
1
RAIL: Predictable, Low Tail Latency for NVMe
Flash

HEINER LITZ, University of California, Santa Cruz
JAVIER GONZALEZ, Samsung
ANA KLIMOVIC, ETH Zürich
CHRISTOS KOZYRAKIS, Stanford University

Flash-based storage is replacing disk for an increasing number of data center applications, provid-
ing orders of magnitude higher throughput and lower average latency. However, applications also
require predictable storage latency. Existing Flash devices fail to provide low tail read latency
in the presence of write operations. We propose two novel techniques to address SSD read tail
latency, including Redundant Array of Independent LUNs (RAIL) which avoids serialization
of reads behind user writes as well as latency-aware hot-cold separation (HC) which improves
write throughput while maintaining low tail latency. RAIL leverages the internal parallelism of
modern Flash devices and allocates data and parity pages to avoid reads getting stuck behind
writes. We implement RAIL in the Linux Kernel as part of the LightNVM Flash translation layer
and show that it can reduce read tail latency by 7× at the 99.99th percentile, while reducing
relative bandwidth by only 33%.

1 INTRODUCTION
Flash-based storage devices are replacing disks for an increasing number of applications
in data centers. Transistor scaling, multi-level cell technology and 3D integration have
delivered a continuous increase in capacity, while new Flash controllers have leveraged
high degrees of architectural parallelism and new software interfaces such as NVMe to
significantly increase performance [6, 55]. As a result, Flash devices now provide up to
one million I/O operations per second (IOPS) and read latencies as low as 70µs [39, 64].
However, data center applications also require predictable performance. Low read tail
latency is particularly important for high fan out applications that access thousands of
servers to process a single request [22]. Existing Flash devices fail to provide predictable
tail read latency [30, 42]. Figure 1 shows the read latency complimentary cumulative
distribution function (CCDF) for a mixed read/write workload on an NVMe based solid
state disk (SSD) from CNEX Labs1. While most of the reads complete in under 100µs
1We analyzed a set of SSDs including CNEX Westlake, Intel P3600, Intel 750 and Samsung PM1725 all
showing similar behavior

Authors’ addresses: Heiner Litz, University of California, Santa Cruz, hlitz@ucsc.edu; Javier Gonzalez,
Samsung, javier@javigon.com; Ana Klimovic, ETH Zürich, aklimovic@ethz.ch; Christos Kozyrakis, Stanford
University, kozyraki@stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1553-3077/2021/1-ART1 $15.00
https://doi.org/10.1145/3465406

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3465406

1:2 Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis

Fig. 1. Read Latency CCDF for Read/Write Mix

there is also a long tail with some reads completing at just under 6ms resulting in over
50× difference between the average and 99.99th percentile latency.

Prior work has focused on reducing high tail latency by optimizing garbage collection
(GC)[67, 79, 81], interference between applications[28, 35] or by over-provisioning
Flash capacity by up to 30-50% [56]. While these techniques improve performance
to some degree, they fail to enforce strict tail latency guarantees and, furthermore,
introduce significant overheads in terms of capacity and bandwidth. For instance,
TinyTail [81] leverages a RAID [58] approach to avoid interference between reads and
GC, addressing the 6ms tail shown in Figure 1. However, TinyTail does not protect
against the common read-after-write serialization, increasing tail latency by up to
20×. Furthermore, TinyTail introduces significant write overheads to achieve isolation
between reads and GC.

To address these challenges, we present Redundant Array of Independent LUNs
(RAIL), an SSD device-level technique that eliminates the possibility of reads being
stalled by any high latency operation. RAIL leverages redundancy to provide an al-
ternative read path in the case a particular NAND chip is temporarily inaccessible
due to performing a high latency operation. Unlike previous work, RAIL reduces tail
latency at all percentiles, in particular, by 7× over existing approaches for the 99.99th

percentile and for our tests always completes reads in under 1ms. To reduce the write
bandwidth overheads, RAIL introduces latency-aware hot-cold separation (HC) to
separate hot user writes and cold GC writes into independent physical flash chips. With
this technique in place, we show that avoiding read-after-GC serialization, such as
implemented by prior work becomes obsolete and can be skipped entirely. As a result,
RAIL-HC also reduces write amplification by 2× and increases GC write bandwidth by
4× over prior work. Furthermore, in contrast to prior works that relied on simulation,
we present a full Linux kernel software implementation leveraging OpenChannel SSDs.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

RAIL: Predictable, Low Tail Latency for NVMe Flash 1:3

Table 1. RAIL vs. Prior Work

Technique Avoid Avoid Avoid Detect WR
RaW RaGC RaWL Stall Overhead

Purity [20] yes no no react high
Toleraid [30] yes no no proact high
F-on-R [70] yes no no exact high
TinyTail [81] no yes no exact high

RAIL-HC yes yes yes exact low

2 BACKGROUND
Prior Work: Prior work has leveraged redundancy to reduce tail read latency when
accessing storage. Flash-on-rails [70], ToleRAID [30] and Purity [20] use parity across
drives to improve tail ready latency by only writing to a subset of the drives at a time.
Whenever a read is slow (timeouts) another read is triggered to recompute the data
from parity. While simple to implement, these approaches can only prevent read-after-
write serialization, however, they cannot guard against reads being serialized behind
operations such as GC and wear leveling, as those are triggered by the SSD itself.
Furthermore, waiting for a timeout at least doubles the read latency in average. Tiny-
Tail [81] isolates reads from GC, however, fails to prevent read-after-write serialization
which occurs frequently. TinyTail also utilizes the internal copyback operation to move
data which can lead to errors because NAND chips do not have error detection and
correction internally, whereas RAIL re-computes error correction bits during GC on
the host. TinyTail also has only been simulated, ignoring many of the NAND specific
challenges of real designs discussed in Section 4. RAIL has passed an extensive two
man year validation and verification phase to reach Linux kernel stability. The validation
suite is implemented in QEMU [5] and emulates read/write/erase errors as well as static
and grown bad blocks in a random constrained way to automatically test RAIL in
different configurations.

