
NVM: Is it Not Very Meaningful for Databases?
Dimitrios Koutsoukos
ETH Zurich, Switzerland
dkoutsou@inf.ethz.ch

Raghav Bhartia
ETH Zurich, Switzerland

rbhartia@ethz.ch

Michal Friedman
ETH Zurich, Switzerland
mkorenberg@inf.ethz.ch

Ana Klimovic
ETH Zurich, Switzerland
aklimovic@inf.ethz.ch

Gustavo Alonso
ETH Zurich, Switzerland

alonso@inf.ethz.ch

ABSTRACT
Persistent or Non Volatile Memory (PMEM) offers expanded mem-
ory capacity and faster access to persistent storage. However, there
is no comprehensive empirical analysis of existing database engines
under different PMEM modes, to understand how databases can
benefit from the various hardware configurations. To this end, we
analyze multiple different engines under common benchmarks with
PMEM in AppDirect mode and Memory mode. Our results show
that PMEM in Memory mode does not offer any clear performance
advantage despite the larger volatile memory capacity. Also, using
PMEM as persistent storage usually speeds up query execution,
but with some caveats as the I/O path is not fully optimized and
therefore does not always justify the additional cost. We show this
to be the case through a comprehensive evaluation of different
engines and database configurations under different workloads.

PVLDB Reference Format:
Dimitrios Koutsoukos, Raghav Bhartia, Michal Friedman, Ana Klimovic,
and Gustavo Alonso. NVM: Is it Not Very Meaningful for Databases?.
PVLDB, 16(10): XXX-XXX, 2023. doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/dkoutsou/database-benchmarking-optane.

1 INTRODUCTION
To alleviate the memory pressure [43] and to accelerate I/O, Per-
sistent or Non Volatile Memory (PMEM) has been proposed as a
solution. PMEM is both cheaper and has a higher capacity than
DRAM, it is byte-addressable, and it persists data. This comes at
the price of higher latency and lower bandwidth.

Database researchers have extensively studied how to integrate
PMEM into a DBMS [22–25, 53]. Nevertheless, most of these studies
are based on simulating PMEM since they were done before it was
commercially available. The picture changed with the release of
Intel®Optane©DC [2]. Intel®Optane©DC can be configured in
Memory, AppDirect or Mixed mode. In Memory mode it operates
as a volatile memory extension, in AppDirect mode it serves as
byte-addressable persistent memory, and finally in Mixed mode
part of it runs in AppDirect mode and the rest in Memory mode.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Optane sparked numerous studies benchmarking and explaining
the behaviour of the hardware [42, 48, 50, 57]. These studies evalu-
ate the hardware’s characteristics and compare them to DRAM and
SSDs. For example, they show the large latency difference between
sequential and random accesses and the asymmetric behaviour of
PMEM between read and write bandwidth.

However, DBMSs are complex systems with many knobs that
behave very differently as workloads and input size vary. Existing
studies [29, 34, 59] give only a partial picture as they provide only
high-level conclusions and are mostly based on micro- or small-
scale benchmarks. Furthermore, they do not explore how database
knobs and different operations (e.g. join types) or query plans af-
fect PMEM’s behaviour. To this end, in this paper we provide the
first extensive analysis of database engines using Intel®Optane©DC
Persistent Memory. We run OLAP, OLTP, and key-value store work-
loads on various engines (PostgreSQL, MySQL, SQLServer, DuckDB,
VoltDB, and RocksDB) under various PMEM configurations altering
a variety of database/workload knobs.

Our results provide a complex picture showing that using PMEM
does not always lead to better performance, despite its nominal
advantages. Although PMEM is faster than SSDs, the I/O path is
not fully optimized since there is no OS prefetching and the CPU is
involved in I/O when using PMEM as persistent memory, wasting
valuable and often scarce processing capacity. Furthermore, in sys-
tems with resource contention due to mixed or write-heavy work-
loads, PMEM experiences a large performance drop. This makes
SSDs competitive in scenarios such as CPU-heavy queries with
high selectivity. Similarly, although PMEM offers extra volatile
memory capacity in Memory mode, this does not translate to per-
formance benefits. In conclusion, our findings indicate that in its
current form, PMEM does not provide large advantages to database
engines, particularly when considering its additional cost.

2 BACKGROUND
2.1 Persistent Memory
Persistent memory, also known as non-volatile or storage class
memory, combines the byte-addressability and low latency of DRAM
with the persistence and high capacity of disks. The technology is
available in the Intel®Optane©DC Persistent Memory Module [2]
(referred to as PMEM in the rest of the paper). It is faster and more
expensive than NAND Flash but slower and cheaper than DRAM.
PMEM comes in a DIMM form factor in 128, 256, or 512 GB sizes
and it is attached to a memory channel.

Each memory channel connects to the CPU via an integrated
Memory Controller (iMC) (Figure 1), which maintains read/write

https://doi.org/XX.XX/XXX.XX
https://github.com/dkoutsou/database-benchmarking-optane
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Cores Cores

LLC

iMC iMC

Socket #0

SSD

DRAMDRAM PMEM

Memory Bus

DRAM PMEMDRAM

Memory Bus

PCIe Bus

Figure 1: Socket topology

queues for PMEM DIMMs and ensures persistence on power failure.
With a maximum memory capacity of 6TB for a 2-socket server,
PMEM’s internal access granularity is 256 bytes, which can cause
read/write amplification [42]. Sequential access patterns have high-
est bandwidth, just 2-3x lower than DRAM [42].

PMEM operates in three modes: MemoryMode, AppDirect Mode,
and Mixed Mode. In Memory Mode, PMEM acts as volatile mem-
ory while DRAM serves as an L4 direct-mapped cache. The iMC
manages data traffic between DRAM and PMEM, with applications
experiencing DRAM latency for cache hits and both PMEM and
DRAM latency for cache misses. Applications do not need any
source code changes to use this mode.

In AppDirect Mode, PMEM serves as persistent storage, offering
striped read/write operations in interleaved or standalone regions.
Configurable namespaces modes include fsdax, devdax, sector,
and rawmode [19], with Intel recommending fsdax for DAX-aware
file systems. [19] Fsdax eliminates the OS page cache in the I/O path,
allowing mmap(2) to directly map to persistent memory media.

Finally, Mixed Mode combines Memory and AppDirect modes,
using DRAM as an L4 cache. Users can configure the PMEM per-
centage for volatile memory or disk usage, but Intel suggests a
minimum 1:4 DRAM to PMEM ratio for cost efficiency.

In the rest of the section, we briefly compare memory manage-
ment in traditional systems and AppDirect Mode, covering the
OS page cache, prefetching, and Direct Memory Access (DMA)
operations, as these are crucial for the results of the paper.

The OS page cache caches recently accessed data from disk.
This improves the performance of I/O operations. User-level pro-
grams access the page cache through system calls like read(2) and
write(2). The page cache uses techniques such as prefetching to
further improve I/O. Prefetching anticipates the data that will be
accessed and proactively caches them to ensure that the data is
readily available in memory when needed.

Direct memory access (DMA) is a feature that allows data to
be transferred between peripheral devices (such as network or
storage devices) andmemory without going through the CPU. DMA
operations transfer data directly between the peripheral device and
memory, bypassing the CPU and the page cache altogether.

In a traditional system, the OS page cache and prefetching are
used to improve the performance of I/O operations. However, in
the case of AppDirect mode, the OS page cache is not available
and applications use directly mmap(2) to establish mappings to
persistent memory. Also since Intel Optane Persistent Memory

is not a peripheral device, DMA is not available and the CPU is
necessarily involved in every data transfer between PMEM and the
CPU. Finally, although PMEM has its own prefetcher, it cannot use
the OS page cache for extra memory capacity and it has to rely
directly in the memory allocated by the application.

2.2 Related work
Even before the first PMEMcommercial implementation, researchers
adapted DBMS components to PMEM characteristics. Chatzister-
giou et al. [30] developed a library for transactional updates in data
structures designed for PMEM and Wang et al. [56] came up with a
distributed logging protocol for PMEM. Similarly, Arulraj and Pavlo
adapted different parts of a database engine to PMEM, such as the
buffer manager [64], and the storage and recovery [24, 26] protocol.
With their findings, they developed a DBMS, Peloton [1, 49], built to
leverage PMEM. Similarly, SAP HANA adapted their engine to inte-
grate PMEM [21], Alibaba developed their own durable PMEM data-
base [39] and Liu et al. [45] built a log-free OLTP engine for PMEM.
Van Renen et al. [53] evaluated how DBMSs perform when they use
either PMEM exclusively or a hybrid approach with a page-based
DRAM cache in front of PMEM. There has also been considerable
work on algorithms such as index joins [51], or data structures such
as B+-Trees [31, 32, 41, 55, 62], hash tables [35, 37, 38, 46, 47, 65],
and other indexes [40, 44, 63] on PMEM.

Most of the above efforts simulate PMEMusing software tools [36].
With the introduction of Intel Optane, it is possible to experiment
on the actual hardware. This has led to several performance studies.
Outside of the database context, Izraelevitz et al. [42] provided the
first comprehensive performance measurements of Intel Optane
including read/write latency with sequential and random access
patterns as well as the effect of factors such as the number of threads
on different PMEM modes (Memory-mode and AppDirect-mode).
This study was followed by others [50, 61] providing more in-depth
analysis and elaborating on the insights of Izraelevitz et al. Xiang et
al. [60] study the read/write buffering performance of PMEM and
they provide new insights on how read/write buffers are managed.
In HPC, a number of studies [48, 57] have shown promising results
in hybrid DRAM-NVM configurations.

