples, and we implement support using the wids
library. The format also gives us the option to store text-image

Table 2: Model configurations.

Hid. Dim. Interm. Dim. KV-Hds. Q-Hds. Layers RoPE-𝜃

162M 768 2 048 12 12 12 10 000
1.6B 2 048 5 464 16 16 24 10 000
3.6B 3 072 8 192 8 24 28 500 000

pairs, as it can contain different modalities. To mitigate latency
from initial file operations that we observed on distributed filesys-
tems, Mixtera employs a prefetching iterator that uses background
threads to hide file opening latency.

Determinism. All random operations are seeded based on the
current chunk, ensuring identical behavior across nodes. Combined
with the server-side chunk generation and distribution, this guar-
antees that all clients within a data parallel group yield exactly the
same samples in exactly the same order. This property is crucial
for both reproducibility across runs and correctness in distributed
training. We validated this using a suite of integration tests as well
as the dataloader verification test provided by nanotron.

Dataset abstractions. Training frameworks typically require
specific dataset interfaces that support multiprocessing with
worker processes. Besides a general-purpose interface, Mixtera
offers a class extending torch’s IterableDataset, and a class com-
patible with the Hugging Face API. Each worker process at each
node operates on its own chunk.

5.4 Framework Integration

Mixtera integrates into the training framework for checkpointing
and transferring model feedback (e.g., per-domain loss).

Checkpointing.Mixtera’s API offers a function to be called
on checkpoint. To restore from a checkpoint, we need to know (i)
which chunks have been handed out to which nodes and (ii) which
data loader worker processes have yielded how many samples for
each node. Mixtera implements (i) using the ChunkDistributor,
which caches the query and the current state on checkpoint and can
restore the in-memory state of the iterators for chunk generation
based on this information. For (ii) the MixteraTorchDataset uses
a shared memory segment to share with the main training process
the status of the data loader workers. Whenwe restore a checkpoint,
we restore the state at the server, hand out the last chunks to each
worker that they were working on, and then at the workers discard
the previously yielded samples.

Training feedback. Dynamic mixing algorithms require a loss
per property domain. Mixtera offers a simple function to forward
this information to the server. Users still need to adjust the training
framework. The loss implementation needs to be adjusted s.t. it is
not immediately reduced but stored per domain. The per-domain
losses along all training nodes need to be synchronized, e.g., via
all-reduce, before passing it to Mixtera.

6 Evaluation

We evaluate Mixtera to answer the following questions:
(1) How canwe integrate dynamicmixing algorithms intoMixtera

and what role do mixtures play for model accuracy?
(2) How does Mixtera’s throughput compare to other data loaders

and how well does it scale?
We explore the first question in a dynamic mixture case study

on LLMs (Section 6.1) and a static mixture case study for VLMs

SIGMOD’26, June 2026, Bengaluru, India Maximilian Böther, Xiaozhe Yao, Tolga Kerimoglu, Dan Graur, Viktor Gsteiger, and Ana Klimovic

Table 3: Task performance and perplexities across models and mixtures. ↑/↓ indicate higher/lower is better.

Model Mixture HellaSwag ↑ WinoGrande ↑ ARC-E ↑ ARC-C ↑ Lambada (OAI) ↑ OpenBookQA ↑ PIQA ↑ SlimP. Perp. ↓ Pile Perp. ↓

1.6B
ADO 0.411 0.577 0.577 0.262 0.603 0.236 0.707 25.20 27.79

Default 0.380 0.549 0.543 0.243 0.551 0.218 0.695 26.55 30.72
Natural 0.383 0.556 0.559 0.247 0.562 0.214 0.698 26.04 29.94

3.6B
ADO 0.449 0.626 0.601 0.276 0.624 0.244 0.732 22.58 22.26
Default 0.415 0.597 0.579 0.255 0.592 0.210 0.706 22.09 22.02

Natural 0.419 0.586 0.593 0.276 0.598 0.206 0.723 21.99 22.53

(Section 6.2). We explore the second question with throughput
benchmarks (Section 6.3).

Setup.We run experiments onHPECray Supercomputing EX254n
blades, each hosting two Quad GH200 nodes. Each node contains 4
interconnected groups of a Grace CPUwith 72 cores, 128 GB DRAM,
and a H100 Hopper GPU with 96GB of HBM. The nodes are con-
nected using a 200Gb/s HPE Slingshot interconnect. The machines
run Ubuntu Server 24.04 LTS with kernel 5.14.21. We build on the
NVIDIA NGC 25.01 container with Python 3.12, a nightly build of
PyTorch 2.7, NVIDIA driver 550.54.15, and CUDA 12.8. We add sup-
port for Mixtera and other data loaders on our fork of Torchtitan
(commit ae4e402)2 [34]. Torchtitan is part of the PyTorch ecosys-
tem and straightforward to set up. We use Llama3-like models with
configurations in Table 2. The 162M and 1.6B models are based on
Jiang et al. [28], while 3.6B follows Meta’s Llama 3.2 model. They
do not have the same parameter count as torchtitan does not tie
the weight embeddings. Our training and benchmarking data is
based on The Pile [20], a frequently-used data collection used for
exploring data mixing [3, 28, 71]. We split long samples with more
than 1 500 words, with max. 20 k samples per file.

6.1 Dynamic Mixing using ADO

We demonstrate how to implement dynamic mixing algorithms in
Mixtera and their impact on model performance, taking the ADO
algorithm (Section 2.1.1) as an example.

Training setup. We test the 1.6B model from Jiang et al. [28]
with the EleutherAI/GPT-NeoX-20B tokenizer and a 3.6B model
(Table 2) following Llama-3.2-3B from Meta, including its tok-
enizer. We omit the results from the 162M model for brevity. We
use a sequence length of 2048. For ADO, we follow the codebase
and discard the first 500 steps for fitting the scaling laws, start with
fitting them at step 1 000, and then re-fit the laws every 1 000 steps
with a subsampling frequency of 10. We also follow the codebase
and “use the same step size” for all domains, i.e., instead of using
the count of how often a domain has been sampled to fit the scaling
laws like in the paper, we average the total sample counts evenly
across all domains. We train using non-strict token-level mixtures
for 30 000 steps, using a learning rate of 0.001 with a linear warmup
for 500 steps and linear cooldown for 3 000 steps, and the AdamW
optimizer. For 1.6B, we use 64 GPUs with a microbatch size of 32,
and for 3.6B we use 128 GPUs with a microbatch size of 16, resulting
in a global batch size of 2048 and total 125 B tokens. As mixtures,
we test the default weights as in DoReMi [71], the natural weights
as in Jiang et al. [28], and ADO initialized with the natural weights.