All related works above [20, 30, 70, 81] achieve a tail latency reduction by throttling
write bandwidth. By combining RAID with latency-aware hot-cold separation, RAIL-
HC significantly reduces the negative impact on write performance. Table 1 compares
the capabilities of prior approaches against RAIL. It shows whether a technique is
capable of preventing read-after-write (RaW), read-after-GC (RaGC) and read-after-
wear-leveling (RaWL) stalls. It also shows whether the techniques require timeouts
(react) to detect a RaW stall or if they always assume a stall (proact) or if they can
determine whether a read will be stalled (exact). The last column shows the bandwidth
overheads introduced by the approaches for reducing read latency. As we will show
in this paper, to guarantee low read latency at the very tail, all sources of high latency
need to be addressed. We find that this can only be achieved by controlling SSD
device properties on the hardware level exposing us to the intricate details of NAND
Flash such as bad blocks, managing meta information and handling write errors. RAIL
overcomes these challenges by leveraging OpenChannel SSDs providing strict tail
latency guarantees up to the 99.99th percentile.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis

Table 2. Open-Channel SSD

SSD Properties
Channels 16
LUNs per Channel 8
Total LUNs 128
Channel Bandwidth 280MB/s

Table 3. LUN Properties

LUN Properties
Sector Size 4 KB
Page Size 64 KB
Blocks 1067
Block Size 256 pages

Table 4. Per-LUN Performance

Op. Bandwidth Latency Size

Read 280 MB/s 65 µs 32 KB
Write 25 MB/s 1,700 µs 32 KB
Erase N/A 6,000 µs 4 MB

Internal device parallelism: Modern Flash devices have multiple levels of internal
parallelism [1, 16]. A Flash controller interfaces with multiple channels which are
shared by multiple NAND dies. We refer to units of parallelism on Flash as logical units
(LUNs). On a typical Flash device, a LUN typically corresponds to a die, since each
NAND die typically supports one outstanding operation at a time.2 Tables 2 and 3 show
the device specification for the SSD we use in our experiments. The device contains
128 LUNs in total, thus the number of concurrent operations is limited to 128. With
64KB pages, 256 pages per block and 1067 blocks per LUN, each LUN has over 16GB
of capacity.

NAND properties: In NAND technology, erase operations are performed at the
granularity of blocks, writes at the granularity of pages and reads at the granularity of
sectors. Writes can only set bits in a single direction (from one to zero). Thus, pages
cannot be updated in place; they must first be erased. Table 4 shows the performance
of read, write and erase operations per LUN. Although SSDs deploy battery backed
DRAM caches to complete writes to software instantaneously, a write can only be sent
to a chip if all prior writes have persisted. Although, erases take 8 times as long as
writes, they are a more efficient operation since they operate on 4MB of data. Due to
the asymmetric read, write and erase latencies and the serialization of operations, read
latency increases significantly when the requested data page resides on a LUN occupied
by a write or erase operation.

Flash Translation Layer (FTL): The FTL is an essential layer in the Flash stor-
age stack, managing logical to physical address mapping, garbage collection and
wear-leveling while presenting a simple block interface to the operating system. User
applications submit read and write requests to logical block addresses (LBAs). Each
logical block in the address space represents a sector-sized data segment (usually 4KB)
which the FTL maps to a sector of a physical page on Flash. Policies for physical data
layout and garbage collection (choosing which blocks to erase and when) in the FTL
directly influence read/write performance of user applications on Flash.
2Most devices support multi-plane operations, which allow multiple identical operations per die, increasing
throughput but not latency.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

RAIL: Predictable, Low Tail Latency for NVMe Flash 1:5

Parity1
Parity1
Parity1
Parity1

Parity0
Parity0
Parity0
Parity0

Data12
Data12
Data12
Data12

Data02
Data02
Data02
Data02

Data11
Data11
Data11
Data11

Data01
Data01
Data01
Data01

Data10
Data10
Data10
Data10

Data00
Data00
Data00
Data00

Block
(unit of
 erase)

Stripe

Hot Line
(unit of

GC)

Page
(unit of
writes)

Sector
(unit of
reads)

Parity1
Parity1
Parity1
Parity1

Parity0
Parity0
Parity0
Parity0

Data12
Data12
Data12
Data12

Data02
Data02
Data02
Data02

Data11
Data11
Data11
Data11

Data01
Data01
Data01
Data01

Data10
Data10
Data10
Data10

Data00
Data00
Data00
Data00

Parity1
Parity1
Parity1
Parity1

Parity0
Parity0
Parity0
Parity0

Data12
Data12
Data12
Data12

Data02
Data02
Data02
Data02

Data11
Data11
Data11
Data11

Data01
Data01
Data01
Data01

Data10
Data10
Data10
Data10

Data00
Data00
Data00
Data00

RAIL Stride

GC
GC
GC
GC

GC
GC
GC
GC

GC
GC
GC
GC

GC
GC
GC
GC

GC
GC
GC
GC

GC
GC
GC
GC

Cold Line
(unit of

GC)

Fig. 2. SSD Sector Placement

LightNVM and OpenChannel SSDs: OpenChannel SSDs do not implement the
FTL in firmware, but instead, expose the internal parallelism of SSDs to the host,
enabling the operating system to manage physical storage [8]. The Linux kernel is an
example of an operating system that supports OpenChannel SSDs through an abstraction
layer called LightNVM [9, 11]. The LightNVM subsystem is an open-source host-
based FTL that provides a generic media manager for wear-leveling and bad block
management, uses a physical page address I/O interface to communicate with the
SSD (still over the standard NVMe specification), and exposes the OpenChannel SSD
as a traditional block I/O device to user applications. We develop RAIL as part of
LightNVM.

