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Abstract
Achieving cost and performance efficiency for cloud-hosted
databases requires exploring a large configuration space, in-
cluding the parameters exposed by the database along with
the variety of VM configurations available in the cloud. Even
small deviations from an optimal configuration have signifi-
cant consequences on performance and cost. Existing systems
that automate cloud deployment configuration can select near-
optimal instance types for homogeneous clusters of virtual
machines and for stateless, recurrent data analytics workloads.
We show that to find optimal performance-per-$ cloud deploy-
ments for NoSQL database applications, it is important to
(1) consider heterogeneous cluster configurations, (2) jointly
optimize database and VM configurations, and (3) dynami-
cally adjust configuration as workload behavior changes. We
present OPTIMUSCLOUD, an online reconfiguration system
that can efficiently perform such joint and heterogeneous con-
figuration for dynamic workloads. We evaluate our system
with two clustered NoSQL systems: Cassandra and Redis,
using three representative workloads and show that OPTIMUS-
CLOUD provides 40% higher throughput/$ and 4.5× lower
99-percentile latency on average compared to state-of-the-art
prior systems, CherryPick, Selecta, and SOPHIA.

1 Introduction

Cloud deployments reduce initial infrastructure investment
costs and provide many operational benefits. An important
class of cloud deployments is NoSQL databases, which al-
low applications to scale beyond the limits of traditional
databases [17]. Popular NoSQL databases such as Cassandra,
Redis, and MongoDB, are widely used in web services, big
data services, and social media platforms. Tuning cloud-based
NoSQL databases for performance1 under cost constraints is
challenging due to several reasons.

1We use the standard metrics of throughput and (tail) latency for measur-
ing database performance. Specifically, we target maximizing throughput
normalized by price in $, i.e., performance-per-unit-$ or Perf/$ for short.

First, the search space is very large due to VM configura-
tions and database application configurations. For example,
cloud services provide many VMs that vary in their CPU-
family, number of cores, RAM size, storage, network band-
widths, etc., which affect the VM’s $ cost. At the time of
writing, AWS provides 133 instance types while Azure pro-
vides 146 and their prices vary by a factor of 5,000×. On
the NoSQL side, there are many performance-impacting con-
figuration parameters. For example, Cassandra has 25 such
parameters and sub-optimal parameter setting for one parame-
ter (e.g., the Compaction method) can degrade throughput by
3.4× from the optimal. On the cloud side too, selecting the
right VM type and size is essential to achieve the best Perf/$.

Second, there is the need for joint optimization while tak-
ing into account the dependencies between the NoSQL-level
and VM-level configurations. For example, our evaluation
shows that the optimal cache size of Cassandra for a VM type
M4.large (with 8GB of RAM) is 8× the optimal cache size
for C4.large (with 3.75GB RAM). Additionally, larger-sized
VMs do not always provide better Perf/$ [67] as they may
overprovision resources and unnecessarily increase the $ cost.

Third, there are many use cases of cloud applications where
the workload characteristics change over time, sometimes
unpredictably, necessitating reconfigurations [7,11]. A con-
figuration that is optimal for one phase of the workload can
become very poor for another phase of the workload. For
example, in Cassandra, with a large working set size, reads
demand instances with high memory, while writes demand
high compute power and fast storage.

Changing the configuration at runtime for NoSQL
databases, which are stateful applications (i.e., with persis-
tent storage), has a performance impact due to the downtime
caused to the servers being reconfigured. Therefore, for fast
changing workloads, frequent reconfiguration of the over-
all cluster could severely degrade performance [41]. Conse-
quently, deciding which subset of servers to reconfigure is vi-
tal to minimize reconfiguration performance hit and to achieve
globally optimal Perf/$ while respecting the user’s availability
requirements. However, changing the configurations of only
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Figure 1: Violin plot showing performance (throughput) of Best, Default,
and Worst database configurations across different EC2 VM types.

a subset of servers naturally leads to heterogeneous clusters,
which no prior work is equipped to deal with.

Existing Solutions: State-of-the-art cloud configuration
tuners such as CherryPick [5] and Selecta [32] focus mainly
on stateless, recurring workloads, such as big-data analyt-
ics jobs, while Paris [67] relies on a carefully chosen set of
benchmarks that can be run offline to fingerprint which ap-
plication is suitable for which VM type. Due to their target
of static workloads and stateless jobs, a single cloud config-
uration is selected based on a representative workload and
then fixed throughout the operation period. However, small
workload changes can cause these “static tuners” to produce
drastically degraded configurations. For example, a 25% in-
crease in workload size with CherryPick makes the proposed
configuration 2.6× slower than optimal (Section 5.4 in [5]).
Also, in our experiments (Sec. 4.3), we find that CherryPick’s
proposed configuration for the write-heavy phase achieves
only 12% of the optimal when the workload switches to a
read-heavy phase. Hence, these prior systems are not suitable
for dynamic workloads.

SOPHIA [41] addresses database configuration tuning for
clustered NoSQL databases and can handle dynamic work-
loads. However, like the static tuner RAFIKI [40], SOPHIA’s
design focuses only on NoSQL configuration tuning and does
not consider cloud VM configurations nor dependencies be-
tween VM and NoSQL configurations. Naïvely combining
the NoSQL and VM configuration spaces causes a major in-
crease in the search space size and limits SOPHIA’s ability
to provide efficient configurations (Sec. 3.5). Further, due
to its atomic reconfiguration strategy (i.e., either reconfigure
all servers or none), it suffers from all the drawbacks of the
homogeneity constraint. Table 1 compares key features of
OPTIMUSCLOUD to various prior works in this field.

Our Solution: We introduce our system OPTIMUSCLOUD,
which jointly tunes the database and cloud (VM) configura-
tions for dynamic workloads. There are three key animat-
ing insights behind the design of OPTIMUSCLOUD. The
first is that jointly tuning the database and cloud (VM) con-
figurations for dynamic workloads is essential. To show how
important this is, we benchmark one Cassandra server with a
30-min trace from one of our three workloads (MG-RAST)

Table 1: OPTIMUSCLOUD’s key features vs. existing systems.