2Available at https://github.com/eth-easl/torchtitan-mixtera.

Evaluation metrics.We follow Jiang et al. [28] and report both
downstream task performance as well as perplexity. For down-
stream tasks, we report performance on HellaSwag [78], Wino-
Grande [56], ARC-Easy and ARC-Challenge [16], Lambada Ope-
nAI [48], OpenBookQA [41], and PIQA [7]. For perplexity, we report
the average unweighted token perplexity on (i) the validation set
of The Pile [20], and on (ii) SlimPajama [61] as a dataset we did
not train on. We collect all metrics using EleutherAI’s lm-eval-
harness [21], and use the unnormalized accuracy.

ADO algorithm performance overview. Table 3 shows the
performance of all models and mixtures for the final checkpoint
after learning rate cooldown. We mark in bold the best value within
a model/step group. Generally, ADO beats the static mixtures across
all downstream benchmarks. On 1.6B, it also has the best (lowest)
perplexity on both SlimPajama and The Pile, while on 3.6B, the
static mixtures have slightly lower perplexity. This shows that ADO
leads to better performance for downstream tasks across scales, and
demonstrates the usage of a dynamic mixing algorithm in Mixtera.

Jiang et al. [28] report that on the 1.6B model, ADO sometimes
performs worse than static mixtures, which we do not confirm.
Since ADO’s official repository is tightly coupled with the training
framework, even after corresponding with the authors, we were not
able to identify the root cause of this, partly also because their code
is bound to training on specific cloud instances. Mixtera decouples
the training framework from the mixing algorithm, which helps
developers port existing algorithms to their setups (Section 3).

Performance over time. To demonstrate how different tasks
behave over the training, we show the performance of the 1.6B
model on HellaSwag, OpenBookQA, and ARC-Easy for all training
checkpoints in Figure 5. Every benchmark exhibits different be-
havior. For HellaSwag, ADO consistently increases its margin over
the static mixtures. For OpenBookQA, ADO performs similarly to
the natural mix in the intermediate checkpoints, and benefits a lot
during the learning rate cooldown. For ARC-Easy, the mixtures
perform similarly, with ADO having a small edge. This motivates
future research on data mixing using Mixtera–for example, we
might be able to use intermediate evaluations instead of loss to
dynamically adjust the mixture.

Mixture over time.We showcase the mixture over time for the
six largest domains in Figure 6. We show the mixture obtained on
the 1.6B model, but unlike Jiang et al. [28], we do not observe that
other models/tokenizers lead to largely different mixtures. In all
cases, the weight of GitHub and ArXiv rapidly decreases. Notably,
themore parameters, the higher theweight of Books3, and the lower
the weight of PubMed Central. On the 3.6B model, OpenWebText2’s

https://github.com/eth-easl/torchtitan-mixtera

Mixtera: A Data Plane for Foundation Model Training SIGMOD’26, June 2026, Bengaluru, India

5 k 10 k 15 k 20 k 25 k 30 k
Training Step

0.25
0.30
0.35
0.40

A
cc
ur
ac
y

HellaSwag performance over training

5 k 10 k 15 k 20 k 25 k 30 k
Training Step

0.15

0.20

A
cc
ur
ac
y

OpenBookQA performance over training

5 k 10 k 15 k 20 k 25 k 30 k
Training Step

0.3
0.4
0.5

A
cc
ur
ac
y

ARC-E performance over training

ADO
Default
Natural

Figure 5: Performance of the 1.6B model on HellaSwag, OpenBookQA, and ARC-Easy, measured every 2 500 steps.

0 k 5 k 10 k 15 k 20 k 25 k 30 k
Training Step

0.0
0.1
0.2
0.3

W
ei
gh

t

ArXiv
Books3

Github
OpenWebText2

Pile-CC
PubMed Central

Figure 6:Mixture for the 1.6Bmodel for the 6 largest domains.

weight surpasses PubMed Central’s weight before step 5 000, while
for the 1.6B model, they only slowly approach.

Mixtera implementation. We implement ADO in Mixtera
in ca. 800 LOC. The class only handles the core algorithm, while
Mixtera hides the complexity of the actual mixing from the algo-
rithm implementation. We implement it from scratch as the original
implementation of ADO is fully tied to their training framework
and data setup. The original ADO implementation updates the cur-
rent mixture 𝜋 after every step and samples the next batch based
on this distribution. This is a small discrepancy to Mixtera, which
can only use a new mixture when generating a new chunk. Each
chunk may then yield several batches of data with the samemixture.
We still send the per-domain losses on every training step at the
client to update ADO’s internal state at the server. Whenever a new
chunk is generated, the current mixture 𝜋 from ADO is queried
(Algorithm 1), and the server generates a chunk according to that
mixture. As we find in the experiments, this slight slack does not
harm performance, due to the stochastic nature of sampling.

In order to use ADO, at the training nodes, the only change
needed is the implementation of a per-domain loss. For this, the loss
function (e.g., cross-entropy) needs to be called without reduction,
which gives a loss per token. As Mixtera provides which token
belongs to which domain, we can aggregate the losses per domain.
We then perform an all-reduce operation across all training nodes
to get the global per-domain losses and send this to the server.

During development, we switched from nanotron [26] to torchti-
tan [34]. Notably, as Mixtera is agnostic to the training framework,
no changes in Mixtera were required. This showcases the benefit
of having a system like Mixtera that decouples the mixing from
the training framework.

Takeaways. Dynamic mixtures can improve model accuracy.
ADO scales beyond the 1.6B model tested in the original paper, and
beats the default weights on all benchmarks. Our experiments also
demonstrate that a synchronous algorithm, which uses a new mix-
ture at each training step, adapts to Mixtera’s chunking system.

Table 4: VLM scores for hand-picked mixtures.

Model SQA-IMG TxtVQA GQA MME MMMU POPE

Jia et al. [27] 64.0 49.6 58.6 1256.5 28.3 86.3
Infer. Mix. 55.88 37.92 54.63 1238.76 29.4 86.6

Mix. #252 63.01 43.87 56.14 1268.05 30.4 85.7
Mix. #107 58.50 45.18 58.36 1283.62 30.1 85.54
Mix. #155 57.14 42.37 57.14 1290.06 29.3 86.63

6.2 Multimodal LLaVA Finetuning

To showcase Mixtera’s multimodal capabilities, we evaluate the
impact of static mixtures for finetuning a LLaVA-style model [36].
We are not aware of prior work on the impact of data mixtures
on VLMs. The LLaVA framework trains an adapter between a pre-
trained image encoder and a pre-trained LLM, and then fine-tunes
the adapter and LLM on visual instruction-following data.