3 DESIGN
RAIL enforces strict tail latency guarantees by eliminating reads being stalled behind
high latency operations such as writes and erases. Therefore, RAIL maintains redundant
parity data for recomputing sectors, that reside on a LUN that currently serves a high
latency operation. RAIL draws from techniques such as RAID [58], however, utilizes
redundancy for latency reduction in addition to improving fault tolerance. RAIL parity
computation is performed within strides, where a stride of size S consists of one parity
element and S-1 data elements. Data elements are XOR’ed together to compute the
parity element. Each element of a stride resides on a separate LUN. In the case where a
LUN, for instance, LUN_0, is serving a high latency operation, reads targeting LUN_0
are served by reading the corresponding sectors from LUN_1, LUN_2 and LUN_3 and
computing the original sector residing on LUN_0. We refer to such multi-LUN reads
as a RAIL read. Note that block devices provide no ordering guarantees for reads and
writes in the absence of flushes, enabling RAIL reads to complete before prior writes3.
To enforce tail latency guarantees, RAIL ensures that only one LUN within a stride
serves a high latency operation at all times, impacting write bandwidth.

3Ordering needs to be enforced by the filesystem or application

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis

3.1 Parity Sector Placement (RAIL)
In this section we describe how RAIL manages sectors and places data and parity
on the SSD. SSDs use device specific unit sizes for reads, writes and erases. For
instance, CNEX performs reads at the unit of sectors (4KB), writes at the unit of pages
(64KB) and erases at the unit of blocks (1024KB). Each LUN contains multiple blocks,
enumerated by an ID. All blocks with the same ID, for instance the first block of all
LUNs, are combined to form a line. Furthermore, all write unit (page) sized elements
that have the same page ID and block ID are defined as a stripe. RAIL needs to
allocate sectors for parity data to enable RAIL reads. One option would be to maintain
additional information as part of the logical to physical (L2P) block translation table,
which enables to find the other sectors and parity data in case of a RAIL read. As the
L2P already consumes multiple GB in host memory for TB sized SSDs, we place parity
data to fixed locations within a stripe using simple modulo operations to determine the
target physical addresses of a RAIL read. We distribute RAIL strides over stripes to
maximize write bandwidth and place parity data on the high order LUNs of a stripe as
parity can only be computed after all data sectors of a stride have been written. Figure 2
shows how RAIL manages sectors, blocks, stripes and lines as well as how it places
data and parity elements. In the example, two RAIL strides are shown, where stride 0
consists of Data00, Data01, Data02 and Parity0.

3.2 Latency-Aware Hot-Cold Separation (HC)
Vertical hot-cold separation [24, 48, 72] reduces write amplification by separating
frequently written LBAs (hot) and rarely written LBAs (cold) into separate flash blocks.
This increases the probability that all sectors within hot blocks are overwritten by user
writes before the block is garbage collected, minimizing the number of valid blocks
that need to be moved by GC. Hot-cold separation is implemented by maintaining
two open blocks per NAND chip whereas user writes are applied to the hot block and
GC writes are applied to the cold block. We introduce horizontal hot-cold separation,
separating user and GC writes for the purpose of reducing tail latency. In contrast to
prior approaches that applied GC and user writes to separate blocks, our technique
allocates hot and cold partitions from separate NAND chips guaranteeing that user and
GC writes do not utilize the same LUN. For workloads with a zipfian distribution, reads
are likely to access hot data and hence the probability is low that reads are serialized
behind cold writes. As a result, it is no longer mandatory to throttle writes to only
one LUN per stride for the cold block, eliminating the write overhead introduced by
avoiding RaGC serialization. Horizontal hot-cold separation introduces no capacity
or bandwidth overheads and hence represents a more effective technique than prior
approaches [67, 79, 81] focusing on the read-GC interference. Enabling horizontal hot-
cold separation is challenging as the ratio of the number of hot to cold blocks depends
on the dynamic write amplification factor. Therefore, RAIL-HC continuously monitors
the user and GC writes and, every 1M total writes, based on the the write-amplification
factor, it assigns LUNs to user and GC lines accordingly, rounding-up the number of
LUNs assigned to GC. To avoid high tail read latency when re-assigning LUNs between
hot and cold lines, RAIL-HC supports LBA live migration. For instance, if a user LUN
is re-assigned to a GC line, the old data continues to be accessible via RAIL reads, while
new written pages are allocated according to the most recent partitioning scheme. As

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

RAIL: Predictable, Low Tail Latency for NVMe Flash 1:7

Blk-mq

writes

Parity (xor)

Map/Write

GC

move blks

reads

Read
Compl.

IRQ

LBA PPA
LBA PPA
LBA PPA
LBA PPA
LBA PPA

L2P

regular
read

RAIL
read

cached
cached
cached
cached
cached

LUN
busy?

PPA RAIL?

OpenChannel SSD

Parity
(xor)

Blk-mq

P2B

update

Fig. 3. RAIL Architecture

blocks are invalidated and erased over time, all blocks within a LUN gradually converge
to the new partitioning scheme. Consequently, blocks within the same LUN may be
part of a different line configuration. Therefore, every line contains less than 100 bits
of additional meta information defining the stride width and GC/user configuration
enabling the correct line-specific RAIL read access pattern. Note that migrating LUNs
occurs rarely (after millions of writes) as even an abrupt change of the user write
pattern, for instance from random to sequential, suffers from inertia. In particular, a
large fraction of the SSD needs to be overwritten by a new user write pattern before the
GC behavior starts to change. Furthermore, a temporally non-optimal allocation of user
and GC LUNs only reduces write bandwidth but does not affect tail read performance.
For instance, if there are not enough cold LUNs, GC will need to be performed on hot
lines reducing user write bandwidth, however, without affecting user read latency.

3.3 RAIL Implementation
RAIL is implemented within the Linux kernel’s PBLK [11] subsystem in 1618 C lines
of code. Figure 3 provides an overview of PBLK and the RAIL modifications in blue.