on 9 different EC2 VM types2. For each type, we use 300
different database configurations selected through grid search.
We show the performance in terms of Ops/s for the best, de-
fault, and worst configurations in Fig. 1. We see a big variance
in performance w.r.t. the database configurations—up to 74%
better performance over default configurations (45% on aver-
age). Further, the best configurations vary with the VM type
and size (for the 6 VM types shown here, there are 5 distinct
best DB configurations). This emphasizes the need for tuning
both types of configurations jointly to achieve the best Perf/$.
The second key insight is that in order to optimize the Perf/$
for a dynamic workload, it is necessary to perform non-atomic
reconfigurations, i.e., for only part of the cluster. Reconfigu-
ration in a distributed datastore is a sequential operation (in
which one or a few servers at a time are shutdown and then
restarted) to preserve data availability [31, 41]. This opera-
tion causes transient performance degradation or lower fault
tolerance. Reconfiguration is frequent enough for many work-
loads that this performance degradation should be avoided,
e.g., MG-RAST has a median of 430 significant switches
per day in workload characteristics. Accordingly, heteroge-
neous configurations have the advantage of minimizing the
performance hit during reconfiguration. Further, in the face
of dynamic workloads, there may only be time to reconfigure
part of the overall cluster. Also, from a cost-benefit stand-
point, maximizing performance does not need all instances
to be reconfigured (such as to a more resource-rich instance
type), rather a carefully selected subset. We give a simple
example to make this notion concrete in Section 2. The third
key insight is that for a particular NoSQL database (with its
specifics of data placement and load balancing), it is possi-
ble to create a model to map the configuration parameters to
the performance of each server. From that, it is possible to
determine the overall heterogeneous cluster’s performance.
OPTIMUSCLOUD leverages performance modeling to search
for the optimal cluster configuration.
The workflow of OPTIMUSCLOUD comprises offline training
and online prediction and reconfiguration phases as shown
in Fig. 2. At runtime, OPTIMUSCLOUD takes user require-
2MG-RAST is the largest metagenomics portal and data repository and gets
queries from across the globe which cause unpredictable read-write patterns
to the backend Cassandra.
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Figure 2: Overview of OPTIMUSCLOUD’s workflow. First, a workload predictor is trained with historical traces from the database to be tuned. Second,
a single server performance predictor is trained to map workload description, VM specs, and NoSQL application configuration to throughput. Third, a
cluster-level performance predictor is used to estimate the throughput of the heterogeneous cluster of servers. In the online phase, our optimizer uses this
predictor to evaluate the fitness of different VM/application configurations and provides the best performance within a given budget.
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tions (OPTIMUSCLOUD Full) has benefit over tuning only the VM config-
uration (3rd bar from left). The percentage value on the top of each bar
denotes how much OPTIMUSCLOUD improves over that particular scheme.

ments of budget, availability, and consistency. It then com-
bines the performance model with a workload predictor and a
cost-benefit analyzer to decide: when the workload changes
sufficiently, what should be the new (possibly heterogeneous)
configuration. It decides what minimal set of servers should
be reconfigured.
Evaluation: We apply OPTIMUSCLOUD to two popular
NoSQL databases—Cassandra and Redis—and evaluate the
system on traces from two real-world systems, and one sim-
ulated trace from an HPC analytics job queue. All three
use cases represent dynamic workloads with different query
blends. We evaluate the Perf/$ achieved by OPTIMUSCLOUD
and compare this to three leading prior works, CherryPick [5],
Selecta [32], and SOPHIA [41]. Additionally, we compare
ourselves to the best static configuration determined with
oracle-like prediction of future workloads and the theoretical
best. OPTIMUSCLOUD achieves between 80-90% of the the-
oretical best performance for the 3 workloads and achieves
improvements between 9%-86.5%, 18%-173%, 17%-174%,
and 12%-514% in Perf/$ over Homogeneous-Static, Cherry-
Pick, Selecta, and SOPHIA respectively without degrading
P99 latency (Sec. 4). Fig. 3 shows the improvement in Perf/$
due to OPTIMUSCLOUD’s heterogeneous configurations.

We make the following novel contributions in this paper.

1. We design a performance modeling-based technique for
efficient joint optimization of database and cloud config-
urations to maximize the Perf/$ of a clustered database.

2. We design a technique to identify the minimal set of
servers in a clustered database to reconfigure (concur-
rently) to obtain a throughput benefit. This naturally
leads to heterogeneous configurations. To reduce the
much larger search space that this causes, we design for
a simplification that groups multiple servers that should
be configured to the same parameters.

3. We show that OPTIMUSCLOUD generalizes to two dis-
tinct NoSQL databases and different workloads, cluster
sizes, data volumes, and user-specified requirements for
replication and data consistency.

The rest of the paper is organized as follows. Section 2
gives the necessary background for the problem and a quanti-
tative rationale. Section 3 describes the details of OPTIMUS-
CLOUD’s design. We evaluate OPTIMUSCLOUD in Section 4
and survey related work in Section 5.

2 Background and Rationale

To evaluate the generalizability of OPTIMUSCLOUD, we se-
lect two popular NoSQL databases with very different archi-
tectures.

2.1 Cassandra
Cassandra is designed for high scalability, availability, and
fault-tolerance. To achieve these, Cassandra uses a peer-to-
peer (P2P) replication strategy, allowing multiple replicas to
handle the same request. Other popular datastores such as
DynamoDB [20] and Riak [34] implement the same P2P strat-
egy and we select Cassandra as a representative system from
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that category. Cassandra’s replication strategy determines
where replicas are placed. The number of replicas is defined
as “Replication Factor” (RF). By default, Cassandra assigns
an equal number of tokens to each node in the cluster where
a token represents a sequence of hash values for the primary
keys that Cassandra stores. Based on this token assignment, a
Cassandra cluster can be represented as a ring topology [16].
Fig. 5 shows an example of 4 Cassandra servers and RF of 2.

2.2 Redis
Redis is an in-memory database and serves all requests from
the RAM, while it writes data to permanent storage for fault
tolerance. This design principle makes Redis an excellent
choice to be used as a cache on top of slower file systems
or datastores [54]. Redis can operate as either a stand-alone
node or in a cluster of nodes [53] where data is automati-
cally sharded across multiple Redis nodes. Our evaluation
applies to the clustered mode of Redis. When a Redis server
reaches the maximum size of its allowed memory (specified
by the maxmemory configuration parameter), it uses one of
several policies to decide how to handle new write requests.
The default policy will respond with error. Other policies will
replace existing records with the newly inserted record (the
maxmemory-policy configuration parameter specifies which
records will be evicted). The value of maxmemory needs to
be smaller than the RAM size of the VM instance and the
headroom that is needed is workload dependent (lots of writes
will need lots of temporary buffers and therefore larger head-
room). Thus, it is challenging to tune maxmemory-policy
and maxmemory parameters with changing workloads and
these two form the target of our configuration decision.
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Figure 4: Change in Perf/$ for the write (solid) and read throughput (dot-
ted) as we reconfigure the nodes from C4.large to R4.xlarge.