Database researchers have primarily focused on OLAP work-
loads. Benson et al. [29, 34] employ microbenchmarks and OLAP
benchmarks (Star Schema, TPC-H) to identify best practices for
using Intel Optane and assess its viability as an NVMe SSD replace-
ment, exclusively utilizing the AppDirect mode (with and without
fsdax). Shanbhag et al. [52] evaluate the AppDirect mode in an
OLAP context using the SSB benchmark. Wu et al. [59] conduct
a brief study running microbenchmarks, TPC-H, and TPC-C on
SQLServer 2019 using PMEM in Memory and AppDirect mode
(with and without fsdax), presenting high-level conclusions on
DBMSs leveraging PMEM, primarily related to SQLServer, with-
out experimenting with database knobs or examining how query
plans affect PMEM performance. Renen et al. [54] measure Intel
Optane Persistent Memory’s bandwidth and latency, while tuning
log writing and block flushing. Lastly, Benson et al. [28] develop a
benchmark framework to evaluate various customizable database-
related PMEM access characteristics [28].

Table 1 summarizes the landscape of available benchmarking
papers, denoting our contributions with the symbol ‡ and prior

Table 1: Landscape of Intel Optane benchmark papers in the
DB community (our contributions are denoted with ‡)

PostgreSQL MySQL SQLServer DuckDB VoltDB Bench
SSD ‡ ‡ ‡, [59], [58] ‡ - TPCH
SSD ‡ ‡ ‡, [59], [58] - ‡ TPCC
NVMe [29] - [58] - - TPCH
NVMe - - [58] - - TPCC
AppDir ‡, [29] ‡ ‡, [59] ‡ - TPCH
AppDir ‡ ‡ ‡, [59] - ‡ TPCC
Mem ‡ ‡ ‡, [59] ‡ - TPCH
Mem ‡ ‡ ‡, [59] - ‡ TPCC

work with references. We use NVMe for Intel Optane SSD disks and
AppDir and Mem rows to represent the corresponding Intel Optane
Persistent Memory modes. As shown in the table, we evaluate five
DBMSs in both AppDirect and Memory modes using complete
benchmarks (TPC-H and TPC-C) rather than microbenchmarks. In
TPC-H, we demonstrate how query plans, operations, and system
statistics are affected by using PMEM. We also extensively evaluate
Memory mode, providing insights on its usefulness with working
sets larger than DRAM. We use both row and column stores to
show how memory accesses and compression affect Intel Optane.
In TPC-C, we explore the impact of database knobs. Furthermore,
we are the only ones benchmarking a key-value store (RocksDB)
under varying read-write workloads.

3 EXPERIMENTAL SETUP
3.1 System specification
All the experiments in this paper were conducted on a dual-socket
server (Table 2) and the socket topology shown in Figure 1. Each
CPU socket has two memory controllers and three channels per
controller. The DRAM and Intel Optane DIMMs are installed in
a 1-1-1 topology. We disable the turbo mode and we set the CPU
power governor to performance mode with 2GHz as the maximum
frequency, so that we can have reproducible experiments with min-
imum variation. We refer to Default Mode as the configuration that
does not use PMEM at all and, unless otherwise mentioned, to
AppDirect mode as the configuration that mounts PMEM in AppDi-
rect mode with fsdax enabled, since this is the one recommended
by Intel. When we use PMEM in the AppDirect mode, we do not
use the SSD at all. In Memory mode, we configure all the available
PMEM capacity (512GB) as volatile memory. We collect system
statistics with the Intel Vtune Platform Profiler [3]. To get more
accurate statistics, we modify the source code of the profiler to
increase the sampling hardware counter frequency. We use Post-
greSQL 13.2, MySQL 8.0.23, SQLServer 2019-15.0.4178, DuckDB
v0.6.1 919cad22e8, VoltDB 11.4.0.beta1 Community Edition, YCSB
0.17.0 and RocksDB 5.11.3. Finally, we are aware that our SSD is not

Table 2: Server specifications

Component Specs

Sockets 2
CPU Intel(R) Xeon(R) Gold 6248R

Microarchitecture Cascade Lake
Cores 48 physical (96 logical)

L1 cache 64KB
L2 cache 1MB
L3 cache 36MB
RAM 128GB (16GB DDR4 @ 2666 MHz × 8)
PMEM 512GB (128GB × 4)
SSD KIOXIA KPM6XRUG1T92 (2TB)

the fastest, but having a cheaper SSD gives a better perspective on
the average case and shows even more clearly how small can the
performance gap be besides the hardware difference. We expect that
with a high-end SSD disk, the performance advantage of PMEM
would become even smaller.

For all our benchmarks, we pin database processes to socket 0 to
avoid remote NUMA access to better interpret the results, as done
by other studies [29, 59]. That also ensures the working set is larger
than the DRAM capacity for most queries. Before executing each
query or workload, we clear the OS page and the database cache.

For TPC-H, we use SF-100 and a buffer cache of 16GB across
databases. We also add foreign indexes, when the DBMS does not
do that automatically. We use PMEM in interleaved mode, since the
data together with the indexes do not fit in a single PMEM DIMM.

We use 1000 warehouses for all TPC-C experiments and set the
warmup and running time to 3minutes to sufficiently load the buffer
pool and stabilize database activity. To reduce the proportion of
reads to writes, we employ a large buffer pool (48GB). Additionally,
we found that using only one of the two available PMEM DIMMs in
the socket was sufficient to reach maximum tpmC for most experi-
ments. Thus, unless otherwise noted, we use non-interleaved mode
(e.g., one PMEM DIMM) for TPC-C in AppDirect mode, ensuring
a better comparison with Default mode, which uses only one SSD.
For MySQL, PostgreSQL, and SQLServer, we use HammerDB [16]
as a TPC-C implementation, while for VoltDB, we use the official
implementation provided in the VoltDB repository [17].

We adjust DBMS checkpointing strategies and parameters for
frequent checkpoints, offering a clearer picture of hardware impact
on performance. Specifically, for PostgreSQL (using PGTune [6]),
we set checkpoint_timeout to 30 seconds and max_wal_size to
5GB. For SQLServer, we do automatic checkpoints every minute.
For MySQL, we disable binary logs, keeping default log buffer and
log file sizes, causing checkpointing every second. For VoltDB,
we set the flush interval to 1 second and use one snapshot copy
that’s continuously overwritten, exploring PMEM’s behaviour to
concurrent writes. Frequent checkpoints, while atypical, expose
PMEM’s weaknesses under stress, providing valuable insights.

Furthermore, SQLServer requires fsdax to store data and sector
to store logs [12]. We thus have to use both memory sockets, as it is
not possible to create a mixed namespace in one socket that has the
capacity for 1000 warehouses. Finally, although we run the Memory
mode for TPC-C for many configurations across DBMSs, in most
cases its performance is almost identical to the Default mode as
requests are served by the L4 DRAM cache and not by PMEM. We
therefore do not report anyMemorymode results for TPC-C. Finally,
we do not compare against Intel Optane SSDs, because Optane
Persistent Memory is significantly faster that Optane SSDs [29].

For RocksDB, we use the Yahoo Cloud Serving Benchmark [33],
specifically Workload A (update-heavy), Workload B (read-heavy),
and Workload C (read-only). We generate 110GB of data per work-
load and set the operation count to 10 million to enable a more
comprehensive analysis of the hardware behavior. We leave all
other parameters of the benchmark to their default values.

Finally, we do not run experiments for Mixed mode. This mode
requires a minimum volatile memory ratio of 1:4, which Intel sug-
gests for PMEM to be cost and performance-effective over a DRAM
only solution. Furthermore, different sizes and ratios are needed

Table 3: Latency measurements for different memory types

Memory type Read latency [us] Write latency [us]

DRAM 0.147 0.250
PMEM 0.333 0.262
SSD (random) 4.97 108.9
SSD (sequential) 4.85 94.9

to understand this mode but each one requires its own hardware
configuration and individual insights might not generalize.

3.2 Basic microbenchmarks
As a baseline, we measure the latency and bandwidth of our system
for different memory types (Tables 3 and 4), following a similar
methodology to Wang et al. [61]. We use one socket for all mi-
crobenchmarks to avoid NUMA-node effects, employing AVX-512
instructions and PMEM in interleaved mode. We don’t perform
measurements for PMEM in Memory Mode due to Intel’s lack of
public information on its operation [18, 20].

For PMEM and DRAM, we measure load and store latencies by
issuing a 64-byte instruction for sequential and random memory
accesses and not using any caching. For loads, we issue a 64-byte
load instruction with a cold cache. For stores, we load the memory
address into the cache, and afterwards measure the 64-byte store,
followed by a flush (clwb) and a fence (sfence) instruction. For the
SSD we use ioping [11]. The SSD has 10× larger read latency than
PMEM and more than 30× larger read latency than DRAM. The gap
is much larger for write latencies, where the SSD has up to 435×
larger latency than both DRAM and PMEM.