Write path: Write requests updating a particular logical block address (LBA) are
inserted into a single shared ring buffer by all blk-mq [10] kernel threads. Written
sectors are immediately completed to the block I/O layer and buffered in DRAM
until enough sectors are available to write a whole page. In the case of a flush (sync)
operation, available sectors are padded with empty sectors to form a page and then
mapped to a physical page address (PPA). PBLK then sends the write operation to the
Flash hardware controller over the standard NVMe interface [55] using the PPA as the
address. Writes are performed round-robin across LUNs within a stripe in the hot line
to maximize LUN parallelism and bandwidth.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis

To implement RAIL, we add a PPA to write buffer entry (P2B) mapping table (16KB)
which references all write buffer entries forming a RAIL stride. The P2B is required,
as there is no static fixed mapping between write buffer entries and hardware sectors
because of existing bad blocks, padded sectors and meta data. RAIL extends the PPA
mapping mechanism such that, whenever, a parity LUN (e.g. Parity0 in Figure 2)
is to be mapped, the RAIL parity engine is triggered to generate a parity write. The
RAIL parity engine queries the P2B, computes the parity from the cached sectors and
generates the PPA for writing the parity to the SSD. RAIL introduces stride semaphores
to enforce that at most one LUN per RAIL stride is written or erased at a time reducing
write bandwidth to 1÷ S. However, this only applies to hot writes. By leveraging
hot-cold separation, RAIL-HC does not require to throttle cold writes, minimizing
the negative impact on write bandwidth. Furthermore, trading-off write bandwidth for
low tail latency is acceptable for the following reasons: (1) Many datacenter workload
studies [18, 32, 36, 43, 62, 63] have shown read to write ratios of 4 to 1 and higher. As
our SSD provides the same maximal read and write bandwidth of 1.6GB/s, applications
are generally limited by read and not write bandwidth. (2) Due to shared resources
(PCIe, channels, controller) the maximum bandwidth is shared between reads and
writes. Hence even for a 1 to 1 read/write ratio, RAIL only reduces write bandwidth
by 50% effectively. (3) RAIL detects write-mostly (<1K read IOPS) workloads and
automatically disables LUN throttling. (4) As shown in Section 5 applications such as
MongoDB and RocksDB are not performance limited by write bandwidth.

Read path: Reads are served by looking up the LBAs (multiple LBAs in the case
of multi-sector reads) in the L2P to determine the PPA. Since blk-mq threads directly
serve read requests, multiple threads can have multiple asynchronous read requests in
flight at the same time. To integrate RAIL, we check, for each PPA, whether the target
LUN currently serves a high latency operation. In this case, we perform a RAIL read by
transforming the PPA into its corresponding S-1 RAIL PPAs. We issue asynchronous
read requests for all PPAs and, in the interrupt handler, complete the I/O by copying
the recomputed reverse-parity of the RAIL PPAs into the original kernel block I/O
(struct bio).

Garbage collection and Wear Leveling: In addition to managing userspace I/O,
PBLK generates write and erase operations to implement GC and WL. PBLK performs
GC at the granularity of lines by reading all valid 4K sectors from a line and then
writing them into the same write buffer into which user writes are placed. From the
write buffer they are written to the next open line as any other user write. To implement
hot-cold separation we tag the write buffer entries so that GC’ed sectors are written
to the cold line and user sectors to the hot line. We also implemented an alternative
approach utilizing separate buffers for GC and user writes which performed equally
well. PBLKs original GC mechanism greedily determines the line with the least amount
of valid sectors, moves them to a new line and then erases all blocks within the line.
With hot-cold separation it becomes beneficial to prefer cold lines over hot lines [72].
RAIL does not require further modification of the GC path, except for marking parity
sectors as invalid so that they are not moved by GC. Note that overwriting LBAs does
not affect parity computation of other sectors within the same stripe. As sectors are
never updated in place, the physical sectors can still be used for parity computation
although they have been logically invalidated.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

RAIL: Predictable, Low Tail Latency for NVMe Flash 1:9

3.4 RAIL Overheads
RAIL enforces low tail latency at the cost of storage capacity and bandwidth. However,
RAIL also offers fault tolerance guarantees over a non-RAID approach.

Capacity overheads: RAIL induces capacity overheads of 1÷S, where S is the
stride size, to store parity data. For instance, for S=4 the capacity overhead is 25%,
for S=16 the capacity overhead is 6.25%. Note that RAIL enables fault tolerance as
provided by RAID. In applications where RAID needs to be deployed anyways, RAIL’s
capacity overheads can be zero. RAIL-HC only requires parity blocks for hot data,
hence, depending on the distribution of hot and cold data the capacity overheads are
reduced, often by 2× as shown in Figure 6. Furthermore, Section 5.1.5 shows that RAIL
allows to reduce overprovisioning compensating RAIL’s capacity overheads.

Bandwidth overheads: RAIL affects total device bandwidth (TotalBW) which
is shared among reads, writes and erases and also effects read and write bandwidth
individually. TotalBW is reduced by UserWrBW÷S as additional parity data needs
to be written to the SSD. For RAIL (but not for RAIL-HC), TotalBW is reduced by
GcWrBW÷S as additional parity data needs to be written for garbage collected sectors.
UserWrBw is limited to 1÷S to ensure that only a single LUN is serving a high
latency operation at a time. Note that for mixed read-write workloads this is generally
not an issue as the remaining bandwidth TotalBW−1÷S can be used for reads. If
maximum write bandwidth is required such as for preconditioning or bulk-loading
data, RAIL automatically disables LUN throttling in the presence of <1K read IOPS
while maintaining parity computation. Effective user read bandwidth is reduced by
the read amplification of RAIL reads. We quantify the effect of read amplification in
Section 5.1.4.