Training setup.We base our training setup on the TinyLlaVA
Factory codebase by Jia et al. [27]. We rely on a recipe from the
Factory and use google/siglip-so400m-patch14-384 [2] as the
vision encoder, TinyLlama/TinyLlama-1.1B-Chat-v1.0 [79] as
the LLM, and a 2-layer MLP as the adapter [64]. We train all models
on one GH200 node with 4 data parallel GPUs. For pre-training,
we use a global batch size of 512 with a learning rate of 0.001, and
for finetuning use a global batch size of 128 with a learning rate of
0.00002. We use a chunk size of 256, a cosine learning rate sched-
uler and the Adam optimizer. We follow Liu et al. [36, 63] and pre-
train the adapter on a 558 k subset of the LAION-CC-SBU dataset
with BLIP captions. For finetuning, we follow the TinyLLava Fac-
tory [67] “LLaVA dataset” and use 665 k samples from six datasets
(COCO [35], GQA [25], OCR-VQA [42], TextVQA [60], and Visu-
alGenome (VG) [30], and LLaVA’s text-only SFT annotations [36]).
We pre-train the adapter once, and then vary the proportions of
the finetuning datasets. We randomly generate 256 mixtures for
finetuning. Since the number of datapoints in comparison to LLM
training is small, we use a best-effort mixture and ensure we go
through all samples exactly once. All models see the same data, but
in a different order.

Benchmarks.We evaluate the models on the GQA [25], SQA-
IMG [38], TextVQA [60], POPE [32], MME [19], and MMMU [76]
benchmarks. We collect all metrics using TinyLLaVA Factory.

Results. In Table 4, we show the results reported by Jia et al. [27],
the results we obtain using the inferring mixture (Section 5.2.2),
and three mixtures out of the generated mixtures that perform
well. While the inferring mixture does not achieve their reported
results, this could be either due to different data dynamics in their
training, or due to a different evaluation setup we cannot reproduce
as their model weights are not public. Nevertheless, in particu-
lar on MME/MMMU/POPE, the mixtures outperform the baseline.
Mix. #252 is weighted towards TextVQA (29.1 %) and OCR-VQA

SIGMOD’26, June 2026, Bengaluru, India Maximilian Böther, Xiaozhe Yao, Tolga Kerimoglu, Dan Graur, Viktor Gsteiger, and Ana Klimovic

0 1 2 4
Data Workers

0

500

1000

kT
ok

en
s/
se
c

Hf-Iter
Hf-Map

Mosaic
Mixtera (512)

Mixtera (1024)
Mixtera (2048)

Figure 7: Data loader throughput depending on the number

of workers. The number in brackets indicates the chunk size.

(19.5 %), with equal proportions of COCO (21.9%) and VG (21.9 %);
GQA (4.0 %) and SFT annotations (3.6 %) contribute minimally. Mix.
#107 places a large emphasis on SFT annotations (28.9 %) and VG
(27.4 %), followed by COCO (25.5 %); GQA (5.3 %) and TextVQA
(5.1 %) have lower representation, while OCR-VQA (7.8 %) remains
a minor component. Mix. #155 prioritizes OCR-VQA (30.3 %) and
TextVQA (25.7 %), and SFT annotations (22.7 %); VG (13.2 %) and
COCO (6.9 %) are underrepresented, while GQA (1.2 %) is least uti-
lized. Overall, despite seeing the same samples globally, the mix-
tures play a big role for model accuracy.

6.3 Throughput Benchmarks

We now focus on throughput and compare Mixtera with other
data loaders across various configurations. The goal is avoiding
data stalls, i.e., training throughput should not be reduced because
the GPU is waiting for data [10, 15, 22, 31, 43, 44, 55, 81]. We want to
show thatMixtera enables on-the-fly data streamingwith dynamic
mixing without lowering throughput in comparison to other data
loaders. We measure throughput in tokens per second. Note that
smaller models and more data parallelism increase the pressure on
the data loader, while larger models reduce the pressure as the
training computation takes longer. If a data loader can sustain
training small models at scale on a high-end platform like the
GH200, its performance is sufficient for other scenarios as well.

We run Mixtera with chunk sizes of 512, 1024, and 2048. We
compare to well-known state-of-the-art data loaders, i.e., the it-
erable HuggingFaceDataset by Torchtitan (Hf-Iter), a mapped
version (Hf-Map), and the Mosaic StreamingDataset [65] (Mosaic).
The difference between Hf-Iter and Hf-Map is that similar to
Mixtera, Hf-Iter loads and tokenizes the data on the fly, while
Hf-Map preprocesses all data, including tokenization. Note that
none of these data loaders support dynamic mixing (Table 1), they
just read files from front to back. We evaluate throughput on the
162M model since larger models only lead to lower throughput, as
discussed above. We always use FSDP since Torchtitan only enables
bfloat16 training if sharding is used. We activate compilation,
disable activation checkpointing, and use fused AdamW. We mea-
sure throughput for 30 steps, discarding the first step. We repeat
all measurements three times, i.e., in total we have 3x30 steps. We
use the Hugging Face EleutherAI/gpt-neox-20b tokenizer for all
data loaders. We store all data on an SSD-backed Lustre DFS.

Single-node.We train on a single GH200 node with 4 GPUs. We
use 2 data parallel replicates and shards. In Figure 7 we show the
throughput for the data loaders depending on the number of data
workers, i.e., data loading processes from the torch.DataLoader.

4 8 16 32 64 128 256
Number of GPUs

0

20

40

M
To

ke
ns
/s
ec

Hf-Iter
Hf-Map
Mosaic

Mixtera (512)
Mixtera (1024)
Mixtera (2048)

Figure 8: Data loader throughput when increasing the num-

ber of data parallel nodes.

We test up to 16 workers, where 0 workers indicate that data is
loaded in the same process as the main training loop. The plot
only show results up to 4 workers as throughput does not increase
further. Without data workers, Mixtera has the highest average
throughput; with one worker, the other data loaders reach their
peak performance.

Overall, Mixtera provides similar throughput to the baselines
while having a much richer feature set, e.g., dynamic mixing. Notably,
Mixtera has higher throughput variance than other loaders for
lower number of workers. This is due to the random access into the
files. For every sample, it needs to open the file, seek to the correct
position, and load the data, instead of bulk-transferring all the data
as the other data loaders can do. This leads to the higher variance
in throughput indicated by the error bars, which overall leads to
slightly lower averages. With a higher number of workers and
larger chunk sizes, the variance decreases. When using 4+ workers,
Mixtera’s throughput matches the throughput of the baselines.
Additionally, increasing the chunk size also helps, and for the 0
worker case, Mixtera with a chunk size of 1024 or 2048 even has a
higher average throughput.