We measure bandwidth on sequential and random accesses and
we vary the number of threads from 1 to 8. We pick the access
granularity that maximizes bandwidth for every hardware type (64B
for DRAM, 256B for PMEM, 4KB for SSD). For DRAM and PMEM,
we execute a flush and a fence instruction after each store. For
loads, we only execute a fence instruction. For SSDs we use fio [10].
We notice that for 1 thread, DRAM has 2.9× more bandwidth for
sequential reads and 12%more bandwidth for sequential writes than
PMEM. The gap increases as we increase the number of threads,
where DRAM has more than 5× larger bandwidth for reads and
more than 3× more bandwidth for writes. For random accesses and
1 thread, DRAM has 2.4× more read bandwidth and the same write
bandwidth. Increasing the thread count to 8, shows that DRAM
has 4.7× larger read bandwith and 3× larger write bandwidth. If
we compare PMEM with the SSD, there is a very large gap for
reads, but a smaller gap for writes. For 8 threads and sequential
accesses, PMEM has 25× higher read bandwidth and 5× larger write
bandwidth. However, for random accesses and 8 threads, PMEM
has 9× higher read bandwidth and 2.8× larger write bandwidth.
The difference is analogous for smaller number of threads with
random accesses. For sequential accesses and 1 thread, PMEM has
20×more read bandwidth and 5×more write bandwidth than SSD.

4 OLAPWORKLOADS (TPC-H)
4.1 General observations
We present the running times of the TPC-H benchmark for all four
systems in Figures 2. DuckDB cannot execute queries 17 and 21

Table 4: Bandwidth for different memory types

Memory type Read bw
[MB/s]

Write bw
[MB/s]

DRAM (random, 8 threads) 20480 2529
DRAM (sequential, 8 threads) 67550 7615
DRAM (random, 1 thread) 3185 324
DRAM (sequential, 1 thread) 11460 969
PMEM-storage (random, 8 threads) 4341 830
PMEM-storage (sequential, 8 threads) 12628 2425
PMEM-storage (random, 1 thread) 1306 323
PMEM-storage (sequential, 1 thread) 3977 861
SSD (random, 8 threads) 470 293
SSD (sequential, 8 threads) 504 477
SSD (random, 1 thread) 160 157
SSD (sequential, 1 thread) 191 166

because of insufficient memory. In general, the AppDirect mode is
consistently faster than the Default mode. This happens because
PMEM has lower latency and higher througput than SSDs and, thus,
all I/O is faster. MySQL is the slowest database, since it does not
support multiple threads per query, except for particular type of
queries, e.g., SELECT COUNT(*) [5]. When doing I/O with only one
thread, the bandwidth in both PMEM in AppDirect mode and the
SSD are far from their maximum. PostgreSQL is in the middle, as
it uses 8 threads for processing and I/O. SQLServer and DuckDB
use in general all the available logical cores in socket 0 (48 in total)
and that is why the running time is much lower than the other two
databases. The PMEM read bandwidth is up to 8 GB/s for some
queries of SQLServer. Besides using all the available logical cores
in socket 0, DuckDB uses a native compressed column format to
which it pushes selections and projections and therefore it reduces
I/O costs vastly. For MySQL, PostgreSQL, and SQLServer, the time
difference is more obvious for queries involving larger tables (e.g.
the lineitem table, which is around 100GB of storage together with
indexes). For DuckDB, although the AppDirect mode is faster for
the majority of the queries, the time difference is smaller, since I/O
is not in the critical path. Additionally, as mentioned in Section 2.1,
DMA is not available in AppDirect mode. As a result, CPU resources
are used for I/O. In scenarios with CPU-intensive queries or a
low number of threads, the CPU spends computation time on I/O,
leading to suboptimal PMEM bandwidth and making the Default
mode’s performance competitive. We can observe this for DuckDB
when the optimizer chooses CPU-heavy operations (e.g. index joins,
hash group-bys) where the AppDirect mode is very close or has
worse performance than the Default mode (e.g. queries 2, 15, 18).

The Memory mode has similar or slightly worse running times
than the Default mode for the vast majority of queries. To under-
stand where the overhead comes from, in Figure 3 we show the
DRAM read and write bandwidth consumed by each query for the
Default and Memory modes, respectively, only for PostgreSQL. We
observe similar results for MySQL and SQLServer. DuckDB has a
different behaviour, since it minimizes I/O because of its columnar
compressed format. For all the queries, we read and write more
data from DRAM in Memory Mode compared to the Default mode
across databases. For reads, that happens because a DRAM (L4
cache) read miss in Memory mode results in a read from PMEM,
which consequently leads to a DRAM write. Another reason for the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

10

50
100
200
300
500

1,000

Query

Ti
m
e
[s
]

Default Memory AppDirect

a) PostgreSQL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

50
100
200
300
500

1,000
1,500
2,200
3,500

Query

Ti
m
e
[s
]

Default Memory AppDirect

b) MySQL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1

10

50
100
200
400

Query

Ti
m
e
[s
]

Default Memory AppDirect

c) SQLServer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 22

10

20
30

100

200

Query

Ti
m
e
[s
]

Default Memory AppDirect

d) DuckDB

Figure 2: Running time (log-scale) for TPC-H SF-100 on various DBMSs for different system configurations

increased DRAM reads is that during a DRAMwrite, the system has
to read the dirty lines and flush them to PMEM. Due to prefetching
by the iMC, the DRAM writes are more than the L4 cache misses.
Also, the increased DRAM bandwidth for both reads and writes is
because there are collisions in the L4 direct-mapped cache, since
multiple PMEM memory lines map to the same DRAM memory
line. If we allocate memory space such that two PMEM memory
lines map to different DRAMmemory lines (e.g. by having the exact
same capacity in PMEM and DRAM), that will decrease the cache
conflicts and makes the two modes comparable.
Insights. For general OLAP workloads, Memory mode does not
offer a significant performance advantage, as it slightly hinders
performance for the majority of the queries. AppDirect mode can
significantly speed up workload execution, if the queries are I/O
intensive and there are enough system resources dedicated to the
database. If system resources are limited, the design restricts the
number of cores/threads involved or the queries are CPU-intense,
SSDs offer a competitive and cheaper alternative.

4.2 Scans
Sequential scans in AppDirect mode have a much lower latency
in PMEM [34, 42]. We observe this advantage for the AppDirect
mode compared to the Default mode for all the systems. However,
this advantage becomes more pronounced for queries that involve
larger sequential scans (e.g. queries 3, 4, 5, 6, 7, 8, 11, 12, 19, and 20),
especially the more threads are used. Although the lower latency
does provide a significant benefit, it is not as substantial as we

initially anticipated based on our microbenchmarks. We expected
to see a 9-25× difference across all queries, but the actual advantage
is somewhat lower. This is due to the fact that, as explained in
Section 2.1, the AppDirect mode with fsdax does not utilize DMA
or the OS page cache. This is especially true for queries that have
large sequential scans and are also compute-heavy (such as query
1), where valuable CPU resources are used by PMEM for memory
transfers in the absence of DMA, and the Default mode gains an
advantage. In contrast, simpler queries that mostly involve scans
(such as query 6) benefit greatly from PMEM. To validate that, we
run a variant of TPC-H SF-100 query 6 using PostgreSQL, where
we increase the selectivity of the predicates (i.e. we select more
data) and we present the results in Figure 4. As we observe, by
increasing the selectivity, both PMEM and the SSD have a sublinear
time increase but their relative difference stays constantly between
9-10x and it is due to the sequential scan of the lineitem table.
Furthermore, SQLServer writes data directly to physical hardware,
bypassing the OS page cache [13], and it is also more efficient at
pipelining I/O and processing. As a result, there is a larger time
difference between queries, since SQLServer can take full advantage
of the higher bandwidth. Finally, MySQL prefers nested loop joins
over hash or merge joins. Nested loop joins have many random
accesses when there are no indexes available compared to hash or
sort/merge joins. Especially in the case of MySQL, the secondary
indexes are non-clustered and in case of matches, the DBMS has
to go into the base table to materialize the result. However, as
these accesses have large block sizes (i.e. 16KB), PMEM has similar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

250

500

750

1,000

1,250

1,500

1,750

Query

Ba
nd

w
id
th
[M

B/
s]

Default Memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

250
500
750

1,000
1,250
1,500

2,500

Query

Ba
nd

w
id
th
[M

B/
s]

Default Memory

Figure 3: DRAM average write (left) and read (right) bandwidth on PostgreSQL for different system configurations

bandwidth to sequential accesses. In contrast, prefetching and the
OS page cache cannot help in Default mode for random accesses.
Insights. The AppDirect mode is largely beneficial for non-CPU
intensive queries with sequential scans. When the majority of the
data has to be heavily processed, then the lack of the page cache
and prefetching in AppDirect mode reduces most of PMEM’s ad-
vantages. Users should tune the block size to a large size (≥ 8KB),
when the DBMS performs random scans, because then PMEM has
similar bandwidth to sequential accesses.

4.3 Index lookups
Index lookups cause random accesses. Thus, we would expect a
performance drop in AppDirect mode. However, because all tested
databases use large block sizes (≥ 8KB) the lookup accesses are
about 10× faster for the AppDirect mode (queries 2, 4, 5) or have
the same latency as a sequential scan for PMEM (queries 8, 9, 10, 19,
20, 21). We also observe that the type of index can affect the lookup
time. More specifically, MySQL stores primary clustered indexes
together with the data and secondary indexes separately. That puts
PMEM at a disadvantage, because an access to a secondary index
needs to locate the data in the tables and in the Default mode part
of these accesses are served by the OS page cache. This behaviour
is not present in the other engines, because PostgreSQL does not
have the notion of a clustered index and SQLServer bypasses the
page cache. DuckDB uses indexes only to perform index joins once
the data are already in DRAM, and therefore the storage medium
is irrelevant at this point in the query plan. Compared to the other
systems it has much less I/O due its compressed columnar format,
making the effects of the page cache inconspicuous.
Insights.When creating indexes or running query plans that oper-
ate on indexes (e.g. joins), the block size should be tuned to be large
(≥ 8KB) to maximize the read bandwidth in AppDirect mode for

15 30 45 60 72 87
0

100

200

Query Selectivity

Ti
m
e[
s] Default

AppDirect

Figure 4: Increasing selectivity microbehmark for Post-
greSQL

PMEM. Additionally, whenever possible, clustered indexes should
be used. The additional lookup in a non-clustered index has a per-
formance penalty for PMEM due to the lack of an OS page cache.