4 IMPLEMENTATION CHALLENGES
Implementing RAIL on real hardware has been a challenging endeavor due to the
technology specific properties of NAND Flash. In the following sections we list the
most challenging issues we faced and addressed.

4.1 Bad Blocks
NAND Flash is an inherently unreliable storage medium. New devices generally contain
a number of bad blocks that are unusable and, furthermore, write and erase operations
wear out NAND memory over time, increasing the number of bad blocks over time.
The number of erase cycles before a block wears out is technology dependent and
determined for instance by the number of voltage levels (single level vs. multi level
cells). LightNVM supports bad block management by maintaining a list of bad blocks
to guarantee that LBAs are never mapped to a bad sector. Bad blocks and, in particular,
grown bad blocks are problematic, as RAIL utilizes a fixed mapping between the
data/parity sectors of a RAIL stride and the LUNs. As a result, whenever performing
a RAIL read, the read path needs to determine the number of bad sectors within a
stride so that it can issue the correct number of sector reads. Similarly, on the write
path RAIL needs to be aware of bad blocks such that they can be skipped during parity
computation. The P2B on the write path described in Section 3 maintains all valid PPA
to write buffer entry and invalid (bad block) mappings to compute the correct parity in
the presence of strides with fewer than S sectors.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis

4.2 Meta Data
LightNVM maintains meta data to store information about bad sectors, overwritten
sectors that can be GC’ed, sequence numbers and other information required for
recovery in the case of a power cycle. Meta data is stored on Flash within the start and
end sectors of a line and hence meta sectors are not available for storing data. Even
worse, due to potential bad blocks at the start or end of a line, the location of meta
sectors is not fixed. There exist many corner cases in the presence of bad and meta
sectors which need to be considered to compute correct parity in all cases both on the
read and write path.

4.3 Flushes
Block devices support flushes to enforce the required consistency guarantees of filesys-
tems and databases. For instance, in ACID databases, durability can be enforced by
issuing a flush operation before committing a transaction. Flushes require LightNVM
to immediately issue all writes in prior to the flush to the storage device by padding the
flushed sectors with zeros to form a full page, the unit of writes. As the padded sectors
do not traverse the write buffer, RAIL maintains additional information to correctly
compute parity for the padding sectors.

4.4 Reverse LBA Map
The logical block (LBA) to physical sector (PPA) mapping table (L2P) is resident
in main memory and lost during a power cycle. LightNVM recovers the L2P during
boot up from the recovery data stored as part of the meta section on the device. To
store the actual LBA that maps to a particular sector, LightNVM utilizes out-of-band
memory on Flash to store a reverse L2P. In addition to recovery, LightNVM leverages
the out-of-band LBA data for verification purposes. On every read, the out-of-band
LBA information is compared to the expected LBA from the memory resident L2P.
For RAIL reads, this verification check fails as the sectors utilized to re-compute the
original page are mapped to different LBAs. We address this issue by computing a
parity LBA for each RAIL parity page by XOR’ing all LBAs of a RAIL stride. On the
read path, this enables to re-compute the original LBA for read verification. XOR’ed
RAIL LBAs are skipped during L2P recovery.

4.5 Multi-Sector Reads
To support different read sizes, PBLK allows to read multiple sequential LBAs as
part of a single access, although they might be mapped to non-consecutive PPAs. To
implement this capability, PBLK utilizes scatter operations composed of a vector of
PPAs. In the case of RAIL, it is possible that some of the sectors need to be read utilizing
conventional reads, some sectors are read using RAIL reads and some sectors are read
from the write cache. To reduce the number of permutations and corner cases, we re-
factored the code to offer three different code paths reflecting the potential location of a
sector. We then scan the entire multi-sector request before emitting up to three separate
asynchronous read requests which finally get assembled to complete the original block
I/O (bio) request.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

RAIL: Predictable, Low Tail Latency for NVMe Flash 1:11

(a) Average read latency
at 350K IOPS

(b) 90th Read Latency at
350K IOPS

(c) 95th Read Latency at
350K IOPS

(d) 99th Read Latency at
350K IOPS

(e) 99.9th Read Latency
at 350K IOPS

(f) 99.99th Read Latency
at 350K IOPS

Fig. 4. RAIL-HC provides predictable, low tail read latency at high write throughput.

4.6 Locking and Synchronization
Linux kernel developers need to deal with various concurrency issues. LightNVM
leverages the blk-mq interface to enable concurrent access of multiple readers to
the NVMe block device. For performance reasons, each reader can issue multiple
overlapping asynchronous reads and also needs to handle completion events (interrupts)
that can preempt the read path at any time. While the CNEX OC driver and SSD
can process multiple outstanding reads at a time, it can only process one write or
erase operation which needs to be enforced via per LUN semaphores. RAIL has been
carefully designed to comply with all the locking and synchronization policies built
into LightNVM and has been validated using an extensive verification suite.

4.7 Write Buffer Races
The write buffer introduces a potential race condition which occurs when transferring
sectors from the buffer to the device in the presence of concurrent reads to the same
sectors. In particular, it is possible that some sectors of a RAIL stride are persisted to
the SSD while some are still in the write buffer. Additionally, NAND chips specify
the concept of upper and lower pages, distributed within a block at a certain distance
whereas the upper page can only be read after both the lower and upper page have been
written. We guarantee consistent reads under all these conditions by delaying the L2P
update such that reads are only served from the device if all above conditions are met.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis

5 EVALUATION
We evaluate RAIL on the CNEX Westlake Open-Channel SSD [8] with the properties
shown in Table 2. The SSD is connected over a PCIe x8 interface to the host server,
an Intel Xeon Broadwell E5-2630 with 20 cores and 40 SMT threads running at 2.2
GHz with 64GB of DRAM. Our system runs Ubuntu 18.4 Linux with a 5.1 kernel for
the unmodified PBLK baseline. We utilize nvme-cli to initialize LightNVM’s media
manager and expose the Open-Channel SSD as a block device.