2.3 Example Rationale for Heterogeneous
Configurations

Here we give a motivating example for selecting subset of
servers to reconfigure. Consider a Cassandra cluster of 4
nodes with a consistency-level (CL3) = 1 and replication-
factor (RF4) = 3, i.e., any pair of nodes has a complete copy
3CL: the minimum number of Cassandra nodes that must acknowledge a
read or write operation before the operation can be considered successful

4RF: the total number of replicas for a key across a Cassandra cluster

of all the data. Also, assume that we only have two cloud
configurations: C4.large, which is compute-optimized, and
R4.xlarge, which is memory-optimized. C4.large is cheaper
than R4.xlarge by 58% [8], whereas R4.xlarge has larger
RAM (30.5GB vs 3.75GB) and serves read-heavy workloads
with higher throughput. Now we test the performance of all
possible combinations of VM configurations (All C4.L, 1
C4.L + 3R4.XL, . . . etc.) for both read-heavy and write-heavy
phases of the MG-RAST workload and show the saturation
level throughput for each configuration in Fig. 4. The "All
C4.large" configuration achieves the best write Perf/$ (41.7
KOps/s/$), however, it has the worst read Perf/$ (only 1.28
KOps/s/$) because reads of even common records spill out
of memory. Now if two servers are reconfigured to R4.xlarge,
the write Perf/$ decreases (24.4 KOps/s/$), while the read
performance increases significantly (9.7 KOps/s/$), show-
ing an improvement of 7.5× for read throughput over the
all C4.large configuration. The reason for this huge improve-
ment is Cassandra’s design by which it redirects new requests
to the fastest replica [19], directing all read requests to the
two R4.xlarge servers. Now we notice that switching more
C4.large servers to R4.xlarge does not show any improve-
ment in either reads or writes Perf/$, as the two R4x.large
servers are capable of serving the applied workload with
no queued requests. This means that switching more servers
will only reduce the Perf/$. Thus, the best Perf/$ is achieved
by configuring to all C4.large in write-heavy phases, while
configuring only 2 servers to R4x.large in read-heavy phases.
Therefore, heterogeneous configurations can achieve bet-
ter Perf/$ compared to homogeneous ones under mixed
workloads.

3 Design

3.1 Workload Representation and Prediction
OPTIMUSCLOUD uses a query-based model [4] to represent
time-varying workloads. This model characterizes the applied
workload in terms of the proportion of the different query
types and the total volume of queries, denoted by W .

We use a workload predictor to learn time-varying pat-
terns from the workload’s historical traces, and predict the
workload characteristics for a particular lookahead period.
We notate the time varying workload at a given point in time
t as W (t). The task of the workload predictor is to provide
OPTIMUSCLOUD with W (t +1) given W (t),W (t−1),... ,
W (t−h), where h is the length of history. OPTIMUSCLOUD
then iteratively predicts the workload till a lookahead time l,
i.e., W (t + i) ,∀i ∈ (1, l). We execute OPTIMUSCLOUD with
a simple Markov-Chain prediction model for both MG-RAST
and Bus-tracking workloads while we have a deterministic
fully accurate predictor for HPC. We do not claim any nov-
elty in workload prediction and OPTIMUSCLOUD is modular
enough to easily integrate more complex estimators, such as
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neural networks [37, 39].

3.2 Performance Prediction
Combining NoSQL and cloud configurations produces a mas-
sive search space, which is impractical to optimize through ex-
haustive search. However, it is well known that not all the ap-
plication parameters impact performance equally [40, 41, 62]
and therefore OPTIMUSCLOUD reduces the search time by
automatically selecting the most impactful parameters. Fur-
ther, there exist dependencies among parameters, such as the
dependency between the VM type (EC2) and Cassandra’s file-
cache-size (FCS) ( Fig. 7). OPTIMUSCLOUD uses D-optimal
design [48] to optimize the offline data collection process for
training our performance model. D-optimal design answers
this question: “Given a budget of N data points to sample
for a workload, which N points are sufficient to reveal the
dependencies between configuration parameters?”. We exper-
imentally determine that the significant dependencies in our
target applications are at most pairwise and therefore we re-
strict the search to linear and quadratic parameters. We create
a set of filters for feasible combinations of parameter values
by mapping each parameter to the corresponding resource
(e.g., file-cache-size parameter is mapped to RAM). After-
ward, we check that the sum of all parameters mapped to the
same resource is within that resource limit of the VM (e.g.,
the total size of all Cassandra buffer memories should not ex-
ceed the VM instance memory). We feed to D-optimal design
the budget in terms of the number of data points that we can
collect for offline training.

After collecting the data points determined by the D-
optimal design, we train a random forest to act as a regressor
and predict the performance of a single NoSQL server for any
given set of configuration parameters, both database and VM.
The average output of the different decision trees is taken as
the final output. We choose random forest over other predic-
tion models because of its easily interpretable results [50]
and it has only two hyper-parameters to tune (max_depth and
forest_size) compared to black-box models such as DNNs.
OPTIMUSCLOUD trains a second random forest model to
predict the overall cluster performance, using the predicted
performance for each server, RF, CL and data-placement in-
formation. For both random forests, we use 20 trees and a
maximum depth of each as 5 as that gives the best result
within reasonable times.

3.3 Selection of Servers to Reconfigure
Selecting the right servers to reconfigure in a cluster is es-
sential to achieve the best Perf/$. We introduce the notion
of Complete-Sets to determine the right subset of servers
to reconfigure. We define a Complete-Set as the minimum
subset of nodes for which the union of their data records
covers all the records in the database at least once.
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Figure 5: (RF=2, CL=1) Cluster performance depends not just on the con-
figuration of each server, but also on the relative positions of the instances
on the token ring. Cluster1 achieves 7× reads Ops/s over Cluster2 with the
same VM types and sizes.

To see why the notion of Complete-Set is important, consider
the two clusters shown in Fig. 5. Both clusters 1 and 2 use
2 C4.large and 2 R4.large and hence have the same $ cost.
However, Cluster1 achieves 7× the read Ops/s compared to
Cluster2. The reason for the better performance of Cluster1 is
that it has one Complete-Set worth of servers configured to the
memory-optimized R4.large architecture and therefore serves
all read requests efficiently. On the other hand, Cluster2’s
read performance suffers since all read requests to shard B
(or its replica B’) have to be served by one of the C4.large
servers, which has a smaller RAM and therefore serves most
of the reads from desk. Accordingly, read requests to shards
B or B’ represent a bottleneck in Cluster2 and cause a long
queuing time for the reading threads, which brings down the
performance the entire cluster for all the shards.

This means that all the servers within a Complete-Set
must be upgraded to the faster configuration for the clus-
ter performance to improve. Otherwise, the performance of
the Complete-Set will be bounded by the slowest server in the
set. OPTIMUSCLOUD partitions the cluster into one or more
Complete-Sets using the cluster’s data placement information.
To identify the Complete-Sets, we collect the data placement
information for each server of the cluster. OPTIMUSCLOUD
queries this information either from any server (such as in Cas-
sandra, using nodetool ring command) or from one of the
master servers (such as in Redis, using redis-cli cluster
info command). In Redis, identifying the Complete-Sets is
easier since data tokens are divided between the master nodes
only, while slaves have exact copies of their master’s data.
Therefore, a Complete-Set is formed by simply selecting a
single slave node for every master node.
Maintaining Data Availability: To maintain data availabil-
ity during reconfiguration of a Cassandra cluster, at least CL
replicas of each data record must be up at any point in time.
This puts an upper limit on the number of Complete-Sets
that can be reconfigured concurrently as Count(Complete-
Sets)−CL.
We show that the number of Complete-Sets in a cluster is
not dependent on the number of nodes in the cluster, but is
a constant factor. This is because when the cluster size in-
creases, the range of keys assigned to every node decreases
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Cluster C1 has 3 nodes and each node has a complete copy of the data,
therefore each node is a Complete-Set. Cluster C2 has 6 nodes and has
the following Complete-Sets: [1,4] , [2,5] & [3,6]. Cluster C3 has 5 nodes
(not divisible by RF=3), therefore it has two Complete-Sets: [1,3 (or 4)],
[2,4 (or 5)].