This benchmark setup is quite extreme, as we train a very small
162M model on an extremely fast GPU. For larger, state-of-the-art
model sizes, the throughput differences disappear, as computation
time spent within themodel forward and backward passes increases.
Mixtera’s client-side overhead is minimal; the primary operations
(chunk parsing and data fetching) introduce negligible overhead.

Scaling out.We investigate how the data loaders scale for larger
training jobs with higher data parallelism. We scale up to 64 GH200
nodes with a total of 256 data parallel GPUs. We find that using a
maximum number of 16 replication GPUs works best. For 4, 8, and
16 GPUs, we use half the GPUs as replication, and shard across the
rest. Figure 8 shows the results with 8 data workers. All data loaders
scale linearly. With more GPUs, the throughput variance increases
a bit for all systems. We attribute this to the random assignment of
nodes in the cluster by the Slurm scheduler across the 3 repetitions.
We do not test pipeline or tensor parallelism as (i) this is not neces-
sary for the 162M model (and a larger model would only stress the
data loaders less), (ii) the data loaders besides Mixtera do not easily
support 3D parallelism, (iii) increasing data parallelism increases
the load on the system more. This demonstrates the scalability of
Mixtera’s single-controller design and implementation, as well
as the efficiency of its chunk generation, enabling it to effectively
supply chunks to all clients even at scale.

File formats.All previous benchmarks use uncompressed jsonl
data. We test compressed jsonl (jsonl.zst), parquet, and the

Mixtera: A Data Plane for Foundation Model Training SIGMOD’26, June 2026, Bengaluru, India

Books3 CC + ArXiv Only CC Small Domains
Filter Predicate

0

500

1000

kT
ok

en
s/
se
co
nd

512 CS / 0 W
2048 CS / 0 W

512 CS / 2 W
2048 CS / 2 W

Figure 9: Throughput depending on the filtering predicate

with 0 and 2 workers.

0 1 2
Data Workers

0

500

1000

kT
ok

en
s/
se
co
nd

Regular (512)
Clustered (512)

Regular (1024)
Clustered (1024)

Figure 10: Throughput on clustered vs. regular data.

webdatasets format in the data loaders that support them. No-
tably, only Mixtera supports all of these formats. We find that the
underlying file format does not impact the training throughput and
therefore omit a plot. This observation holds across different num-
bers of data workers, where we also observe minimal performance
variation among the data loaders.

Predicates. The previous benchmarks select all domains within
The Pile. To show how a filtering predicate impacts throughput,
in Figure 9, we show the throughput for chunks sizes 512/2048, and
0/2 data workers, across four representative predicates: Books3 only
(large samples), CommonCrawl (CC) and ArXiv (frequent domains
with small and large samples), CC only (frequent but small samples),
and a set of infrequent domains (Enron Emails, NIH ExPorter,
PhilPapers, EuroParl, USPTO).

With 0 data workers, throughput varies with the predicate; more
workers stabilize throughput. For chunk size 512, Only CC achieves
~587 kTokens/s, while Books3 reaches ~776 kTokens/s. These dif-
ferences stem from different file access patterns. Because The Pile
is shuffled, large domains are more likely to appear in clusters,
reducing repeated file scans. Domains also differ in sample sizes:
large text samples yield multiple training examples from a single
read, lowering total data transfer, as seen with Books3. With two
workers, Mixtera masks these effects and throughput is uniform.

Clustering. If data is clustered, Mixtera can generate longer
intervals and thereby reduce the amount of data transfers. Figure 10
compares the throughput of the regular benchmarking data with a
clustered version that sequentially writes out each domain’s data.
For a small number of workers, we generally observe an increase in
avg. throughput and a slight decrease of variance. As before, using
more workers hides these effects.

6.4 Data Ingestion

Before executing queries, the user must ingest metadata (c.f. Sec-
tion 5.1). During ingestion, Mixtera reads all samples, extracts
their metadata, and inserts it into the underlying metadata data-
base. This cost is paid only once; thereafter, arbitrarily many queries
can be executed. In Figure 11 we report time spent reading the
samples (scanning all files) and inserting metadata. We benchmark
this for varying dataset sizes (10 %, 100 %, and 250% of The Pile)

10% / 1 A
t.
10% / 10 A

t.
100%

/ 1 A
t.

100%
/ 10 A

t.
250%

/ 1 A
t.

250%
/ 10 A

t.0

1000

Ti
m
e
(s
ec
)

35.7s 53.3s

315.1s

495.1s

910.6s

1529.7s

Read Samples Insert Samples Other

Figure 11: Ingestion time breakdown on 10%, 100%, and 250%

versions of The Pile with 1 and 10 attributes (3 run average).

10% / 1 A
t.
10% / 10 A

t.
100%

/ 1 A
t.

100%
/ 10 A

t.
250%

/ 1 A
t.

250%
/ 10 A

t.0

1000

Ti
m
e
(s
ec
)

28.6s 32.6s

339.8s 382.5s

1363.7s
1509.7s

DuckDB Query
C++ Chunker Index

Other
Initial Checkpoint

Figure 12: Execution time breakdown on 10%, 100%, and 250%

versions of The Pile with 1 and 10 attributes (3 run average).

and number of attributes (randomly generated to avoid correlation).
Other operations (e.g., parser setup) have negligible overhead.

The timings are obtained using Mixtera’s optimized default
settings: multithreaded file scanning (MT) and an insertion chunk
size of 2,000. Disabling MT increases the ingestion time from 315 to
around 3,000 seconds for the standard 100 % / 1 attribute case. With
MT enabled, decreasing the chunk size to 500 increases ingestion
time from 315 s to 340 s. Chunk sizes larger than 2,000 yield only
marginal benefit and increase the risk of out-of-memory errors.

6.5 Query Execution Latency Breakdown

When a query is executed in Mixtera, the main steps are querying
the populated ODC (DuckDB), building the ChunkerIndex, and,
optionally, writing the first checkpoint. In Figure 12, we give a
time breakdown for varying dataset sizes (10 %, 100 %, and 250%
of The Pile) and number of properties (randomly generated to
avoid correlation), following Section 6.4. For the 100 % / 1 attribute
case, DuckDB takes 32 s, and preparing the index takes 16 s due to
our C++ implementation. Persisting the initial state checkpoint of
the query dominates the runtime with 282 s. This is because we
have to serialize nested Python dictionaries, which is slow despite
engineering optimizations. Importantly, after this initial checkpoint,
future checkpoints at the server can be stored within milliseconds,
since we do not have to serialize the index again. If no Mixtera
checkpoints are needed, the serialization can be skipped.