We compare RAIL and RAIL-HC against two baselines: PBLK which represents the
unmodified LightNVM subsystem and LinuxTinyTail, our Linux re-implementation
of TinyTail [81]. LinuxTinyTail conceptually resembles TinyTail, in that it leverages
redundancy to reduce tail latency in the presence of GC. In particular, whenever the
GC mechanism issues writes or erases, it accesses only one unit of the RAID array at a
time to avoid garbage collection overheads impacting read tail latency. LinuxTinyTail is
entirely implemented in software on top of LightNVM and hence our implementation
lacks the (simulated) hardware acceleration of the original TinyTail proposal. We
evaluate RAIL with microbenchmarks using the Flexible I/O tester (FIO) [40] and
two database applications: RocksDB and MongoDB. We also evaluated Twitter’s
Fatcache [60] but omit the results for brevity (RAIL shows a 4× tail latency reduction
over PBLK for Fatcache). For all tests, we precondition the SSD with sequential writes
and then 4K random writes. For all tests, if not mentioned otherwise we utilize S = 4
for both RAIL and RAIL-HC.

5.1 Flexible I/O Tester
We perform a series of microbenchmarks using FIO. All tests are performed directly on
the block device without a filesystem and page cache (O_DIRECT). We use a thread
count of 40, and low queue depth of 2 for all tests. We enable the Kyber [65] I/O
scheduler for all tests and set it to a target read latency of 500µs. While the SSD device
can be saturated by two threads, high queue depth has a detrimental effect on latency
due to request batching. We leave optimizing the Linux block I/O layer for low tail
latency as future work.

5.1.1 Read Latency vs. Write IOPS. As described in Section 3, high read tail
latency is caused by reads being serialized behind high latency operations such as
writes, erases and garbage collection. Our first series of microbenchmarks shown in
Figure 4 plots read latency against write IOPS on the X-Axis. For this test, we utilize
the entire SSD capacity by preconditioning all LBAs using a standard overprovisioning
ratio of 12%. When executing non-sequential write workloads on a full SSD, GC kicks
in immediately. The resulting write amplification ranges from 1×-10× depending on
the write distribution, overprovisioning ratio and hot-cold separation technique. For
realistic zipfian distributions, the observed write amplification ratio generally ranges
between 1.8× and 4.5× [23, 33, 74]. To run our tests, we execute 40 threads that
issue 100% 4K sized random reads with a zipfian distribution and one write thread
that issues 4K sized random writes with the same zipfian distribution. The test utilizes
a fixed read bandwidth of 350 KIOPS which is close to the SSD’s peak read only
throughput of 380K IOPS and we sweep the target write IOPS from 1K to 96K IOPS.
Note that, because of write throttling, the 4 approaches support different maximum

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

RAIL: Predictable, Low Tail Latency for NVMe Flash 1:13

Fig. 5. Tail Latency without GC

write performances. In particular, for this setup, the approaches reach a maximum
write IOPS (in the absence of reads) of 169K for PBLK, 80K for RAIL-HC, 49K for
LinuxTinyTail and 41K for RAIL. We evaluate write performance in more detail in
Section 5.1.3. As shown in Figure 4a, for all approaches read latency generally increases
in the presence of writes. RAIL provides a 20% average latency reduction over PBLK
at maximum write IOPS. For the 90th percentile tail latency, shown in Figure 4b, RAIL
reduces latency from 600µs to below 340µs. For the 99.9th percentile, RAIL again
shows a 5x latency reduction already for low write bandwidth such as 8K IOPS. At the
99.99th percentile, shown in Figure 4f, RAIL provides a read latency of below 900µs
for all write rates, whereas for PBLK, tail latency increases to 5300µs for maximum
write IOPS. Figure 4 shows that LinuxTinyTail successfully addresses read after erase
stalls that in PBLK introduce up to 6ms latency (Table 4), however, it only provides
little performance improvement over the PBLK baseline as it cannot avoid read after
write serialization. This shows that avoiding GC interference is not enough; RaW stalls
need to be addressed as well. RAIL-HC performs almost on par with RAIL. The zipfian
distribution of the test workload ensures that most reads hit the hot data partition and
only few reads are served from the cold partition. As a result, RaGC serialization is
almost non-existent and hence RAIL-HC enables low tail latency without throttling
write performance as significantly. Note that RAIL-HC only works well for workloads
that follow a zipfian distribution. For completely uniform distributions, there exists
a high probability that reads hit cold data in which case RAIL-HC does not provide
sufficient read-write isolation. For such workloads, RAIL is the only approach that
enforces low tail latency.

5.1.2 Read Latency vs. Percentile Latency (No GC). We also evaluated tail
latency for the case where there exists sufficient free space (75%) on the SSD. In this
case, there exist 4× as many physical than logical blocks on the SSD which delays
garbage collection significantly and hence reduces write amplification to 1.05×. As the
GC traffic is significantly reduced, LinuxTinyTail provides very little latency benefits
over PBLK, while the RAIL approaches continue to maintain low tail latency. Figure 5

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis

Fig. 6. Write Bandwidth Overhead Fig. 7. Capacity vs. Latency

Fig. 8. Latency vs. Overprovision Fig. 9. RocksDB Latency

shows the results of the non-GC workloads in condensed form. We use the same setup
as in Section 5.1.1 while only filling the SSD to 25%. RAIL consistently provides
lower latency ranging from 100µs in average to 585µs at the 99.99th percentile. In
contrast, PBLK shows a tail latency of 4358µs and LinuxTinyTail shows a 99.99th

percentile latency of 2834µs. RAIL outperforms the baselines at all percentiles whereas
LinuxTinyTail can only avoid the rare read being stalled behind erase scenarios while it
suffers from the much more frequent RaW stalls. Due to the lack of GC traffic, RAIL
and RAIL-HC perform almost identical in terms of read latency and write throughput.