and therefore the number of nodes that form a Complete-Set
increases. This means that since OPTIMUSCLOUD reconfig-
ures the instances in groups of one or more Complete-Sets
concurrently, the total time to reconfigure a cluster is a con-
stant factor independent of the cluster size. Figure 6 shows
examples of Complete-Set for different cluster sizes
Property: OPTIMUSCLOUD partitions the cluster into S
Complete-Sets, and S is independent of the cluster size N.
Proof. For a cluster of N servers with replication factor
RF , there exists a total of RF copies of each record in the
cluster, with no two copies of the same record stored in
the same server. Assuming each node in the cluster is as-
signed an equal portion of the data (which NoSQL load-
balancers try to achieve [35]), the size of a Complete-Set is
SizeCompSet = d N

RF e. Consequently, the number of Complete-
Sets in the cluster S = b N

SizecompSet
c. If RF divides N, then the

number of Complete-Sets is S = N
SizeCompSet

= RF . Else, say

N%RF = r, then S = RF
1−r/N+RF/N , which is ≈ RF since in

practice RF is not large, 3 being a practical upper bound. Thus,
the number of Complete-Sets is independent of the cluster
size and hence the reconfiguration time is also a constant.

�

Search Space Size Reduction: Heterogeneous configura-
tions make the search space size much larger than with ho-
mogeneous configurations. Consider a cluster of N nodes
and I VM options to pick from. If we are to pick a homoge-
neous cloud configuration for the cluster, we have I options.
However, if we are to pick a heterogeneous cloud configura-
tion, our search space becomes IN . If we assume balanced
data placement among the servers in the cluster (as clustered
NoSQL databases are designed for), the search space becomes
C(N+I−1, I−1) (distribute N identical balls among I boxes).
However, this search space size is still too large to perform an
exhaustive search to pick the optimal configurations. A clus-
ter of size N=20 nodes and I=15 VM options gives 1.3×109

different configurations to select from. One may use domain-
specific insights about the domain to reduce the search space
for specific applications [36] or for customized distributed
strategies [28]. However we aim for generalizability here.

We use one insight about Complete-Sets to reduce the

search space. The nodes within each Complete-Set should be
homogeneous in their configuration. Otherwise, the perfor-
mance of the Complete-Set will be equal to that of the slowest
node in the set. This means that the smallest atomic unit of
reconfiguration is one Complete-Set. This insight reduces the
search space, while still allowing different Complete-Sets to
have different configurations. Thus, the search space reduces
to C (S+ I−1, I−1)=680 configurations when S = RF = 3.
Also note that the configuration search space is constant
rather than growing with the size of the cluster.

3.4 Selecting the Reconfiguration Plan

3.4.1 Objective Function Optimization

The objective of OPTIMUSCLOUD is to find a reconfigura-
tion plan that maximizes Perf/$ of the cluster under a given
budget and with a minimum acceptable throughput. A recon-
figuration plan C is represented as a time series of a vector of
configurations (both NoSQL and VM):

C =
[
{C1,C2, · · · ,CM},{t1, t2, ..., tM}

]
(1)

Where M is the number of steps in the plan and timestamp
ti represents how long the configuration Ci is applied. The
lookahead is tL =∑

M
i=1 ti. The optimization problem is defined

as:

C∗ =C
f
(
W,C

)
Cost

(
C
)

subject to f
(
W,C

)
≥ minOps & Cost

(
C
)
≤ Budget

(2)

Here, f (W,C) is the function that maps the workload vector
W and the configuration vector C to the throughput (the clus-
ter prediction model) and C∗ is the best reconfiguration plan
selected by OPTIMUSCLOUD. The two constraints in the prob-
lem prevent us from selecting configurations that exceed the
budget or those that deliver unacceptably low performance.

The optimization problem described in Equation 2 falls un-
der the category of gradient-free optimization problems [38],
in which no gradient information is available nor can any
assumption be made regarding the form of the optimized
function. For this category of optimization problems, several
meta-heuristic search methods have been proposed, such as,
Genetic Algorithms (GA) , Tabu Search [64], and Simulated
Annealing. We use GA due to two relevant advantages. First,
constraints can be easily included in its objective function
(i.e., the fitness function). Second, it provides a good balance
between exploration and exploitation through crossover and
mutation [59]. We use Python Solid library for GA [58] and
Scikit-learn for random forests [55].

3.4.2 Cost-Benefit Analysis

Changing either NoSQL or cloud configurations at runtime
has a performance cost due to downtime caused to nodes
being reconfigured. We find that most of the performance-
impacting NoSQL parameters (83% for Cassandra) neces-
sitate a server restart and naturally, changing the VM type
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needs a restart as well. When a workload change is predicted
in the online phase, OPTIMUSCLOUD uses its performance
predictor to propose new configurations for the new work-
load. Afterward, OPTIMUSCLOUD estimates the reduction in
performance given the expected downtime duration and com-
pares that to the expected benefit of the new configurations.
OPTIMUSCLOUD selects configurations that maximize the
difference between the benefit and the cost (both in terms of
Throughput/$) . This cost-benefit analysis prevents OPTIMUS-
CLOUD from taking greedy decisions, whenever the workload
changes. Rather, it uses a long-horizon prediction of the work-
load over a time window to decide which reconfiguration
actions to instantiate and when.

The benefit of the ith step in the plan is given by:

B(i+1,i) = ∑
t∈ti+1

f
(
Wt ,Ci+1

)
− f

(
Wt ,Ci

)
(3)

where f
(
Wt ,Ci+1

)
is the predicted throughput using the new

configuration Ci+1. The configuration cost is given by:

L(i+1,i) = ∑
p∈(Ci−Ci+1)

tdown×δp× f
(
Wt ,Ci

)
(4)

where p is any Complete-Set that is being reconfigured to
move from configuration Ci to Ci+1, tdown is the expected
downtime during this reconfiguration step, and δp is the por-
tion of the cluster throughput that p contributes as estimated
by our cluster predictor. We then normalize the benefit (Equa-
tion. 3) and the cost (Equation. 4) by the difference in price
between configurations Ci and Ci+1. The value of tdown is mea-
sured empirically and its average value is 30 sec for NoSQL
configurations and 90 sec for VM configurations.