Other systems. The streaming Hf-Iter data loader can basi-
cally start streaming data immediately, the Hf-Map data loader,
the default in nanotron, loads and tokenizes the data first, taking
2 h 51min for The Pile 100 %. However, to use streaming data load-
ers such as Hf-Iter or Mosaic, in many scenarios, users would
also need to run more offline preprocessing, e.g., to perform static
filtering, or reshuffling the data if we want to mix on a different
property. Mixtera avoids this offline preprocessing completely.

SIGMOD’26, June 2026, Bengaluru, India Maximilian Böther, Xiaozhe Yao, Tolga Kerimoglu, Dan Graur, Viktor Gsteiger, and Ana Klimovic

7 Conclusion and Future Work

Understanding how data mixture recipes affect model quality is
an active and critical area of ML research. We design Mixtera
to enable researchers and model developers to easily and quickly
train models with a variety of mixtures across arbitrary data prop-
erties and dynamically vary mixtures during training. Mixtera
is a declarative data plane for foundation model training that is
training framework-agnostic. We demonstrate Mixtera’s through-
put and scalability, as well as the impact of mixtures on model
quality for both LLMs and VLMs. The system lays the foundation
for implementing additional features, such as data lineage tracking
for model training, as it has a global view of the data, and enables
future research on compute-intensive modalities such as video [74]
and audio [80].

Acknowledgments

We thank Beste Güney for her contributions to Mixtera’s code-
base. We thank Antoni-Joan Solergibert i Llaquet, Imanol Schlag,
Steven Hand, Martin Jaggi, Antoine Bosselut, Alexander Hägele,
Loubna Ben Allal, Quentin de Laroussilhe, Paul Barham, Yiding
Jiang, Theodoros Rekatsinas, Gustavo Alonso, and Foteini Strati for
helpful discussions. This work was supported as part of the Swiss
AI Initiative by a grant from the Swiss National Supercomputing
Centre (CSCS) under project ID a09 on Alps. Maximilian Böther
is supported by the Swiss National Science Foundation (project
number 200021_204620).

References

[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-scale, unbounded, out-
of-order data processing. Proceedings of the VLDB Endowment 8, 12 (2015).
doi:10.14778/2824032.2824076

[2] Ibrahim M. Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas
Beyer. 2023. Getting ViT in Shape: Scaling Laws for Compute-Optimal Model
Design. In Proceedings of the Conference on Neural Information Processing Systems
(NeurIPS).

[3] Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. 2023. Ef-
ficient Online Data Mixing For Language Model Pre-Training. arXiv Preprint
(2023). doi:10.48550/arXiv.2312.02406

[4] Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guil-
herme Penedo, Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Pi-
queres Lajarín, Vaibhav Srivastav, Joshua Lochner, Caleb Fahlgren, Xuan-Son
Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher, Haojun Zhao,
Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and Thomas
Wolf. 2025. SmolLM2: When Smol Goes Big – Data-Centric Training of a Small
Language Model. arXiv preprint (2025). doi:10.48550/arXiv.2502.02737

[5] Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven
Hand, Dan Hurt, Michael Isard, Hyeontaek Lim, Ruoming Pang, Sudip Roy,
Brennan Saeta, Parker Schuh, Ryan Sepassi, Laurent El Shafey, Chandramohan A.
Thekkath, and Yonghui Wu. 2022. Pathways: Asynchronous Distributed Dataflow
for ML. In Proceedings of the Conference on Machine Learning and Systems (ML-
Sys).

[6] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying Parallel and Distributed
Deep Learning: An In-depth Concurrency Analysis. Comput. Surveys 52, 4 (2019),
1–43. doi:10.1145/3320060

[7] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. 2020.
PIQA: Reasoning about Physical Commonsense in Natural Language. Proceedings
of the Conference on Artificial Intelligence (AAAI). doi:10.1609/aaai.v34i05.6239

[8] Jan-Micha Bodensohn, Ulf Brackmann, Liane Vogel, Anupam Sanghi, and Carsten
Binnig. 2025. Unveiling Challenges for LLMs in Enterprise Data Engineering.
arXiv preprint (2025). doi:10.48550/arXiv.2504.10950

[9] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,

Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-
szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark
Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut,
Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong,
Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori
Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Ro-
han Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang,
Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Ji-
axuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui
Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2022. On the Opportunities
and Risks of Foundation Models. In arXiv preprint. doi:10.48550/arXiv.2108.07258

[10] Maximilian Böther, Ties Robroek, Viktor Gsteiger, Xianzhe Ma, Pınar Tözün,
and Ana Klimovic. 2025. Modyn: Data-Centric Machine Learning Pipeline Or-
chestration. In Proceedings of the Conference on Management of Data (SIGMOD).
doi:10.1145/3709705

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
Proceedings of Advances in Neural Information Processing Systems (NeurIPS).

[12] Daoyuan Chen, Yilun Huang, ZhijianMa, Hesen Chen, Xuchen Pan, Ce Ge, Dawei
Gao, Yuexiang Xie, Zhaoyang Liu, JinyangGao, Yaliang Li, Bolin Ding, and Jingren
Zhou. 2024. Data-Juicer: A One-Stop Data Processing System for Large Language
Models. In Proceedings of the International Conference on Management of Data
(SIGMOD). doi:10.1145/3626246.3653385

[13] Mayee F. Chen, Michael Y. Hu, Nicholas Lourie, Kyunghyun Cho, and Christopher
Ré. 2024. Aioli: A Unified Optimization Framework for Language Model Data
Mixing. In Proceedings of the International Conference on Learning Representations
(ICLR). doi:10.48550/arXiv.2411.05735

[14] Mayee F. Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic
Sala, and Christopher Ré. 2023. Skill-it! A Data-Driven Skills Framework for
Understanding and Training Language Models. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS). doi:10.48550/arXiv.2307.14430

[15] Zihao Chen, Chenyang Zhang, Chen Xu, Zhao Zhang, Jiaqiang Wang, Weining
Qian, and Aoying Zhou. 2025. Scheduling Data Processing Pipelines for Incremen-
tal Training onMLP-based RecommendationModels. In Companion of the Interna-
tional Conference on Management of Data (SIGMOD). doi:10.1145/3722212.3724454

[16] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal,
Carissa Schoenick, and Oyvind Tafjord. 2018. Think you have Solved Ques-
tion Answering? Try ARC, the AI2 Reasoning Challenge. arXiv preprint (2018).
doi:10.48550/arXiv.1803.05457

[17] Competition and Markets Authority. 2013. AI Foundation Models: Initial Report.
Technical Report. UK Government Agency.