5.1.3 Write Performance and Request Size. We omit write latency graphs as,
in absence of flushes, writes are immediately completed when they enter the DRAM
write buffer. As a result, writes generally complete in less than 20µs independent of
the evaluated mechanism. Write throughput as measured by FIO is reduced by all
latency avoidance techniques. The write overhead, hereby, depends on the GC write
amplification, the stride width S and whether reads are isolated only from GC writes,
from user writes or from all operations. We evaluate the write overhead of the different
techniques for S = 4 and different write amplification factors using a write workload
with zipfian distribution. Using FIO, we vary theta-zipf to generate write amplification
factors of 2.3, 3.2, 4.1, and 5.0 which match our observations of real applications as
well as prior work on write amplification analysis [23, 33, 74]. Figure 6 shows the
achieved maximum write throughput of the different approaches normalized to PBLK.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

RAIL: Predictable, Low Tail Latency for NVMe Flash 1:15

Fig. 10. RocksDB Throughput Fig. 11. MongoDB Latency

Fig. 12. MongoDB Throughput Fig. 13. MongoDB Interference

RAIL provides the strictest tail latency guarantees at the cost of reducing bandwidth
to approximately 1÷ S. TinyTail and RAIL-HC only throttle cold GC respectively
hot user write traffic and hence limit their impact on write performance. For a write
amplification ratio of 5× RAIL-HC can maintain 62% of PBLK’s original bandwidth,
whereas TinyTail achieves only 29%, while RAIL-HC enforces much stricter tail latency
guarantees than TinyTail as shown in Section 5.1.1. We will show in Section 5.2 and 5.3
that overall, write throttling has a small effect on end-to-end application performance.

We also evaluated the performance of RAIL and PBLK for different request sizes.
In PBLK, writes are always performed at the granularity of 64K, independent of the
size of the original request, by slicing and reassembling segments in the write buffer.
For reads, in the case of RAIL, we could not see any significant performance impact
of larger requests and hence omit the results here for brevity. The reason is that read
requests are always scattered into a series of 4KB requests and RAIL emits RAIL reads
for any of the 4K sector reads that would be blocked by a high latency operation. In the
case of PBLK, tail latency in fact increases for larger request sizes as the probability
increases that one of the 4KB reads is serialized behind a write operation. For instance,
for 256KB sequential reads PBLK already shows a latency of greater than 2ms for the
80th percentile.

5.1.4 RAIL Stride Width. As described in Section 3.3 the stride width S refers to
the number of sectors that are used to compute a parity sector. A high stride width is

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis

advantageous as it reduces the capacity overhead of RAIL. For instance, a stride width
of 16 (RAIL-16) only introduces a capacity overhead of 6.25% to store redundant parity
information. On the other hand, RAIL-16 also reduces maximum write bandwidth by
16x and increases read amplification, as on a RAIL read 15 sectors have to be read to
recompute the original sector. Figure 7 compares three RAIL configurations and their
impact on read IOPS and 90th percentile latency. We run 1 write thread issuing 30K
IOPS and 32 read threads that sweep their aggregate IOPS from 32K to 384K IOPS.
Due to read amplification, RAIL-16 reduces the maximum read IOPS by 64K and
increases the tail latency by 220µs. Configuring stride width enables users to trade-off
capacity, IOPS and latency in an application specific way.

5.1.5 Overprovisioning vs. Tail Latency. SSD vendors overprovision NAND Flash
memory to compensate for GC overheads, by exposing fewer capacity to the user
than available on the SSD. The amount of capacity reserved for GC determines the
number of valid sectors that need to be moved between blocks, significantly affecting
the read-write interference [52, 71, 73]. Data center operators commonly reserve up
to 30-50% of raw SSD capacity for space over-provisioning to improve predictability
in the presence of random writes [56]. We evaluate the impact of overprovisioning for
RAIL by comparing three overprovisioning factors: 20%, 11% and 7%. As Figure 8
shows, RAIL completely eliminates read stalls even for very low overprovisioning
factors and operators may be able to choose lower overprovisioning factors reducing
capacity overheads. LinuxTinyTail improves tail latency as it does not suffer from the
increased garbage collection overheads induced by low overprovisioning factors but tail
latency is still affected by RaW stalls.

5.2 RocksDB
We evaluate the performance of RAIL using the RocksDB key-value store database
in version 5.10.3. To run RocksDB, we create an Ext4 filesystem to place both the
database and write ahead log onto the mounted SSD. As load generator we utilize
db_bench configured with the default parameters. We Bulkload 100M key/value pairs
into the database with 20 byte keys and 400 byte values which completes in 4300
seconds for both PBLK and RAIL. Bulkload generates a write bandwidth of 233MB/s
which is below the 400MB/s RAIL supports in an S = 4 configuration and well below
the 1.6GB/s supported by PBLK and RAIL in write-only mode. Figure 9 shows the
tail latency of db_bench’s ReadWhileWriting (RWW) and ReadWhileMerging (RWM)
workload for RAIL and PBLK utilizing 1 through 32 threads. We omit db_bench’s
other benchmarks as they are either read-only or write-only. RAIL shows 4× lower tail
latency at the 99.9th percentile than PBLK for less than 32 threads whereas for high
thread counts software queuing increases latency for both approaches. Figure 10 lists
the queries per second (QPS) that can be achieved with both approaches. 140K QPS
translate into 330MB/s which is below the throttled bandwidth of RAIL which explains
that all approaches are able to achieve similar performance. TinyTail performs similar
as PBLK (less than 10% latency improvement) while RAIL-HC closely follows the
performance of RAIL.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