4.4 Working set size in Memory mode
As databases try to minimize I/O as much as possible, we would
expect that adding a larger volatile memory capacity with PMEM
in Memory Mode would improve the running time of queries with
a large working set. However, across all three engines, we observe
that the majority of the queries perform the same or slightly (less
than 5%) worse in Memory Mode because of the increased traffic
between the L4 DRAM cache and PMEM asmentioned in Section 4.1.
We can split the queries in 2 categories based on the working set
size. Queries 1, 4, 5, 6, 12, 14 and 17 have a working set of less than
64GB and therefore most of the accesses are served from the L4
DRAM cache. The rest of the queries have a working set larger
than the L4 and/or the OS page cache, but the majority of them
does not benefit from the larger volatile memory capacity and any
improvements of the Memory mode over the Default mode are due
to the memory structures that the systems use to handle memory
and how the DBMS utilizes the OS page cache. For PostgreSQL,
these are queries 9, 15, and 20. For MySQL, these are queries 3, 7, 9,
and 21. For SQLServer, no query is significantly faster in Memory
mode as the DBMS does not utilize the OS page cache. Finally,
DuckDB has very small working sets for all the queries. Thus, in
Memory mode the data are directly transferred to the L4 DRAM
cache and PMEM is not used.
Insights. A very large working size can run slightly (up to 10%)
faster in some cases in Memory mode, due to the larger OS page
cache available in main memory. On the other hand, the running
times of queries with small working sets is not affected at all by the
larger volatile memory capacity.

4.5 Query plans
PostgreSQL, MySQL and DuckDB as open-source databases offer
valuable statistics about their query plans. We isolate a subset for
all, providing valuable observations on how the DBMSs use the
underlying hardware. In this section we only compare the Default
with the AppDirect mode.

4.5.1 PostgreSQL. Query 1 has a parallel sequential scan and a par-
allel aggregation of lineitem. The selection predicate is satisfied
by 98% of the rows. In AppDirect mode, 85 out of the 106 seconds

are spent in the aggregations, and only 17 seconds are spent in
scanning the data. PMEM has a latency of 10us for 4KB application
reads [4]. Therefore, for the block size of Postgres (8KB), the latency
should be less than 20us. We can confirm that because we have
10 parallel workers with an overall bandwidth of 4-5 GB/s which
explains the 17 seconds needed to scan the 86GB table. In contrast,
in Default mode, SSDs have a 10x latency, but only 5x of the time
is spent in scanning because of the OS page cache and prefetching.

In query 3 the Default mode spends the majority of the time scan-
ning the lineitem table. The time is larger than query 1 because
the prefetcher does not work so effectively. That happens because
the inter-arrival time of read calls is lower as fewer operations are
performed in higher-level operators. For the AppDirect mode, the
scan time increases to 19 seconds compared to query 1. This is due
to the fact that parallel workers are also involved in writing data to
PMEM during the join and sorting of the query. It is well known
that writing in PMEM requires more CPU and memory resources
and provides lower bandwidth [34, 42]

Query 13 has an index-only sequential scan on customer, which
takes the same time in both modes due to prefetching in the De-
fault mode. There is also an index scan in orders, which takes
approximately the same time in the AppDirect and Default mode.
That happens because the index is not correlated, and therefore the
database can scan more than one block at the same time. This leads
to a large working set that is larger than the buffer cache, which
subsequently leads to many reads from PMEM in AppDirect mode.
The amount of data read in AppDirect mode is 12× more than that
in the Default mode. However, AppDirect mode still performs bet-
ter, because PMEM bandwidth is 6× larger and it does not involve
the synchronous read from DRAM as the Default mode.

In query 15, we observe the asymmetric behaviour of PMEM as
we have to read lineitem twice. The maximum read bandwidth is 4
GB/s and the maximum write bandwidth is 1 GB/s. To maintain the
price/performance ratio, we need to increase the working memory
or use a separate storage drive for temporary writes.

Lastly, in query 17 there is a hash join between lineitem and
part with lineitem on the probe side without any filtering. For
the sequential scan of lineitem, prefetching is effective and the main
performance difference is caused by index lookups on lineitem. In
such CPU intensive queries, when CPU operations overshadow
I/O requests, prefetching is very effective in sequential accesses.
On the other hand, for random accesses asynchronous I/O is more
beneficial. Therefore, if Postgres adopts asynchronous I/O, the per-
formance difference between the two modes would be negligible.

4.5.2 MySQL. In query 1, most of the time is spent on aggregation
and filtering. The scan time of lineitem in the Default mode is 436s
and in AppDirect mode it is 392s. The small performance difference
has two reasons. First, prefetching and the OS page cache is very
effective for sequential scans of large tables. Second, the average
block size is around 100KB for both modes. The increase in response
time for larger block sizes is sublinear in SSDs due to the inherent
parallelism. On the other hand, in AppDirect mode the CPU is
involved in reading, and the response time is exactly linear.

In query 3, there is a table scan on customer and index lookups
on orders that use a secondary index. The cost of a lookup is
140us for the AppDirect mode and 250us for the Default mode.

The difference is not as large as we would expect based on the
hardware, but the Default mode has the advantage of prefetching
and the OS page cache. Additionally, PMEM has a larger latency
when secondary indexes are used because some accesses are served
by the OS page cache in the Default mode.

In queries 4 and 5 there are index lookups on lineitem using
a primary clustered index, and the cost of a lookup is 15us for
the AppDirect and 30us Default mode. The lookup times are close,
because the queries have a smaller working set that mainly fits in
the buffer cache. In general, for smaller working sets secondary
and primary index lookups have comparable lookup times since
they fit in the buffer cache and the OS page cache is not useful. We
also observe this behaviour in query 7.

In query 13, both modes take the same amount of time, because
the working set is larger than the buffer cache but smaller than
the page cache. Thus, a memory copy from DRAM to DRAM has
similar latency to a memory copy from PMEM to DRAM. Queries
19 and 20 involve a join with lineitem using a secondary index
lookup. Every lookup returns 30 and 7 tuples, respectively. PMEM
is faster, because of large block random accesses, even when a small
number of tuples is returned within a lookup.

4.5.3 DuckDB. Query 1 has a sequential scan on lineitem that
takes 2.6s for PMEM and 5s for the Default mode which is a 2x
performance increase, much less than our microbenchmarks sug-
gest. DuckDB streams data in chunks using a vectorized push-based
model, meaning that CPU resources have to be split between I/O
and processing. That gives an advantage to the Default mode, which
is visible in the subsequent operations that take 1.4s for the Default
mode and 1.8s for the AppDirect mode.

Query 2 is very CPU intensive and does not perform a lot of I/O,
because it does not involve lineitem. Most of the time is spent
on index joins between the tables, and therefore since I/O is a
negligible portion of the query execution time, the total runtime
for the Default and the AppDirect mode is almost the same.

Query 15 has two sequential scans on lineitem, that for PMEM
take 3.04s while for the Default mode they take 5.75s combined.
However, since there is a hash group by and an index join afterwards
that are very CPU intensive, the absence of DMAgives an advantage
to the Default mode. These two operations take 20s for the Default
mode and 23s for the AppDirect mode, essentially covering PMEM’s
bandwidth advantage completely.

Query 19 has a lot of projections and selections on the lineitem
and part tables. As DuckDB pushes most of these directly to the
columnar storage, the I/O operations contain effectively most of
the running time for this query. The Default mode takes 7.5s to
scan the lineitem table, whereas the AppDirect mode does 3.5s.
Insights. A few of the characteristics presented in the last sections
are now revealed in more detail through the query plans. We see
that the absence of DMA and the page cache closes the gap from 25
(the value observed in our microbenchmarks) to 2 times between
PMEM and the SSD in some queries. We also notice the advantage
of prefetching in CPU intensive queries (e.g. queries 17, 18) that
involve large tables on the probe side of a join.

8 16 32 64 128
0

200

400

600

800

1,000

1,200

Users

tp
m
C
[1
00
K]

Default-MySQL AppDirect-MySQL Default-Postgres
AppDirect-Postgres Default-SQLServer AppDirect-SQLServer
Default-VoltDB AppDirect-VoltDB

Figure 5: tpmC for TPC-C with 1000 warehouses on all three
systems for different system configurations

5 OLTP WORKLOADS (TPC-C)
5.1 General observations
We present the TPC-C results for MySQL, PostgreSQL, SQLServer,
and VoltDB in the Default and AppDirect modes in Figure 5. In
general, and for different number of concurrent users, the AppDirect
mode performs better than the Default mode but depending on the
engine the differences vary.