[18] A. Feder Cooper, Jonathan Frankle, and Christopher De Sa. 2022. Non-
Determinism and the Lawlessness ofMachine Learning Code. In Proceedings of the
Symposium on Computer Science and Law (CSLAW). doi:10.1145/3511265.3550446

[19] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin,
Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. 2024.
MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language
Models. arXiv preprint (2024). doi:10.48550/ARXIV.2306.13394

[20] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and
Connor Leahy. 2020. The Pile: An 800GB Dataset of Diverse Text for Language
Modeling. arXiv preprint (2020). doi:10.48550/arXiv.2101.00027

[21] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi,
Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle
McDonell, NiklasMuennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, BenWang,
Kevin Wang, and Andy Zou. 2023. A framework for few-shot language model
evaluation. doi:10.5281/zenodo.10256836

[22] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramohan A
Thekkath, and Ana Klimovic. 2022. Cachew: Machine Learning Input Data
Processing as a Service. In Proceedings of the USENIX Annual Technical Conference
(ATC).

https://doi.org/10.14778/2824032.2824076
https://doi.org/10.48550/arXiv.2312.02406
https://doi.org/10.48550/arXiv.2502.02737
https://doi.org/10.1145/3320060
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.48550/arXiv.2504.10950
https://doi.org/10.48550/arXiv.2108.07258
https://doi.org/10.1145/3709705
https://doi.org/10.1145/3626246.3653385
https://doi.org/10.48550/arXiv.2411.05735
https://doi.org/10.48550/arXiv.2307.14430
https://doi.org/10.1145/3722212.3724454
https://doi.org/10.48550/arXiv.1803.05457
https://doi.org/10.1145/3511265.3550446
https://doi.org/10.48550/ARXIV.2306.13394
https://doi.org/10.48550/arXiv.2101.00027
https://doi.org/10.5281/zenodo.10256836

Mixtera: A Data Plane for Foundation Model Training SIGMOD’26, June 2026, Bengaluru, India

[23] Torsten Hoefler, Tommaso Bonoto, Daniele De Sensi, Salvatore Di Girolamo,
Shigang Li, Marco Heddes, Deepak Goel, Miguel Castro, and Steve Scott. 2024.
HammingMesh: A Network Topology for Large-Scale Deep Learning. Commun.
ACM 67, 12 (2024), 97–105. doi:10.1145/3623490

[24] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS).

[25] Drew A. Hudson and Christopher D. Manning. 2019. GQA: A New Dataset
for Real-World Visual Reasoning and Compositional Question Answering. In
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).
doi:10.1109/cvpr.2019.00686

[26] HuggingFace. 2025. Nanotron: Pretraining models made easy. https://github.com/
huggingface/nanotron

[27] Junlong Jia, Ying Hu, Xi Weng, Yiming Shi, Miao Li, Xingjian Zhang, Baichuan
Zhou, Ziyu Liu, Jie Luo, Lei Huang, and Ji Wu. 2024. TinyLLaVA Factory: A
Modularized Codebase for Small-scale Large Multimodal Models. arXiv preprint
(2024). doi:10.48550/arXiv.2405.11788

[28] Yiding Jiang, Allan Zhou, Zhili Feng, Sadhika Malladi, and J. Zico Kolter. 2024.
Adaptive Data Optimization: Dynamic Sample Selection with Scaling Laws. In
Proceedings of the International Conference on Learning Representations (ICLR).
doi:10.48550/arXiv.2410.11820

[29] Siddharth Karamcheti, Laurel Orr, Jason Bolton, Tianyi Zhang, Karan Goel,
Avanika Narayan, Rishi Bommasani, Deepak Narayanan, Tatsunori Hashimoto,
Dan Jurafsky, Christopher D. Manning, Christopher Potts, Christopher Ré, and
Percy Liang. 2021. Mistral - A Journey towards Reproducible Language Model
Training.

[30] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S.
Bernstein, and Li Fei-Fei. 2017. Visual Genome: Connecting Language and Vision
Using CrowdsourcedDense ImageAnnotations. International Journal of Computer
Vision 123, 1 (2017). doi:10.1007/s11263-016-0981-7

[31] Michael Kuchnik, Ana Klimovic, Jiri Simsa, Virginia Smith, and George
Amvrosiadis. 2022. Plumber: Diagnosing and Removing Performance Bottlenecks
in Machine Learning Data Pipelines. In Proceedings of the Conference on Machine
Learning and Systems (MLSys).

[32] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and Ji-Rong Wen. 2023.
Evaluating Object Hallucination in Large Vision-Language Models. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing (EMNLP).
doi:10.18653/v1/2023.emnlp-main.20

[33] Zeman Li, Yuan Deng, Peilin Zhong, Meisam Razaviyayn, and Vahab Mirrokni.
2025. PiKE: Adaptive Data Mixing for Multi-Task Learning Under Low Gradient
Conflicts. arXiv preprint (2025). doi:10.48550/arXiv.2502.06244

[34] Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-
Chin Huang, Iris Zhang, Wei Feng, Howard Huang, Junjie Wang, Sanket Puran-
dare, Gokul Nadathur, and Stratos Idreos. 2024. TorchTitan: One-stop PyTorch
native solution for production ready LLM pre-training. arXiv preprint (2024).
doi:10.48550/arXiv.2410.06511

[35] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Proceedings of the European Conference on Computer Vision
(ECCV). doi:10.1007/978-3-319-10602-1_48

[36] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2024. Improved Baselines
with Visual Instruction Tuning. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr52733.2024.02484

[37] Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts,
Barret Zoph, Denny Zhou, JasonWei, Kevin Robinson, DavidMimno, and Daphne
Ippolito. 2024. A Pretrainer’s Guide to Training Data: Measuring the Effects of
Data Age, Domain Coverage, Quality, & Toxicity. In Proceedings of the Conference
of the North American Chapter of the Association for Computational Linguistics
(NAACL). doi:10.18653/v1/2024.naacl-long.179

[38] Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun
Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. 2022. Learn to Explain:
Multimodal Reasoning via Thought Chains for Science Question Answering. In
Proceedings of the Conference on Neural Information Processing Systems (NeurIPS).