3.5 Distinctions from Closest Prior Work
We describe the substantive conceptual differences of OP-
TIMUSCLOUD from two recent, related works: Selecta and
SOPHIA. OPTIMUSCLOUD provides joint configuration tun-
ing of both NoSQL and cloud VMs, while it considers hetero-
geneous clusters to achieve the best Perf/$. In Selecta, only
heterogeneous cloud storage configurations are permissible
(i.e., HDD, SSD, or NVMe). Accordingly, the configuration
space in Selecta is much smaller and simpler to optimize us-
ing matrix factorization techniques. A simple extension of
Selecta to our large search space produces very poor perfor-
mance due to the sparsity of the generated matrix and the
dependency between NoSQL and cloud configurations as we
empirically show in Sec. 4.6.

In SOPHIA, only NoSQL parameters are configured and
no computing platform parameters such as VM configura-
tions are optimized. Even within NoSQL configurations, it
only considers homogeneous configurations. Accordingly,
SOPHIA makes a much simpler decision to either configure
the complete cluster to the new configuration, or keep the
old configuration—correspondingly its cost-benefit analysis
is also coarse-grained, at the level of the entire cluster. For

fast-changing workloads, it therefore often has to stick to the
current configuration since there is not enough time to recon-
figure the entire cluster (which needs to be done in a partly
sequential manner to preserve data availability). Similar to
Selecta, a simple extension of SOPHIA to VM options cannot
achieve the best Perf/$ for dynamic workloads, as it can only
create homogeneous configurations across all phases of the
workload. We empirically show this in Sections 4.3 and 4.7.

4 Experimental Setup and Results

In this section, we evaluate OPTIMUSCLOUD under different
experimental conditions for the 3 applications. We deploy
OPTIMUSCLOUD and the datastore clusters (Cassandra or
Redis) in Amazon EC2 in the US West (Northern California)
Region. We also deploy a separate set of nodes in the same
region to serve as workload generators (i.e., shooters). We
vary the number of shooting threads in runtime to simulate
the changes in the request rate in the workload trace. The
results are averages of 20 runs, with each run using a different
subset of the training data. Our evaluation answers four broad
questions. (1) How does OPTIMUSCLOUD compare in terms
of Perf/$ and P99 latency with three state-of-the-art systems
(which can only create homogeneous configurations) and
two oracle-based baselines? (2) What is the accuracy of each
module of OPTIMUSCLOUD, such as, the workload and the
performance predictors? (3) How do application requirements
such as RF and CL impact OPTIMUSCLOUD? (4) How does
OPTIMUSCLOUD generalize to different applications (we
use three), databases (Cassandra and Redis), and levels of
prediction errors?
Major Insights: We draw several key insights from our eval-
uation. First, the flexibility afforded by being able to re-
configure different parts of the cluster to different config-
urations is useful—all three prior protocols being compared
(and in fact, all works to date) can only create homogeneous
configurations. Further, the proactive approach of initiating
reconfiguration upon predicted workload change helps to
handle dynamic workloads and keeps latency low (Cher-
ryPick and Selecta are both reactive). Second, OPTIMUS-
CLOUD’s design reduces the heterogeneous configurations
search space significantly. Accordingly, it is able to search
efficiently and finds higher performing VM and NoSQL con-
figurations than cluster configurations selected by CherryPick,
Selecta, or SOPHIA. This improvement persists across ap-
plications (highest for the more predictable HPC analytics
workload and lowest for the MG-RAST workload) (Fig. 8,
10, 11), different (RF,CL) values (larger values of RF and
smaller values of CL) (Fig. 10), and data volumes (benefit
stays unchanged) (Fig. 8). Third, OPTIMUSCLOUD achieves
comparable or better P99 latency than the baselines, thus
showing that it does not sacrifice raw performance in search
of the performance per unit cost.
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MG-RAST BUS-Tracking
MC-Order Lookahead RMSE MC-Order Lookahead RMSE

First 5m 43.7% First 15m 6.9%
First 10m 68.7% First 1h 7.4%

Second 5m 43.4% Second 5m 7.12%
Second 10m 68.2% Second 1h 7.4%

Table 2: (MC stands for Markov Chain). Workload prediction RMSE for MG-RAST
and Bus-tracking workloads with different lookahead periods.

4.1 Applications

Here we give the details for our three use case applications,
which together span a wide range in terms of predictabil-
ity and nature of the requests in the workload. MG-RAST
is a global-scale metagenomics portal [7], the largest of its
kind, which allows many users to simultaneously upload their
metagenomic data to the repository, apply a pipeline of com-
putationally intensive processes and optionally commit the
results back to the repository for shared use. Its workload
does not have any discernible daily or weekly pattern, as the
requests come from all across the globe and we find that the
workload can change drastically over a few minutes. A total
of 80 days of real query trace were analyzed, 60 days for
training and 20 days for testing. In production, MG-RAST
is executed with the values RF=3, CL=1 and it shows abrupt
switches in the Read-Ratio (typically from RR=0 to RR=1)
and vice versa. The frequency of these switches are 430/day
on median. This presents a challenging use case as only 5
minutes of accurate lookahead is possible.
The second workload is the Bus-Tracking application [39]
where read, scan, insert, and update operations are submitted
to a backend database. The data has strong daily and weekly
patterns to it. This workload has less frequent switches of
60/day on median. For this workload, 60 days of real query
trace were analyzed for the application (40 for training and 20
for testing). The relative proportions of the different kinds of
queries are 42.2% updates, 54.8% scans, 2.82% inserts, and
0.18% reads. As shown in Table 2, the prediction accuracy
for Bus-Tracking workload is much better compared to the
MG-RAST workload, as expected due to the more regular
patterns, and here we use a longer lookahead period of 1 hour.
The third use case is a queue of data analytics jobs such as
would be submitted to an HPC computing cluster. Here the
workload can be predicted over long time horizons (order of
an hour) by observing the jobs in the queue and leveraging
the fact that a significant fraction of the job patterns are recur-
ring. Thus, our evaluation cases span the range of patterns and
corresponding predictability of the workloads. We simulate
a shared queue of batch data analytics jobs. We modeled the
jobs on data analytics requests submitted to a real Microsoft
Cosmos cluster [26]. Each job is divided into stages and the
workload characteristics of the job change with every stage.
The job size is a random variable ∼ U(200,100K) operations.
The workload switches are 780/day on median, with a level
of concurrency of 10 jobs. We achieve accurate prediction
over a lookahead duration of 1 hour and we use that for our
setting with this use case.