For PostgreSQL, the AppDirect mode outperforms the Default
mode by 3-10× for 8-128 threads respectively. That happens because
the checkpoint, background, and WAL writer processes use only
one thread and this write combining minimizes resource contention
for PMEM. We also conduct experiments with the no-dax mode,
where the page cache is enabled, but the tpmC drops drastically. This
happens because the latency of PMEM is low compared to that of
SSDs/HDDs and since PostgreSQL relies on the OS for prefetching,
keeping/updating the page cache is an additional overhead.

SQLServer, as mentioned, uses all the available cores in socket 0.
As we notice, for small number of concurrent users, the higher band-
width PMEM offers gives a small performance advantage of around
10% compared to the Default mode, due to the lower latency PMEM
has compared to SSDs. However, as the number of concurrent users
increases, the Default mode is very competitive and outperforms
the AppDirect mode for 64 concurrent users by 37%. For such high
number of users, there is a lot of interference between I/O and
processing in the system and the tpmC drops drastically because
of thrashing. Additionally, there is a large number of concurrent
reads and writes, which causes a significant performance drop for
PMEM [34]. Finally, we observe that CPU utilization is very low
for the AppDirect mode, indicating that I/O is in the critical path,
despite the much lower latency that PMEM offers.

In MySQL, the AppDirect mode consistently outperforms the
Default mode by up to 20%. This happens because of the smaller
latency that PMEM offers and also due to the fact that MySQL does
not use a large number of threads for writing. The latter helps in
avoiding write contention in the iMC, which is one of the main
reasons that affect significantly PMEM’s performance.

VoltDB’s performance is worse than other databases in all but
a few cases, with the AppDirect mode showing only marginal im-
provement over the Default mode. The lower transaction count is
due to several factors. Firstly, VoltDB is designed for distributed,
high-throughput environments, limiting its performance in single-
node setups. Furthermore, VoltDB is the only tested system written
in Java, while the others use C/C++. Additionally, upon examining
VoltDB’s TPC-C implementation, we find that it relies heavily on
writing to the storage medium whole snapshots instead of just the
changes in the database/log like the other databases. High con-
currency high volume writing does not scale well, particularly for
PMEM, which struggles with numerous concurrent users. This is
also the main reason that contributes to the minimal performance
difference between AppDirect and Default modes.
Insights. As TPC-C is a write-heavy workload, we confirm what
other studies have found about the effect of writes on the perfor-
mance of PMEM [42]. Having low number of write threads and/or
combining writing operations in one thread provides a much larger
transaction rate than the Default mode and it also avoids thrashing,
as we observe in the case of MySQL and PostgreSQL. Conversely,
heavy contention and mixed read/write workloads significantly
impact PMEM performance, bringing it close to or even worse than
the Default mode, as seen with SQLServer and VoltDB.

5.2 Log and data placement
We assess PMEM’s effectiveness as a data or WAL store for MySQL,
PostgreSQL, and SQLServer (Table 5). We could not separate the log
and data checkpointing process for VoltDB. We tested configura-
tions with data andWAL on SSD (SSD-both), data on SSD andWAL
on PMEM (SSD-data-PMEM-wal), data on PMEM and WAL on SSD
(PMEM-data-SSD-wal), and data and WAL on PMEM (PMEM-both).

For PostgreSQL, for a small number of clients, when we place
the WAL in PMEM instead of the SSD, we see only a slight increase
in tpmC. That means that buffered I/O does not significantly affect
performance in log writing. However, the gap increases when we
increase the clients due to the bandwidth limitations of the SSD.
On the other hand, when we place the data in PMEM instead of the
SSD, we see a large increase in tpmC, even for a small number of
clients. Thus, PMEM should be used as a data rather than just as a
log store, because databases can utilize PMEM’s read bandwidth
more effectively than its write bandwidth.

In SQLServer, placing the log in PMEM offers only a small per-
formance advantage, compared to placing the data in PMEM, indi-
cating that I/O is more on the critical path than the redo logs. As
the number of clients increases, log placement does not affect per-
formance significantly. Lastly, placing the data on PMEM and the
log on SSD has a higher throughput than placing both on PMEM,
but this is due to the remote accesses to socket 1 for the log (that is
necessary due to the configuration enforced by SQLServer).

For MySQL that log placement in PMEM does not offer a signifi-
cant performance advantage since the tpmC increases marginally
(up to 5%). Thus, redo logs are not the bottleneck and buffered I/O
hides the latency for the Default mode.
Insights. Placing only the logs in PMEM does not offer a significant
performance advantage irrespective of the DBMS. We therefore
conclude that PMEM should be used as a data or a data and log store

Table 5: tpmC (in 100K) for different database configurations and concurrent users

Configuration
DB/Users PostgreSQL SQLServer MySQL

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
SSD-both 170.8 239.8 332.7 387 474.4 385.2 578.9 308.7 259.4 123 180.6 258.7 262.6 274.1 282.2

SSD-data-PMEM-wal 210.3 313.3 373.5 502.6 495.9 414.3 613.5 321.2 162.5 130.3 189.3 271.5 270 279.7 288.6
PMEM-data-SSD-wal 324.4 520.1 541.6 598.7 645.7 406 662.9 328 172.6 133.2 - - - - -

PMEM-both 350.6 577.4 854.2 1001.7 1088.4 440.2 663.2 321.2 162.5 130.3 - - - - -

rather than just a WAL store, because DBMSs can utilize PMEM’s
read bandwidth more effectively than its write bandwidth.

5.3 Varying database configurations
As open source DBMSs, PostgreSQL andMySQL give us the freedom
to experiment with a number of parameters that affect transactions.
We analyze various options in this section.

5.3.1 WAL compression. WAL compression is widely used for Post-
greSQL to close the CPU-storage gap. However, in our case even
though it is slightly useful for the Default mode, it causes a drop in
tpmC for the AppDirect mode. The number of transactions is al-
most 50% less for 16 clients. Due to the lower latency of PMEM, the
compression step involving an additional read and write from/to
memory becomes unnecessary. Lastly, because PostgreSQL depends
on the OS page cache for read-ahead and buffering of writes, we
enable the page cache in AppDirect Mode with the no-DAX option.
However, as we have mentioned, in AppDirect mode the CPU is in-
volved in reading/writing and this causes an increase in CPU usage
and a drop in tpmC as we can see in Figure 8. Therefore, although
PostgreSQL is very effective at hiding the storage latency of HDDs
and SSDs, this is not the case with PMEM and the techniques it
uses for HDDs and SSDs hurt performance in PMEM.

5.3.2 Double write buffer. In MySQL, the double-write buffer is
a storage area where dirty pages are flushed to, before writing
to their respective positions in the data files [8]. This buffer does
not incur additional costs, because InnoDB writes data in a large
sequential chunk with a single fsync call at the end. We disable
the double-write buffer and present the results in Figure 6 for the

8 16 32 64 128
0

100

200

300

400

Users

tp
m
C
[1
00
K]

Default Default-no-doublewrite
AppDirect AppDirect-no-doublewrite

Figure 6: tpmC for TPC-C on MySQL for different number of
clients with and without the double-write buffer

two modes. We can observe that the tpmC for the Default mode
stays stable, since double writes are a part of the background flush-
ing. Therefore, the storage can follow along and transactions are
not affected. Conversely, the tpmC increases significantly by up
to 20% for the AppDirect mode when double-writes are disabled,
confirming again that concurrent writes are a pain point for PMEM.

5.3.3 Number of write threads. By default, MySQL uses async I/O
to perform reads and writes. This removes control over how many
concurrent requests are pending, which might be detrimental to
PMEM’s performance. By using sync I/O, we can control the num-
ber of background write threads. Read threads are mainly used
for prefetching and with a large buffer pool they do not play a
significant role in the TPC-C workload. We vary the number of
write threads from 1 to 16 for different numbers of concurrent users
and we present the results in Figure 7. The throughput reaches a
maximum for 8 threads across all numbers of concurrent users and
decreases after that, confirming again that PMEM is not effective
at performing many concurrent accesses.

5.3.4 Flushing methods. In MySQL, we have to opportunity to
experiment with different flushingmethods of InnoDB, e.g. enabling
the O_DIRECT flag, which uses direct I/O (bypassing the OS page
cache) for data files and buffered I/O for logs. We present the results
in Figure 9. In general, the AppDirect mode is faster than the Default
mode, both with and without direct I/O, due to the smaller latency
that PMEM offers. However, direct I/O does not offer a significant
performance advantage in the AppDirect mode, because it does not
provide any additional benefit on top of DAX. Furthermore, using
the AppDirect mode with the no-dax option and the O_DIRECT
flag, provides the same performance as the default AppDirect mode
(with dax enabled). This is expected, since both configurations
skip the OS page cache. For the Default mode, when we have a
small number of clients this happens because MySQL manages its
own buffer pool and does not depend upon the OS page cache for

32 64 128
0

100

200

300

400

Users

tp
m
C
[1
00
K]

1 2 4 8 16

Figure 7: tpmC for TPC-C on MySQL for different number of
write threads

8 16 32 64 128
0

100

200

300

400

Users

tp
m
C
[1
00
K]

Default Default-compress
AppDirect AppDirect-compress

Figure 8: tpmC for TPC-C with 1000 warehouses on Post-
greSQL with and without log compression for different con-
figurations

prefetching and caching. As the number of clients increases, the
Default mode with direct I/O performs much better, since we have
restricted the execution to one socket. Thus, the database is not
doing unnecessary memory copy from/to the OS page cache, which
in turn reduces contention and leaves more resources available.