[39] Meta. 2024. The Llama 3 Herd of Models. arXiv preprint (2024). doi:10.48550/
arXiv.2407.21783

[40] Meta. 2024. Llama 3.3 Model Card. https://github.com/meta-llama/llama-models/
blob/main/models/llama3_3/MODEL_CARD.md. Accessed: 2024-12-18.

[41] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can
a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question
Answering. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP). doi:10.18653/v1/d18-1260

[42] Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty.
2019. OCR-VQA: Visual Question Answering by Reading Text in Images. In
Proceedings of the International Conference on Document Analysis and Recognition
(ICDAR). doi:10.1109/icdar.2019.00156

[43] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram.
2021. Analyzing and mitigating data stalls in DNN training. Proceedings of the
VLDB Endowment 14, 5 (2021). doi:10.14778/3446095.3446100

[44] Derek G. Murray, Jiří Šimša, Ana Klimovic, and Ihor Indyk. 2021. tf.data: a
machine learning data processing framework. Proceedings of the VLDB Endowment
14, 12 (2021). doi:10.14778/3476311.3476374

[45] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In Proceedings
of the Symposium on Operating Systems Principles (SOSP). doi:10.1145/3341301.
3359646

[46] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia. 2021.
Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-
LM. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). doi:10.1145/3458817.3476209

[47] OpenAI. 2024. GPT-4 Technical Report. In arXiv preprint. doi:10.48550/arXiv.
2303.08774

[48] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham,
Raffaella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016. The LAMBADA dataset: Word prediction requiring a broad
discourse context. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL). doi:10.18653/v1/p16-1144

[49] Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret
Mitchell, Colin Raffel, Leandro Von Werra, and Thomas Wolf. 2024. The FineWeb
Datasets: Decanting the Web for the Finest Text Data at Scale. arXiv preprint
(2024). doi:10.48550/arXiv.2406.17557

[50] Guilherme Penedo, Hynek Kydlíček, Alessandro Cappelli, Mario Sasko, and
Thomas Wolf. 2024. DataTrove: large scale data processing. https://github.com/
huggingface/datatrove

[51] Shangshu Qian, Hung Viet Pham, Thibaud Lutellier, Zeou Hu, Jungwon Kim, Lin
Tan, Yaoliang Yu, Jiahao Chen, and Sameena Shah. 2021. Are My Deep Learning
Systems Fair? An Empirical Study of Fixed-Seed Training. In Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS).

[52] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In Proceedings of the International Conference on Management of
Data (SIGMOD). doi:10.1145/3299869.3320212

[53] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. In
Self-hosted preprint.

[54] Aquia Richburg andMarine Carpuat. 2024. HowMultilingual Are Large Language
Models Fine-Tuned for Translation? arXiv preprint (2024). doi:10.48550/arXiv.
2405.20512

[55] Ties Robroek, Neil Kim Nielsen, and Pınar Tözün. 2026. TensorSocket: Shared
Data Loading for Deep Learning Training. In Proceedings of the Conference on
Management of Data (SIGMOD). doi:10.1145/3749185

[56] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2021.
WinoGrande: An Adversarial Winograd Schema Challenge at Scale. Commun.
ACM 64, 9 (2021). doi:10.1145/3474381

[57] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake A. Hechtman. 2018. Mesh-TensorFlow: Deep
Learning for Supercomputers. In Proceedings of Advances in Neural Information
Processing Systems (NeurIPS).

[58] Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu,
Hongyi Wang, Bowen Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, and
Eric Xing. 2024. SlimPajama-DC: Understanding Data Combinations for LLM
Training. arXiv preprint (2024). 10.48550/arXiv.2309.10818

[59] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. arXiv preprint (2019). doi:10.48550/
arXiv.1909.08053

[60] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv
Batra, Devi Parikh, and Marcus Rohrbach. 2019. Towards VQA Models That Can
Read. In Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR). doi:10.1109/cvpr.2019.00851

[61] Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness,
and Nolan Dey. 2023. SlimPajama: A 627B token cleaned and deduplicated version
of RedPajama. https://huggingface.co/datasets/cerebras/SlimPajama-627B

[62] Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkin-
son, Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan
Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik,
Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle Richardson, Ze-
jiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh,

https://doi.org/10.1145/3623490
https://doi.org/10.1109/cvpr.2019.00686
https://github.com/huggingface/nanotron
https://github.com/huggingface/nanotron
https://doi.org/10.48550/arXiv.2405.11788
https://doi.org/10.48550/arXiv.2410.11820
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.18653/v1/2023.emnlp-main.20
https://doi.org/10.48550/arXiv.2502.06244
https://doi.org/10.48550/arXiv.2410.06511
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/cvpr52733.2024.02484
https://doi.org/10.18653/v1/2024.naacl-long.179
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.1109/icdar.2019.00156
https://doi.org/10.14778/3446095.3446100
https://doi.org/10.14778/3476311.3476374
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/p16-1144
https://doi.org/10.48550/arXiv.2406.17557
https://github.com/huggingface/datatrove
https://github.com/huggingface/datatrove
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.48550/arXiv.2405.20512
https://doi.org/10.48550/arXiv.2405.20512
https://doi.org/10.1145/3749185
https://doi.org/10.1145/3474381
10.48550/arXiv.2309.10818
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.1109/cvpr.2019.00851
https://huggingface.co/datasets/cerebras/SlimPajama-627B

SIGMOD’26, June 2026, Bengaluru, India Maximilian Böther, Xiaozhe Yao, Tolga Kerimoglu, Dan Graur, Viktor Gsteiger, and Ana Klimovic

Luke Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groen-
eveld, Jesse Dodge, and Kyle Lo. 2024. Dolma: An Open Corpus of Three Tril-
lion Tokens for Language Model Pretraining Research. arXiv preprint (2024).
doi:10.48550/arXiv.2402.00159

[63] The LlaVA Team. 2023. LLaVA Data Documentation. https://github.com/haotian-
liu/LLaVA/blob/main/docs/Data.md

[64] The LlaVA Team. 2024. TinyLLaVA: Model Zoo. https://github.com/TinyLLaVA/
TinyLLaVA_Factory?tab=readme-ov-file#model-zoo

[65] The Mosaic ML Team. 2022. streaming: Fast, accurate streaming of training data
from cloud storage. https://github.com/mosaicml/streaming/

[66] The TensorFlow Team. 2025. Tensorflow: Determinism. https://www.tensorflow.
org/api_docs/python/tf/config/experimental/enable_op_determinism

[67] The TinyLLaVA Factory Team. 2024. TinyLLaVA Factory: Prepare Datasets. https:
//tinyllava-factory.readthedocs.io/en/latest/Prepare%20Datasets.html

[68] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS).