Figure 7: Importance of various parameters, including pairwise com-
binations. Parameters with black solid bars are w.r.t. the right Y-
axis. EC2 configuration, the workload, and top 5 Cassandra param-
eters describe 81% of data variance, after which there is a signifi-
cant drop in importance, denoted by the red dotted line. Top param-
eters are: file_cache_size (FCS), memtable_cleanup_threshold (MCT),
memtable_heap_space (MHS), compaction_throughput (CT), and com-
paction_method (CM)

4.2 Baselines

We compare OPTIMUSCLOUD to the following baselines:
1. Homogeneous-Static: We use our cluster predictor to select
the single best configuration to use for the entire duration of
the predicted workload. The entire workload is assumed to
be known in advance, making this an impractically optimistic
baseline. Nevertheless, it is a measure of how well a statically
determined homogeneous configuration can perform when
powered by a hypothetically perfect workload predictor.
2. CherryPick: We use CherryPick’s Bayesian Optimization
(BO) to find a heterogeneous cloud configuration which max-
imize our objective metric. When the workload changes, BO
collects 20 points and selects the best cloud configuration.
This process takes about 3 minutes with parallelization on a
16-core machine. The reconfiguration is done by restarting
servers all at once, thus making data unavailable transiently.
3. Selecta: We use Selecta’s SVD prediction model to se-
lect the optimized homogeneous configuration with workload
changes. We populate the SVD matrix with the same train-
ing data as used for training of OPTIMUSCLOUD. Further,
we give a benefit to Selecta that all the workload characteris-
tics are assumed to be pre-filled in the matrix (or close to it)
so that it does not have to execute and profile the workload
that arrives at runtime, but can be looked up in the matrix.
Both CherryPick and Selecta run reactively with workload
changes and neither can change the application configuration.
They operate in a greedy manner initiating reconfiguration
whenever the workload changes, unlike OPTIMUSCLOUD that
optimizes for the workload over a lookahead time window.
4. SOPHIA: We use SOPHIA for homogeneous NoSQL con-
figurations while the VM configurations are fixed to the rec-
ommended VM types in Cassandra’s and Redis’ documenta-
tions i.e., Compute-Optimize C4.large for Cassandra [2] and
Memory-Optimized R4.large for Redis [1].
5. Theoretical-Best: This is a baseline that knows what is
the best-performing configuration for every workload. It then
switches the cluster to this configuration without any down-
time cost. Though impractical, this baseline provides a quan-
titative upper bound for any protocol and is used for normal-
ization of our results.
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Figure 8: Evaluation of MG-RAST traces in Cassandra using OPTIMUSCLOUD vs state-of-the-art tuning systems. The primary Y-axis represents the ratio
of the normalized Ops/s/$ achieved by each system to the theoretical-best performance. OPTIMUSCLOUD achieves the highest Perf/$ and lowest P99 latency.

4.3 End-to-end System Evaluation

We evaluate how effective OPTIMUSCLOUD and each of the
baselines are in selecting the best reconfiguration plan. In
Fig. 8 we show the evaluation for the MG-RAST applica-
tion, the most challenging one for us due to its unpredictable
workload characteristics. We use a 1 hour trace from MG-
RAST and apply it to a cluster of 6 or 30 servers We show
the performance of the different plans with data volume per
server of 16GB and 100GB. The performance of each solu-
tion is normalized by that of the Theoretical-Best. OPTIMUS-
CLOUD’s plan achieves the highest Ops/s/$ and the lowest la-
tency over all baselines. OPTIMUSCLOUD achieves 86% and
74% improvement over Homogeneous-Static for the 16GB
and 100GB cases respectively. This shows there is no single
static configuration that can achieve the optimal performance
for all phases of the workload. Compared to CherryPick and
Selecta, OPTIMUSCLOUD achieves 87% and 45% improve-
ment on average. This is because both systems are striving to
create a homogeneous configuration to meet the performance
requirement and end up increasing the cost. Further, CherryP-
ick incurs the delay of performing the Bayesian optimization,
which takes 3 minutes on average and causes the cluster to
operate with sub-optimal configurations during this long de-
lay. The aggressive reconfiguration of CherryPick and Selecta
(shutting down all servers and restarting all together) causes a
significant performance hit (throughput of zero) for the cluster.
Compared to SOPHIA, OPTIMUSCLOUD achieves 212% and
270% improvement in Perf/$. This highlights the benefit of
jointly tuning VM and database configurations.

We draw several other conclusions. First, with increasing
data volume, the throughput of all protocols goes down be-
cause what would once fit in memory (R4.large has 16 GB)
now has to go to disk. But the effect on Selecta and CherryP-
ick is smaller because they use expensive and well-resourced
memory VMs. Consequently, the performance benefit of OP-
TIMUSCLOUD decreases. Second, Selecta is achieving better
performance than CherryPick, which is consistent with the
results reported in [32]. This is because of the longer response
time of CherryPick’s Bayesian Optimization versus Selecta’s
matrix lookup. In terms of latency, OPTIMUSCLOUD scales
well (comparing the N=6 to N=30), while Selecta and Cher-
ryPick both suffer (latency increases of 7.4× and 11×). This
is because the control message traffic is very large in these
two baselines as they aggressively shut down and restart all

the servers together to achieve a reconfiguration, causing the
scalability bottleneck. We also notice that SOPHIA scalability
is better than the other baselines as it performs sequential re-
configuration. OPTIMUSCLOUD achieves as low tail-latency
as Selecta and CherryPick for small scales, and lower at larger
scale due to the reason above. Homogeneous-Static has a
high latency for all cases due to its inability to adapt to dy-
namic workloads. The comparison with Selecta and CherryP-
ick shows how important it is to apply online reconfiguration
to minimize tail-latencies for fast changing workloads.

4.4 Sensitive Parameter Identification

We test the feasibility of pruning the joint configuration search
space (i.e., VM and NoSQL), while maintaining the depen-
dencies among the configuration parameters. We collect a
total of 3K data points equally from 15 different VM types.
We use D-optimal design to decide which data points to col-
lect for building the performance prediction model. Fig. 7
shows the importance of the most impactful parameters, ei-
ther singly or pairwise, as determined from the regression
model. The instance architecture (EC2) and the workload
(W(t)) are the most impactful, followed by top-5 database
configuration parameters. Note that the costs of changing dif-
ferent configuration parameters are different as it takes about
90 sec to change EC2 type, whereas changing Cassandra’s
configuration only requires around 30 sec with no impact on
the cluster’s $ cost. Expectedly, the instance architecture has
high inter-dependency with the NoSQL parameters because
the architecture controls the physical resources available to
the DBMS.

4.5 Single Server Performance Prediction

We evaluate three possible single server prediction models
for inclusion in OPTIMUSCLOUD. In each case, we use a
Random Forest using 75%:25% for training and prediction.
1. N-Solitary-Models: This builds a separate prediction model
per architecture. It predicts the performance of a given archi-
tecture/configuration combination using previously collected
data points from the same architecture.
2. Combined-Categorical: This builds a combined model
using all points from all architectures, while it represents the
architecture as a categorical parameter (with integral values).
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Workload MG-RAST BUS HPC
Metric R2 RMSE R2 RMSE R2 RMSE

N-Solitary
-Models

0.2 3401.4 0.127 109.9 0.04 2778

Selecta -0.14 4149.3 0.66 110.6 0.932 2451

OPTIMUS
-Categorical

0.41 1334.2 0.986 21.87 0.983 1172.9

OPTIMUS
-Numerical

0.89 1260.9 0.988 19.77 0.986 1076.2

Table 3: Comparison of different Single-server prediction techniques. OPTIMUS-
CLOUD achieves better performance in terms of R2 and RMSE over all baselines.