We also investigate how disabling fsync affects performance.
This function is used to ensure that writes are flushed to disk and not
to the device cache. Because these calls may degrade performance,
MySQL provides a flushing method called O_DIRECT_NO_FSYNC
that takes them away. As we see in Figure 9, when using this flag,
the performance increase is negligible, especially in AppDirect
mode. This happens because of two reasons. First, fsync calls are
not totally eliminated and they are still used for synchronizing file
system metadata changes, e.g. during appends [9]. Second, writing
dirty pages to the tablespace is done in batches that require a single
fsync call that happens in the background. Therefore, this does not
affect transactions directly [7]. Contrary to the Default mode, when
we disable fsync we see a large improvement in the AppDirect
mode. This happens because overwrites in AppDirect mode with
DAX use non-temporal stores. Thus, no cache lines are flushed and
only a sfence instruction is issued to make sure writes complete.

8 16 32 64 128
0

100

200

300

400

Users

tp
m
C
[1
00
K]

Default AppDirect Default-odirect

AppDirect-odirect Default-odirect-nofsync AppDirect-odirect-nofsync

Figure 9: tpmC for TPC-C on MySQL with different flushing
methods

8 16 32 64 128
0

100

200

300

400

Users

tp
m
C
[1
00
K]

MySQL-AppDirect-fsdax MySQL-AppDirect-nodax
PostgreSQL-AppDirect-fsdax PostgreSQL-AppDirect-nodax

Figure 10: tpmC for TPC-C on MySQL and PostgreSQL with
and without fsdax

5.3.5 ext4 block size. In MySQL, we evaluate how the ext4 block
size affects PMEM’s performance. (Table 6). We set the ext4 block
size to 1KB and 4KB in AppDirect mode with nodax and O_DIRECT
enabled, because direct access is only supported when the block
size is equal to the system page size. As we observe in the figure,
for a small number of clients 1KB block size performs worse than
4KB, because the amount of I/O is increased and I/O is more in the
critical path for a small number of clients. Contrary to that, tpmC
is larger for 1KB block size for larger number of clients, because
access size must be lower for higher thread counts [34].

5.3.6 no-dax mode. Regarding different configurations in the Ap-
pDirect mode, we experiment with the no-dax mode in both Post-
greSQL and MySQL. In MySQL, the no-dax options is on par with
fsdax. However, on PostgreSQL, the no-dax options performs sig-
nificantly worse. This is because PostgreSQL depends heavily on
the OS page cache for read-ahead and buffering of writes and as
we have mentioned, in AppDirect mode, the CPU is involved in
reading/writing fromDRAM to PMEM as there is no DMA available.
This causes an increase in CPU usage and a drop in tpmC.

5.3.7 Interleaved vs. non-interlaved. We compare the AppDirect
mode in PostgreSQL using only one PMEM DIMM with the Ap-
pDirect Mode using both PMEM DIMMs (denoted with AppDirect-
interleaved) in Table 7. The interleaving access block size is 4KB
and any read/write for PostgreSQL happens in multiples of 8KB.
Therefore, when using PMEM in interleaved mode, we would ex-
pect a large increase in tpmC, since the access latency is halved and
the max bandwidth is doubled. However, as we see in the figure,
the increase in tpmC is minimal. For a small number of clients,
that happens because the workload is already CPU-bound even
when using a single PMEM DIMM. For a larger number of clients,
the bottleneck is the checkpointing process. Thus, we increase the

Table 6: tpmC [in 100K] for TPC-C on MySQL for different
block sizes on AppDirect mode

Configuration
Users

8 16 32 64 128

AppDirect-nodax-bs-1kb 210.2 358.9 450.4 404.2 415.8
AppDirect-nodax-bs-4kb 213.6 368.2 433.7 389.7 372.5

Table 7: tpmC for TPC-C on PostgreSQL using different num-
ber of DIMMs

Configuration
Users

8 16 32 64 128

AppDirect 319.3 428.9 438 431.4 429.6
AppDirect-
interleaved

346.8 524.2 524.6 533.9 477.4

AppDirect-
interleaved-
increased-wal

356.6 578 831.7 1029.1 1132

max_wal_size to reduce the number of checkpoints and the tpmC
for 128 clients is more than 2x higher and is bounded by the max
bandwidth of the interleaved setup.
Insights. As PMEM is sensitive to write workloads and its per-
formance can deteriorate heavily, we should carefully tune the
underlying parameters to avoid additional writes (e.g. the double-
write buffer), use small access sizes for higher thread counts and
limit the number of write threads to at most 8 threads. Addition-
ally, since the bandwidth of PMEM in AppDirect mode is much
larger than the one that SSDs offer, we do not have to resolve to
I/O optimizations, especially if these involve CPU operations.

6 KEY-VALUE STORES (YCSB)
We evaluate RocksDB, an open-source key-value store, using YCSB.
We choose YCSB due to its use in PMEM-native key-value store
studies [27]. Figure 11 presents throughput and read latency results,
while Figure 12 shows write latency for two workloads as the thread
count increases. Workload A is update-heavy (50% reads - 50%
writes), Workload B is read-heavy (95% reads - 5% writes), and
Workload C is read-only (100% read).

In all the graphs, the AppDirect mode consistently achieves
higher throughput and lower read latency across all workloads,
with the gap widening as the number of threads increases. Mean-
while, Memory mode performs similarly to the Default mode. To
understand why, we must examine the workload details. Each work-
load accesses all fields of a 1000-byte row.With RocksDB processing
vast amounts of wide rows, the AppDirect mode experiences read
and write amplification, particularly as thread count rises. This
results in up to 6.5 GB/s read bandwidth for PMEM (compared to
0.9 GB/s for SSD) and up to 1.3 GB/s write bandwidth for PMEM
(compared to 0.4 GB/s for SSD).

We can also make some interesting observations. For Workload
A, as we increase the number of threads, reading and writing con-
currently, causes the throughput to plateau and slightly drop for
the Default and Memory modes, and to heavily drop for the AppDi-
rect mode. In fact, the throughput for 48 threads for the AppDirect
mode drops to the level of 16 threads for the same configuration,
showing that mixed read-write workloads should keep a moderate
number of threads to achieve maximum performance. The plateau
effect for the AppDirect mode is also visible if we have a very small
percentage of writes such as in Workload B, but it is not visible
in Workload C where the throughput continues to increase as we
increase the number of threads. For the Default and Memory modes
the throughput plateaus consistently after 32 threads because we
reach the bandwidth limits of the SSD.

While the read latency of the Default and Memory mode keep
increasing for all the workloads, for PMEM in AppDirect mode
we observe a plateau in Workload A for the read latency. For the
rest of the workloads in AppDirect mode, the read latency keeps
slighly increasing. Additionally, the read latency for the Memory
mode is slighly lower for higher number of threads compared to the
Default mode and the corresponding throughput is higher. Since
the workload is 110GB in total the additional volatile memory
capacity comes handy as the number of threads increases, because
the DRAM capacity is not enough and the requests go to a faster
storage medium (PMEM) instead of the SSD. Finally, the write
latency of PMEM in AppDirect mode is consistently lower than the
rest of the modes, with the exception of 48 threads for Workload B,
where the latency is marginally higher. This confirms that even a
very low number of writes with a high number of threads can be
highly problematic for PMEM.
Insights.TheAppDirectmode consistently achieves higher through-
put and lower latency across all workloads. However, increasing
the number of threads leads to a throughput plateau or drop for
mixed workloads. Additionally, the results indicate that even a low
number of writes combined with a high number of threads can
be problematic for PMEM, highlighting the importance of proper
tuning in achieving peak performance. Finally, the Memory mode
performs almost identically to the Default mode. Even if the larger
volatile memory capacity is handy, the advantage is very marginal.

7 DISCUSSION
7.1 Insights
We summarize the main insights and provide best practices that a
DBMS should follow to maximize the PMEM utilization.
(i) Memory mode does not offer a significant performance
advantage: As we observe for all engines and benchmarks, in the
vast majority of cases, Memory mode with its larger volatile mem-
ory capacity does not offer any performance advantage. There are
even cases, where performance is slightly worse. This happens
due to the conflict cache misses in the DRAM L4 cache, which
also causes additional memory traffic between PMEM and DRAM.
The only case where Memory mode is useful is for queries with
sequential accesses and low number of reads/writes to memory.
That happens because the DBMS can take advantage of the larger
OS page cache offered by the larger memory capacity and together
with prefetching, these queries can have a small speedup compared
to configurations that do not use PMEM at all. Nevertheless, it is
worth noting that other studies in the HPC context [48] show that
a working set considerably larger than typical DRAM capacities,
makes the Memory mode useful.
(ii) Performance gains when using PMEM vs. SSDs can be due
to application limitations rather than differences in hard-
ware: Although PMEM has superior performance compared to
SSDs for sequential read accesses with many threads, this is not the
same for random accesses. If applications adopt asynchronous I/O
for random accesses (e.g., index lookups) for workloads in which
CPU requests overshadow I/O, the Default and the AppDirect mode
will have a very small performance difference.
(iii) The lower latency of PMEM in AppDirect mode does

1 8 16 32 48
0

0.5

1

·105

threads

Th
ro
ug

hp
ut
[o
ps
/s
]

1 8 16 32 48
0

1

2

3

4 ·105

threads

Th
ro
ug

hp
ut
[o
ps
/s
]

1 8 16 32 48

1

5

8

·105

threads

Th
ro
ug

hp
ut
[o
ps
/s
]