[69] Zige Wang, Wanjun Zhong, Yufei Wang, Qi Zhu, Fei Mi, Baojun Wang, Lifeng
Shang, Xin Jiang, and Qun Liu. 2023. Data Management For Large Language
Models: A Survey. arXiv preprint (2023). doi:10.48550/ARXIV.2312.01700

[70] Maurice Weber, Daniel Y Fu, Quentin Gregory Anthony, Yonatan Oren, Shane
Adams, Anton Alexandrov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia
Adams, Ben Athiwaratkun, Rahul Chalamala, Kezhen Chen, Max Ryabinin, Tri
Dao, Percy Liang, Christopher Re, Irina Rish, and Ce Zhang. 2024. RedPajama: an
Open Dataset for Training Large Language Models. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS).

[71] Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng
Lu, Percy S Liang, Quoc V Le, Tengyu Ma, and Adams Wei Yu. 2024. Doremi:
Optimizing data mixtures speeds up language model pretraining. Advances in
Neural Information Processing Systems 36 (2024).

[72] Canwen Xu, Corby Rosset, Ethan C. Chau, Luciano Del Corro, Shweti Mahajan,
Julian McAuley, Jennifer Neville, Ahmed Hassan Awadallah, and Nikhil Rao. 2024.
Automatic Pair Construction for Contrastive Post-training. arXiv preprint (2024).
10.48550/arXiv.2310.02263

[73] Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Hassan Awadalla. 2024. A
Paradigm Shift in Machine Translation: Boosting Translation Performance of
Large Language Models. In Proceedings of the ML Evaluation Standards Workshop
at ICLR. doi:10.48550/arXiv.2309.1167

[74] Juncheol Ye, Seungkook Lee, Hwijoon Lim, Jihyuk Lee, Uitaek Hong, Youngjin
Kwon, and Dongsu Han. 2025. SAND: A New Programming Abstraction for
Video-basedDeep Learning. In Proceedings of the Symposium onOperating Systems
Principles (SOSP). doi:10.1145/3731569.3764847

[75] Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou, Jun Zhan, and Xipeng Qiu.
2024. Data Mixing Laws: Optimizing Data Mixtures by Predicting Language
Modeling Performance. arXiv preprint (2024). doi:10.48550/arXiv.2403.16952

[76] Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi Liu, Ge Zhang, Samuel
Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin
Yuan, Renliang Sun, Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao
Huang, Huan Sun, Yu Su, and Wenhu Chen. 2024. MMMU: A Massive Multi-
Discipline Multimodal Understanding and Reasoning Benchmark for Expert
AGI. In Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR). doi:10.1109/cvpr52733.2024.00913

[77] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: a unified engine for big data processing. Commun. ACM 59, 11 (2016),
56–65. doi:10.1145/2934664

[78] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019.
HellaSwag: Can a Machine Really Finish Your Sentence?. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics (ACL). doi:10.
18653/v1/p19-1472

[79] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. 2024. TinyLlama:
An Open-Source Small Language Model. arXiv preprint (2024). doi:10.48550/
arXiv.2401.02385

[80] Juntao Zhao, Qi Lu,Wei Jia, BoruiWan, Lei Zuo, Junda Feng, Jianyu Jiang, Yangrui
Chen, Shuaishuai Cao, Jialing He, Kaihua Jiang, Yuanzhe Hu, Shibiao Nong,
Yanghua Peng, Haibin Lin, Xin Liu, and Chuan Wu. 2025. OVERLORD: Ultimate
Scaling of DataLoader for Multi-Source Large Foundation Model Training. arXiv
preprint (2025). doi:10.48550/arXiv.2504.09844

[81] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, Sundaram
Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean Wu,
Christos Kozyrakis, and Parik Pol. 2022. Understanding Data Storage and
Ingestion for Large-Scale Deep Recommendation Model Training. In Proceed-
ings of the Annual International Symposium on Computer Architecture (ISCA).
doi:10.1145/3470496.3533044

[82] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu,
Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can
Balioglu, Pritam Damania, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit
Mathews, and Shen Li. 2023. PyTorch FSDP: Experiences on Scaling Fully Sharded
Data Parallel. Proceedings of the VLDB Endowment 16, 12 (2023). doi:10.14778/
3611540.3611569

[83] Donglin Zhuang, Xingyao Zhang, Shuaiwen Song, and Sara Hooker. 2022. Ran-
domness in Neural Network Training: Characterizing the Impact of Tooling. In
Proceedings of the Conference on Machine Learning and Systems (MLSys).

Received July 2025; revised October 2025; accepted November 2025

https://doi.org/10.48550/arXiv.2402.00159
https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md
https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md
https://github.com/TinyLLaVA/TinyLLaVA_Factory?tab=readme-ov-file#model-zoo
https://github.com/TinyLLaVA/TinyLLaVA_Factory?tab=readme-ov-file#model-zoo
https://github.com/mosaicml/streaming/
https://www.tensorflow.org/api_docs/python/tf/config/experimental/enable_op_determinism
https://www.tensorflow.org/api_docs/python/tf/config/experimental/enable_op_determinism
https://tinyllava-factory.readthedocs.io/en/latest/Prepare%20Datasets.html
https://tinyllava-factory.readthedocs.io/en/latest/Prepare%20Datasets.html
https://doi.org/10.48550/ARXIV.2312.01700
10.48550/arXiv.2310.02263
https://doi.org/10.48550/arXiv.2309.1167
https://doi.org/10.1145/3731569.3764847
https://doi.org/10.48550/arXiv.2403.16952
https://doi.org/10.1109/cvpr52733.2024.00913
https://doi.org/10.1145/2934664
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.48550/arXiv.2401.02385
https://doi.org/10.48550/arXiv.2401.02385
https://doi.org/10.48550/arXiv.2504.09844
https://doi.org/10.1145/3470496.3533044
https://doi.org/10.14778/3611540.3611569
https://doi.org/10.14778/3611540.3611569

	Abstract
	1 Introduction
	2 Background
	2.1 Training Data and Data Mixing

	3 Current Challenges
	4 Mixtera's Design
	4.1 Data Model
	4.2 System Overview

	5 Implementation
	5.1 Metadata Insertion
	5.2 Server-Side Query Execution
	5.3 Client-Side Reading
	5.4 Framework Integration

	6 Evaluation
	6.1 Dynamic Mixing using ADO
	6.2 Multimodal LLaVA Finetuning
	6.3 Throughput Benchmarks
	6.4 Data Ingestion
	6.5 Query Execution Latency Breakdown

	7 Conclusion and Future Work
	Acknowledgments
	References