Thus, knowledge transfer is limited across architectures.
3. Combined-Numerical: This also builds a combined model
for all architectures. However, it describes the architecture in
terms of its resources e.g., C4.large is represented as vCPU 8,
RAM 3.75 GB, Network-Bandwidth 0.62 Gbits/s. Thus this
allows extrapolating model knowledge across architectures.
We test the accuracy of each predictor using the same number
of data points (100 points per architecture) and show the result
in terms of R2 (Table 3). We see that using a separate model
per architecture gives very poor performance due to the lack
of knowledge transfer between architectures. Moreover, the
numerical representation shows a significant improvement in
prediction performance over the categorical representation
due to better knowledge transfer across architectures. Thus,
we use the Combined-Numerical model in OPTIMUSCLOUD.

Figure 9: Performance prediction error histogram for heterogeneous clus-
ters. We notice that OPTIMUSCLOUD’s error percentage is within -15% to
+15% for 70% of the test points, with R2 value of 0.91 and RMSE of 7.7
KOps/s. On the other hand, the best strawman shows poor performance
(RMSE 36 KOps/s) while Selecta performs better (RMSE 21 KOps/s).

4.6 Cluster Performance Prediction
We evaluate the accuracy of our cluster performance predic-
tion model. We use a cluster of 6 nodes with RF=3, CL=1
and investigate the impact of changing the EC2 architecture
of each Complete-Set. Thus, the cluster is partitioned into 3
Complete-Sets. We use 3 families of EC2’s 4th generation (C4,
R4, M4) and three different sizes of each family (large, xlarge,
2xlarge). We collect 330 data points covering all combinations
of assigning instance types to these 3 Complete-Sets.

In Fig. 9, we compare our model with a strawman predictor
that uses the sum of Ops/s for each individual server as the
overall cluster performance (we also tested Average, Min, and
Max and got worse performance). This strawman achieves
poor prediction performance with a low R2 value of 0.08 and
an unacceptably high RMSE of 36 KOps/s. We also com-

pare our model with the latent factor collaborative filtering
technique, SVD, used in Selecta [32], which we reimplement
using the sci-kit surprise library [30]. Selecta achieved bet-
ter R2 value of 0.69 and a lower RMSE of 21 KOps/s com-
pared to the strawman predictor. However, our model achieves
better performance due to the fact that our Random-Forest
model can use non-linear combinations of the elementary fea-
tures (up to quadratic), while SVD is confined to using linear
combinations only. The shapes of the error curves are also
different—the Selecta and the strawman curves are bathtub-
shaped indicating significant overestimation or underestima-
tion, while the OPTIMUSCLOUD curve is bell-shaped with a
mean close to zero. The bathtub curves are due to the fact that
these protocols are ignorant of the token assignment of the
cluster and consider erroneously that each node’s throughput
has the same contribution to the cluster throughput.

4.7 Evaluation with Diverse Workloads

Now we evaluate the performance for different workloads,
cluster scales, and (RF, CL) requirements.
HPC Workload: Figure 10 shows the improvement of OP-
TIMUSCLOUD over the baselines for the HPC data analytics
traces. We first change RF from 1 to 3, holding CL at 1.
Then we change CL from 1 to quorum, which is 2, holding
RF at 3. OPTIMUSCLOUD’s plan achieves the highest Perf/$
and the lowest latency over all baselines for all setups. At
RF=3, OPTIMUSCLOUD achieves 20% and 24% better Perf/$
over Homogeneous-Static configuration for CL=1 and CL=Q
respectively. This again shows the importance of dynamic re-
configuration to handle workloads with changing characteris-
tics. In comparison to CherryPick, OPTIMUSCLOUD achieves
143% and 89% better performance for CL=1 and CL=Q re-
spectively and 130% and 80% over Selecta. Compared to
SOPHIA, OPTIMUSCLOUD achieves 23% and 12.5% better
Perf/$. Notice that when RF=1 and CL=1, OPTIMUSCLOUD
can no longer perform non-atomic configurations since the
Complete-Set in this case is the entire cluster. Thus, its im-
provement over Homogeneous-Static decreases to 9%.
As RF goes up, the amount of data on each node goes up bring-
ing down the absolute performance. Homogeneous-Static is
affected more than OPTIMUSCLOUD and therefore the ben-
efit of OPTIMUSCLOUD increases. CherryPick and Selecta
are relatively unaffected by increasing RF as they had low
throughputs to begin with and they reconfigure all the nodes
at once, irrespective of RF and CL. SOPHIA benefits from
increasing RF since it can reconfigure more servers concur-
rently without degrading data availability. As CL goes up,
again CherryPick and Selecta are relatively unaffected. The
performance of OPTIMUSCLOUD goes down because the
maximum number of Complete-Sets that OPTIMUSCLOUD
can reconfigure at a time is inversely proportional to CL. Thus,
its benefit over CherryPick and Selecta reduces. However, we
note that for most of our target environments, CL is unlikely
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Figure 10: HPC workload evaluation with 10 concurrent jobs, and varying (RF,CL) requirements
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Figure 11: Bus-Tracking workload pattern with
RF=3, CL=1
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Figure 12: Evaluation on Redis for HPC work-
load with a cluster of 6 servers
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Figure 13: Evaluation on Redis for HPC work-
load with a cluster of 12 servers

to be higher than 1 as deployments often favor availability
and latency over consistency. In terms of latency, OPTIMUS-
CLOUD achieves the lowest P99 latency across all setups. We
also notice that SOPHIA has lower latency than other base-
lines as it performs a gradual reconfiguration of the different
server instances to maintain data availability.
Bus-Tracking Workload: This workload has strong weekly
and daily patterns, which allows the workload predictor to
provide accurate predictions for long lookahead periods. For
a 1 day-trace, the result is shown in Fig. 11. OPTIMUS-
CLOUD achieves better performance/$ over Homogeneous-
Static, CherryPick, Selecta, and SOPHIA by 46%, 178%, 67%,
and 28% respectively. As before, OPTIMUSCLOUD achieves
the lowest tail latency across all techniques. The tail latency
metric is very important for this workload as it represents a
user-facing application. We observe that OPTIMUSCLOUD
achieves higher gains in performance over CherryPick and Se-
lecta compared to the MG-RAST workload, which shows the
benefit of longer accurate predictions for OPTIMUSCLOUD.