Default Memory AppDirect

1 8 16 32 48

100

200

300

threads

Re
ad

La
te
nc
y[
us
]

1 8 16 32 48

50

100

150

200

threads

Re
ad

La
te
nc
y[
us
]

1 8 16 32 48

50

100

150

200

threads

Re
ad

La
te
nc
y[
us
]

Figure 11: RocksDB throughput (left) and read latency (right) for Workload A, B, and C of the YCSB respectively

not translate to an advantage equal to the hardware char-
acteristics: Our microbenchmarks reveal PMEM has 30x lower
latency than SSDs and, in some cases, over 10x higher read and
write bandwidth. However, this difference does not result in the
expected runtime reduction, as the I/O path is not fully optimized.
In AppDirect mode with fsdax (recommended by Intel), there is no
OS page cache, and DMA is unavailable since PMEM is managed by
the iMC, not as a peripheral device. Consequently, CPU resources
are spent on I/O in AppDirect mode, while in Default mode, DMA
and the OS page cache can cover part of the lower latency, espe-
cially in CPU-intensive, I/O-heavy queries or in cases involving
secondary indexes with table data stored in the OS page cache.
(iv) In systems where resources are limited, PMEM in Ap-
pDirect mode is not as useful: In general PMEM in AppDirect
mode involves the CPU as no DMA is available. When there is a
lot of resource contention, the hardware advantage of PMEM is
almost negligible. We notice this behaviour in various DBMSs (in
MySQL for TPC-H, when we restricted PostgreSQL to one core,
and in SQLServer and VoltDB for TPC-C).
(v) PMEM requires fine-tuning for write or mixed workloads:
As noticed by previous studies [34, 42] heavy-write workloads and
read/write interference decrease PMEM’s performance dramatically.
We notice the same behaviour when running TPC-C or whenwe use
Workload A and B in the YCSB. Even a small number of writes with
a high thread count in mixed workloads can hinder the performance
of PMEM significantly. Thus, the number of (write) threads has to
be carefully tuned to avoid interference. Especially in a DBMS con-
text, several configurations that increase additional writes should
be turned off to increase performance (e.g., the double-write buffer).
(vi) Optimizationsmade for SSDs/HDDsneed to be re-designed
when using PMEM: Many traditional optimizations avoid I/O as

1 8 16 32 48
0

200

400

600

800

threads

W
rit
e
La
te
nc
y[
us
]

Default Memory AppDirect

1 8 16 32 48

100

200

threads

Figure 12: RocksDB write latency for Workload A and B of
the YCSB respectively

much as possible due to the latency gap between DRAM and storage
(e.g. log compression). However, this gap is not as large with PMEM
and these optimizations may not offer any performance advantage.
In general, as the CPU is involved in I/O in AppDirect mode, it is
preferable to avoid devoting CPU resources to optimize I/O.
(vii) Log placement in PMEM does not increase performance
significantly: Across DBMSs, placing only the log in PMEM does
not increase the transaction rate for TPC-C significantly. Placing
data or both the log and data in PMEM increases throughout for
TPC-C due to the lower latency and higher bandwidth of PMEM
compared to SSDs/HDDs.

7.2 Future directions
As of July 2022, Intel decided to discontinue the Optane series [15].
Although DRAM may reach capacities up to 512GB with DDR5,
those will come with a significant cost. Therefore, there is still a
need for an intermediate storage tier between DRAM and SSDs.
That gap can be filled with CXL [14], which is a cache-coherent
interface for connecting CPUs, memory and accelerators. CXL-
attached memory can increase the memory capacity of servers,
offering a fast storage memory tier to place “hot” data that does
not fit in DRAM. Several characteristics of PMEM are relevant to
CXL-attachedmemory, such as byte-addressability and near-DRAM
performance with higher capacity and opportunities for higher
energy efficiency. Especially the last point will be highly valuable
in the context of data centers, where CXL will be deployed first.
Therefore our study provides insights on what system function
(e.g., pre-fetching, low CPU utilization, query optimization hints,
etc.) are valuable in the database context, to avoid performance
regressions.

8 CONCLUSION
We evaluated PMEM on various engines and popular benchmarks
(TPC-H, TPC-C, and YCSB). Our study sheds light on how to effi-
ciently integrate PMEM into the memory hierarchy and how to tune
relational and non-relational systems to get the best performance
out of each configuration, given the higher cost both in terms of
storage and CPU. In Memory mode, increasing volatile memory
capacity using PMEM does not offer any performance advantage.
In AppDirect mode, PMEM offers a lower latency than SSDs, which
can increase performance significantly when I/O is in the critical
path. However, when there is a lot of resource contention or mixed
workloads and because the I/O path is not fully optimized in the
case of PMEM, SSDs still remain a competitive solution.

REFERENCES
[1] Accessed 2021-10-18. Peloton. https://pelotondb.io/.
[2] Accessed 2021-10-19. Intel®Optane©DC Persistent Memory. https:

//www.intel.com/content/www/us/en/architecture-and-technology/optane-
dc-persistent-memory.html.

[3] Accessed 2021-10-25. Intel Vtune Platform Profiler. https:
//www.intel.com/content/dam/develop/external/us/en/documents/
vtuneplatformprofilerwhitepaper.pdf.

[4] Accessed 2021-11-01. Faster access to more data. https://www.intel.ca/content/
www/ca/en/architecture-and-technology/optane-technology/faster-access-to-
more-data-article-brief.html.

[5] Accessed 2021-11-02. InnoDB: Parallel read of index. https://dev.mysql.com/
worklog/task/?id=11720#tabs-11720-2.

[6] Accessed 2021-11-04. PGTune. https://pgtune.leopard.in.ua/.
[7] Accessed 2021-11-09. Fsync performance on storage devices. https://www.

percona.com/blog/2018/02/08/fsync-performance-storage-devices/.
[8] Accessed 2021-11-09. Mysql 8.0 reference manual: doublewrite buffer. https:

//dev.mysql.com/doc/refman/8.0/en/innodb-doublewrite-buffer.html.
[9] Accessed 2021-11-09. Mysql 8.0 reference manual: innoDB startup options and

system variables. https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.
html#sysvar_innodb_flush_method.

[10] Accessed 2021-11-16. fio - Flexible I/O tester rev. 3.27. https://fio.readthedocs.io/
en/latest/fio_doc.html.

[11] Accessed 2021-11-16. Ioping. https://github.com/koct9i/ioping.
[12] Accessed 2021-11-23. Configure persistent memory (PMEM) for SQL Server on

Linux. https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-
pmem?view=sql-server-ver15.

[13] Accessed 2021-11-25. Performance best practices and configuration guidelines
for SQL Server on Linux. https://docs.microsoft.com/en-us/sql/linux/sql-server-
linux-performance-best-practices?view=sql-server-ver15.

[14] Accessed 2022-11-22. Compute Express Link. https://www.computeexpresslink.
org/.

[15] Accessed 2022-11-22. Discontinuation of Intel Optane. https:
//www.intel.com/content/www/us/en/support/products/99743/memory-
and-storage/intel-optane-memory/intel-optane-memory-series.html.

[16] Accessed 2023-03-22. HammerDB. https://www.hammerdb.com/.
[17] Accessed 2023-03-22. VoltDB-TPCC. https://github.com/VoltDB/voltdb/tree/

master/tests/test_apps/tpcc.
[18] Accessed 24-03-2023. How Does the DRAM Caching Work in

Memory Mode Using Intel® Optane™ Persistent Memory? https:
//www.intel.com/content/www/us/en/support/articles/000055901/memory-
and-storage/intel-optane-persistent-memory.html.

[19] Accessed 24-03-2023. Intel® Optane™ Persistent Memory startup guide.
https://www.intel.com/content/dam/support/us/en/documents/memory-and-
storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_
Up_Guide.pdf.

[20] Accessed 24-03-2023. Intel® Optane™ Persistent Memory startup guide.
https://www.intel.com/content/dam/support/us/en/documents/memory-and-
storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_
Up_Guide.pdf.

[21] Mihnea Andrei, Christian Lemke, Günter Radestock, Robert Schulze, Carsten
Thiel, Rolando Blanco, Akanksha Meghlan, Muhammad Sharique, Sebastian
Seifert, Surendra Vishnoi, et al. 2017. SAP HANA adoption of non-volatile
memory. Proceedings of the VLDB Endowment (2017), 1754–1765.

[22] Joy Arulraj and Andrew Pavlo. 2017. How to build a non-volatile memory
database management system. In Proceedings of the 2017 ACM International
Conference on Management of Data. 1753–1758.

[23] Joy Arulraj and Andrew Pavlo. 2019. Non-volatile memory database management
systems. Synthesis Lectures on Data Management (2019), 1–191.

[24] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. 2015. Let’s talk about
storage & recovery methods for non-volatile memory database systems. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of
Data. 707–722.

[25] Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi. 2019. Multi-tier buffer
management and storage system design for non-volatile memory. arXiv preprint
arXiv:1901.10938 (2019).

[26] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-behind logging.
Proceedings of the VLDB Endowment (2016), 337–348.

[27] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. 2021. Viper: An efficient
hybrid pmem-dram key-value store. Proceedings of the VLDB Endowment (2021),
1544–1556.

[28] Lawrence Benson, Leon Papke, and Tilmann Rabl. 2022. PerMA-bench: bench-
marking persistent memory access. Proceedings of the VLDB Endowment (2022),
2463–2476.

[29] Maximilian Böther, Otto Kißig, Lawrence Benson, and Tilmann Rabl. 2021. Drop
It In Like It’s Hot: An Analysis of Persistent Memory as a Drop-in Replace-
ment for NVMe SSDs. In Proceedings of the 17th International Workshop on Data

Management on New Hardware (DaMoN 2021). 1–8.
[30] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D Viglas. 2015. Rewind:

Recovery write-ahead system for in-memory non-volatile data-structures. Pro-
ceedings of the VLDB Endowment (2015), 497–508.

[31] Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile main memory.
Proceedings of the VLDB Endowment (2015), 786–797.

[32] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. UTree:
A Persistent B+-Tree with Low Tail Latency. Proceedings of the VLDB Endowment
(2020), 2634–2648.

[33] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[34] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann Rabl. 2021.
Maximizing persistent memory bandwidth utilization for OLAP workloads. In
Proceedings of the 2021 International Conference on Management of Data. 339–351.

[35] Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor Zablotchi.
2018. Log-Free Concurrent Data Structures. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference (ATC 2018). 373–385.

[36] Subramanya RDulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System software for persistent
memory. In Proceedings of the Ninth European Conference on Computer Systems.
1–15.

[37] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch, and Erez
Petrank. 2020. NVTraverse: In NVRAM Data Structures, the Destination is More
Important than the Journey. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2020). 377–392.

[38] Michal Friedman, Erez Petrank, and Pedro Ramalhete. 2021. Mirror: Making
Lock-Free Data Structures Persistent. 1218–1232.

[39] Caixin Gong, Chengjin Tian, Zhengheng Wang, Sheng Wang, Xiyu Wang, Qiulei
Fu, Wu Qin, Long Qian, Rui Chen, Jiang Qi, et al. 2022. Tair-PMem: a fully
durable non-volatile memory database. Proceedings of the VLDB Endowment
(2022), 3346–3358.

[40] Yuliang He, Duo Lu, Kaisong Huang, and Tianzheng Wang. 2022. Evaluating
Persistent Memory Range Indexes: Part Two. arXiv preprint arXiv:2201.13047
(2022).

[41] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018.
Endurable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In
16th USENIX Conference on File and Storage Technologies (FAST 18). 187–200.

[42] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
2019. Basic performancemeasurements of the intel optane DC persistent memory
module. arXiv preprint arXiv:1903.05714 (2019).

[43] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
et al. 2019. Software-defined far memory in warehouse-scale computers. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 317–330.

[44] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating persistent memory range indexes. Proceedings of the
VLDB Endowment (2019), 574–587.

[45] Gang Liu, Leying Chen, and Shimin Chen. 2021. Zen: a high-throughput log-free
OLTP engine for non-volatile main memory. Proceedings of the VLDB Endowment
(2021), 835–848.

[46] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable
hashing on persistent memory. arXiv preprint arXiv:2003.07302 (2020).

[47] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey, Dhruva R.
Chakrabarti, and Michael L. Scott. 2017. Dalí: A Periodically Persistent Hash
Map. In 31st International Symposium on Distributed Computing (DISC 2017).
37:1–37:16.

[48] Onkar Patil, Latchesar Ionkov, Jason Lee, Frank Mueller, and Michael Lang. 2019.
Performance characterization of a dram-nvm hybrid memory architecture for
hpc applications using intel optane dc persistent memory modules. In Proceedings
of the International Symposium on Memory Systems. 288–303.

[49] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. 2017. Self-
Driving Database Management Systems.. In CIDR, Vol. 4. 1.

[50] Ivy B Peng, Maya B Gokhale, and Eric W Green. 2019. System evaluation of the
intel optane byte-addressable nvm. In Proceedings of the International Symposium
on Memory Systems. 304–315.

[51] Georgios Psaropoulos, Ismail Oukid, Thomas Legler, NormanMay, and Anastasia
Ailamaki. 2019. Bridging the latency gap between NVM and DRAM for latency-
bound operations. In Proceedings of the 15th International Workshop on Data
Management on New Hardware. 1–8.

[52] Anil Shanbhag, Nesime Tatbul, David Cohen, and Samuel Madden. 2020. Large-
scale in-memory analytics on Intel® Optane™ DC persistent memory. In Proceed-
ings of the 16th International Workshop on Data Management on New Hardware.
1–8.

https://pelotondb.io/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/dam/develop/external/us/en/documents/vtuneplatformprofilerwhitepaper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/vtuneplatformprofilerwhitepaper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/vtuneplatformprofilerwhitepaper.pdf
https://www.intel.ca/content/www/ca/en/architecture-and-technology/optane-technology/faster-access-to-more-data-article-brief.html
https://www.intel.ca/content/www/ca/en/architecture-and-technology/optane-technology/faster-access-to-more-data-article-brief.html
https://www.intel.ca/content/www/ca/en/architecture-and-technology/optane-technology/faster-access-to-more-data-article-brief.html
https://dev.mysql.com/worklog/task/?id=11720#tabs-11720-2
https://dev.mysql.com/worklog/task/?id=11720#tabs-11720-2
https://pgtune.leopard.in.ua/
https://www.percona.com/blog/2018/02/08/fsync-performance-storage-devices/
https://www.percona.com/blog/2018/02/08/fsync-performance-storage-devices/
https://dev.mysql.com/doc/refman/8.0/en/innodb-doublewrite-buffer.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-doublewrite-buffer.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_method
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_method
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://github.com/koct9i/ioping
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-pmem?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-pmem?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-performance-best-practices?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-performance-best-practices?view=sql-server-ver15
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://www.intel.com/content/www/us/en/support/products/99743/memory-and-storage/intel-optane-memory/intel-optane-memory-series.html
https://www.intel.com/content/www/us/en/support/products/99743/memory-and-storage/intel-optane-memory/intel-optane-memory-series.html
https://www.intel.com/content/www/us/en/support/products/99743/memory-and-storage/intel-optane-memory/intel-optane-memory-series.html
https://www.hammerdb.com/
https://github.com/VoltDB/voltdb/tree/master/tests/test_apps/tpcc
https://github.com/VoltDB/voltdb/tree/master/tests/test_apps/tpcc
https://www.intel.com/content/www/us/en/support/articles/000055901/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000055901/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000055901/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf

[53] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing non-volatile memory in database systems. In Proceedings of the 2018
International Conference on Management of Data. 1541–1555.

[54] Alexander Van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2019. Persistent memory I/O primitives. In Proceedings of the 15th
International Workshop on Data Management on New Hardware. 1–7.

[55] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (FAST 2011). 5.

[56] Tianzheng Wang and Ryan Johnson. 2014. Scalable logging through emerging
non-volatile memory. Proceedings of the VLDB Endowment (2014).

[57] Michèle Weiland, Holger Brunst, Tiago Quintino, Nick Johnson, Olivier Iffrig,
Simon Smart, Christian Herold, Antonino Bonanni, Adrian Jackson, and Mark
Parsons. 2019. An early evaluation of Intel’s optane DC persistent memory
module and its impact on high-performance scientific applications. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–19.

[58] Kan Wu, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Rathijit Sen, and
Kwanghyun Park. 2019. Exploiting intel optane ssd for microsoft sql server.
In Proceedings of the 15th International Workshop on Data Management on New
Hardware. 1–3.

[59] Yinjun Wu, Kwanghyun Park, Rathijit Sen, Brian Kroth, and Jaeyoung Do. 2020.
Lessons learned from the early performance evaluation of Intel Optane DC

Persistent Memory in DBMS. In Proceedings of the 16th International Workshop
on Data Management on New Hardware. 1–3.

[60] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022.
Characterizing the performance of intel optane persistent memory: a close look
at its on-DIMM buffering. In Proceedings of the Seventeenth European Conference
on Computer Systems. 488–505.

[61] Jian Yang, Juno Kim,MortezaHoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
2020. An empirical guide to the behavior and use of scalable persistent memory.
In 18th {USENIX} Conference on File and Storage Technologies ({FAST} 20). 169–
182.

[62] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost for NVM-Based Single
Level Systems. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies (FAST 2015). 167–181.

[63] Zhou Zhang, Zhaole Chu, Peiquan Jin, Yongping Luo, Xike Xie, Shouhong Wan,
Yun Luo, Xufei Wu, Peng Zou, Chunyang Zheng, Guoan Wu, and Andy Rudoff.
2022. PLIN: A Persistent Learned Index for Non-Volatile Memory with High
Performance and Instant Recovery. Proceedings of the VLDB Endowment (2022),
243–255.

[64] Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David Cohen. 2021. Spitfire: A
Three-Tier Buffer Manager for Volatile and Non-Volatile Memory. In Proceedings
of the 2021 International Conference on Management of Data. 2195–2207.

[65] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank.
2019. Efficient Lock-Free Durable Sets. In Proceedings of the ACM on Programming
Languages (PACMPL 2019).

	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Memory
	2.2 Related work

	3 Experimental setup
	3.1 System specification
	3.2 Basic microbenchmarks

	4 OLAP workloads (TPC-H)
	4.1 General observations
	4.2 Scans
	4.3 Index lookups
	4.4 Working set size in Memory mode
	4.5 Query plans

	5 OLTP workloads (TPC-C)
	5.1 General observations
	5.2 Log and data placement
	5.3 Varying database configurations

	6 Key-value stores (YCSB)
	7 Discussion
	7.1 Insights
	7.2 Future directions

	8 Conclusion
	References