4.8 Evaluation with Redis
Redis has a very different architecture than Cassandra and is
therefore a suitable target to evaluate the generalizability of
OPTIMUSCLOUD. Here we use Redis in clustered mode as a
distributed cache (a common use case for Redis)—if the key is
found in Redis’ memory, it is served by Redis, else, it is served
by a slower disk-based database. We apply the HPC analytics
workload to a cluster of 6 or 12 Redis servers, keeping the
replication degree as 2. We select HPC workload as it has the
shortest key-reuse-distance between the three workloads and
for which using Redis as a cache is most beneficial [10, 21].
We tune Redis’ maxmemory-policy and maxmemory param-
eters and observe that changing the cloud configurations for
more or less RAM size has an impact on the best value of both
parameters. We also found that Redis’ Perf/$ is sensitive to
workload parameters such as job size, access distribution, and

read-to-write. We start by collecting 108 data points for differ-
ent jobs with varying job sizes, access distributions, and read-
write ratios. Job size is a random variable with U(0.5M,1.5M)
operations. Access distribution is randomly selected from
Uniform, Latest, and Zipfian. Read-write ratio is a random
variable with distribution U(0,1). We experiment with traces
of 75 jobs which span a total of 5 hours. Our performance pre-
dictor achieves an R2 of 0.922 averaged over 20 runs. From
Fig. 12, we see that OPTIMUSCLOUD achieves a better Perf/$
of 19% (Homogeneous-Static), 29% (CherryPick), 24% (Se-
lecta), and 138% (SOPHIA). Also, OPTIMUSCLOUD reduces
the tail latency by 8.4X (Homogeneous-Static), 13X (Cher-
ryPick), 4.4X (Selecta), and 8.1X (SOPHIA).

We draw the following insights. First, as SOPHIA uses
an expensive cluster of R4.large (as recommended in Redis’
documentation [1]), it achieves a very low Perf/$. Second,
both CherryPick and Selecta switch from R4.large to the less
expensive C4.large and M4.large when the workload changes
(and less memory is required) and therefore achieve a higher
Perf/$. Finally, by using a heterogeneous cluster of the three
VM types as well as jointly tuning the application config-
uration, we achieve the best Perf/$ and the lowest latency
among all techniques. To test scalability, we increase the num-
ber of servers to 12 (Fig. 13) and note that the normalized
performance of each system stays approximately constant.

4.9 Tolerance to Prediction Errors

We investigate how tolerant OPTIMUSCLOUD is to errors
in both predictors—performance (throughput) and workload.
We add synthetic noise to the output of each predictor sep-
arately and then show how does the benefit of OPTIMUS-
CLOUD change with the amount of synthetic noise for the
HPC workload. The percentage of noise is represented as
a uniform random variable that is added to (or subtracted
from) the output of the predictor. For performance prediction,
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Figure 14: Impact of noisy predictions on OPTIMUSCLOUD’s improvement
over best Homogeneous-Static configurations

the noise is added to the overall throughput/$ predicted by
our multi-server model. For workload prediction, the noise
is added to the number of requests/sec in addition to the
workload change duration. As shown in Fig.14, OPTIMUS-
CLOUD’s improvement over Homogeneous-Static decreases
with increasing levels of noise, as the selected configurations
deviate from the best configurations. We note that OPTIMUS-
CLOUD is more sensitive to errors in the throughput predictor
compared to errors in the workload predictor, which is demon-
strated in the steeper downward slope in the noisy throughput
predictor curve. The reason for this high sensitivity is that
OPTIMUSCLOUD uses the throughput predictor to select the
best configuration and with increasing levels of noise, the
selected configuration more frequently deviates from the opti-
mal. As discussed earlier, a slight deviation from the optimal
configuration may cause a significant reduction in Perf/$. On
the other hand, slight errors in workload prediction causes
OPTIMUSCLOUD to reconfigure earlier or later than it opti-
mally should. However, this has less impact on performance
as long as it still switches to the best configuration.

5 Related Work
Configuration tuning for datastores: Several works [6, 31]
target online configuration tuning for replicated or geo-
replicated datastores. [27, 56] perform online reconfiguration
for NoSQL datastores. None of these works address how to
optimize for cost-performance benefits by exploiting differ-
ent cloud VM/instance types. A large body of work focused
on the best logical or physical design for static workloads in
DBMS [3,12,13,18,29,51,52,61], which are orthogonal to our
work. OtterTune [62], BerkeleyDB [60], and iTuned [24] only
optimize DBMS configuration, while OPTIMUSCLOUD opti-
mizes both NoSQL configuration and the cluster on which it
runs. Pocket [33] optimizes the storage servers for ephemeral
data analytics jobs in contrast to handling long-running jobs
that are OPTIMUSCLOUD’s focus. While OPTIMUSCLOUD
can also optimize storage, we choose to restrict our storage
servers to elastic block storage (EBS) that are separate from
the VMs and thus retain data durability.
Performance predictions: Ernest [63] predicts performance
of data analytics applications through system modeling. DB-
Seer [46] uses linear models to predict resource utilization
(e.g. Disk I/O). Myria [49, 66] gives personalized SLAs by
predicting query execution times for specific workloads. Re-

cent works [42, 43, 45] improve utilization by learning work-
load characteristics. [44] handles prediction errors for unseen
workloads. [23] uses queuing models. Rafiki [40] uses a surro-
gate model to predict performance of NoSQL datastores. No
prior work predicts performance for heterogeneous clusters.
Cache Hit-Rate Maximization: Several works target max-
imizing cache hit-rates and improving end-to-end latency,
either for a single application [14] or multi-tenant deploy-
ments [15]. However, neither VM configurations nor hetero-
geneous cluster configurations are considered to optimize
performance/$. [9, 65] propose new cache eviction policies
that can be implemented in Redis and then selected by OPTI-
MUSCLOUD for the appropriate workloads.

6 Discussion

Impact on consistency: OPTIMUSCLOUD exploits the fact
that in typical NoSQL deployments, RF>CL as availability
and low-latency are favored over consistency [22,47,57]. The
higher the difference between RF and CL, the smaller the
subset of servers that needs reconfiguration, therefore the
higher the gain of OPTIMUSCLOUD over baselines (Figure
10). For users whose primary goal is consistency and want
to use a high value for CL, one option is to also increase RF
and leverage the high gain of OPTIMUSCLOUD. However,
increasing RF also increases the total number of copies stored
in the cluster, which might negatively impact the cluster’s
write performance in exchange for higher availability.
Compatibility with other key-value stores: OPTIMUS-
CLOUD’s design assumes that the underlying key-value
store implements a protocol to identify and select the fastest
replica(s) given a new query. Cassandra achieves this using
its dynamic snitching policy, while other popular systems
have similar protocols (e.g., Elasticsearch achieves this by
its Adaptive Replica Selection policy [25]). If this feature
is not implemented in the system, a simple solution is for
OPTIMUSCLOUD to provide the system with the ordered list
of replicas, using OPTIMUSCLOUD ’s performance predictor.

7 Conclusion
For cost-optimal performance of a distributed NoSQL cloud
database, it is critical to jointly tune NoSQL and cloud con-
figurations. OPTIMUSCLOUD provides the insight that it is
optimal to create heterogeneous configurations and for this,
it determines at runtime the minimum number of servers to
reconfigure. Using a novel concept of Complete Sets, OPTI-
MUSCLOUD provides a technique to search through the large
search space brought out by heterogeneity. Configurations
found by OPTIMUSCLOUD outperform those by prior works,
CherryPick, Selecta, and SOPHIA, in both Perf/$ and tail la-
tency, across two NoSQL DBMSs, Cassandra and Redis, and
all experimental conditions.
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