RAIL: Predictable, Low Tail Latency for NVMe Flash 1:17

5.3 MongoDB
We evaluate the performance of RAIL with the document-oriented NoSQL database
MongoDB [3, 19]. We utilize MongoDB version 3.4.7, placing the database file on the
Open-Channel SSD, utilizing the XFS filesystem as recommended by MongoDB. As
a workload generator, we leverage Yahoo Cloud Server Benchmark (YCSB) [21]. We
first load the database with 1 billion entries of 1KB in size to generate a 1.2T B backing
file, filling up the SSD to 75% capacity. As most benchmarks utilize random writes,
this fill level leads to significant garbage collection. We run 1M transactions of each
of the workloads defined by YCSB. Figure 11 shows the 99.9th percentile read latency
as reported by YCSB for PBLK, LinuxTinyTail and RAIL. Workloads B, C, D are
read-heavy (95% reads) and hence all three implementations perform well providing
sub millisecond tail latency. RAIL outperforms the two baselines for workload A (50%
reads/50% writes) and F whereas F shows read and F2 shows the read-modify-write
latency performed by workload F. We omit the results for workload E for brevity which
performs scans that take 30ms to complete for all 3 approaches. Figure 12 shows the
aggregated read/write throughput measurements for the same set of workloads. All
three approaches achieve the same QPS and benchmark execution time.

We now study application interference by running the same MongoDB workload
as above while running an FIO workload concurrently that generates a steady write
workload of 10K IOPS. The performance of MongoDB suffering from application
interference is shown in Figure 13. While RAIL performance is unaffected, tail latency
increases by up to 3× for PBLK in the presence of application interference. This shows
that RAIL cannot only enforce low tail latency within a single application, but that it
also reliably avoids application interference.

6 DISCUSSION
6.1 FTL-Application Trade-offs
While RAIL could be implemented in hardware, the benefit of our host-based, software
FTL approach is to expose design trade-offs to users. Based on application requirements
and device characteristics, users can tune the stride size and over-provisioning factor,
to trade-off capacity, bandwidth and latency. For instance, if write bandwidth is more
important than minimizing capacity overheads, RAIL can be configured in RAID-6
mode which utilizes two parity LUNs per stride. RAID-6 mode does not change the
tail latency behavior, however, it further increases write bandwidth (as 2 LUNs can be
written at a time) at the cost of additional capacity. In particular, in a configuration with
three data LUNs and two parity LUNs, write throughput and capacity overheads both
increase by 1.6×.

6.2 Tail Latency Aware OSes
RAIL enforces predictable low tail latency for Flash accesses. Nevertheless, independent
software layers can introduce high tail latency, jeopardizing RAIL’s effectiveness. While
the Linux block I/O layer has significantly improved scalability and throughput to
support high performance NVMe storage devices, achieving low end-to-end tail latency
remains a challenge. We provide three insights, that we believe are crucial to achieve
low tail latency storage access on existing Linux systems.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis

Filesystem Bypass: Running the same workload in FIO over an Ext4 filesystem
increases tail latency by 2−3× over directly accessing the I/O device. As a result, to
achieve low tail latency, applications need to operate on block devices directly bypassing
the filesystem layer. Block device virtualization techniques such as provided by PBLK,
enables sharing devices among multiple applications without the need of a filesystem.

Read/Write Separation: RAIL eliminates reads being stalled by independent writes.
In addition, developers need to guarantee to never serialize any reads behind writes
on the application layer. This design principle can be implemented with relative ease
for databases or caches that have limited consistency and atomicity requirements but
becomes challenging when implementing a database with strict ACID properties.

Overprovisioning of cores is costly, although, data plane operating systems such as
Arrakis [59], IX [4] and ReFlex [46] have shown that low tail latency can be achieved
without sacrificing throughput and efficiency while user level networking (DPDK)
and storage (SPDK) stacks have also shown to provide predictable high performance.
POSIX OSes such as Linux need to be re-architected with tail latency as a first order
concern to enable end-to-end low latency systems.

6.3 Hardware Acceleration
Open-Channel SSDs move compute cycles from the SSD controller to the host processor
in order to increase flexibility and programmability. As host processors represent a
costly resource, this may negatively affect the total cost of ownership (TCO). We believe
that both programmability and cost efficiency can be achieved by an Open-Channel
design that leverages the following techniques.

Parity Acceleration: RAIL consumes 10% of the compute cycles of a modern
Intel Skylake class processor core for parity computation. We propose a new NVMe
command that, given a set of source PPAs and a destination PPA, computes parity of
the source sectors and writes it into the destination sector. This hardware offload would
also reduce PCIe bandwidth as the parity sector would not have to be transferred from
the host to the SSD, while maintaining the flexibility of performing the sector mapping
in software.

Garbage Collection: GC overheads can be reduced by introducing an NVMe mem-
cpy command that copies the sector of one PPA to another. With this approach, the
over-provisioning factor, GC aggressiveness, remapping strategy, and line selection
remains fully programmable in software while PCIe bandwidth and host CPU cycles
are reduced significantly.

Flash Architecture When designing a Flash chip, NAND architects need to trade-off
cost, capacity, bandwidth and latency. For instance, to amortize the high cost of erases,
they are performed on a large block granularity, sacrificing latency for throughput.
Writes are also batched (see Section 3) to increase throughput, however, batching is
limited as it can lead to high tail latency when a read is stalled behind a write. With
RAIL, write latency becomes irrelevant and hence very large pages can be supported
that can improve write throughput. Furthermore, with RAIL, SSDs no longer need to
support a large amount of LUNs to reduce read after write serialization.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

RAIL: Predictable, Low Tail Latency for NVMe Flash 1:19

7 RELATED WORK
Data center level techniques have been proposed to improve storage tail latency
performance for maintenance [2], video serving [7] and remote storage access [46?]
while Limplock [25] analyzes the performance impact of unreliable storage hardware.
These approaches are application specific and cannot provide the same guarantees
as RAIL. Many Flash-based systems account for asymmetrical read-write latency in
I/O scheduling decisions [57, 66, 68]. LOCS, a key-value store database implemented
directly on an Open-Channel SSD, schedules read, write and erase operations using a
least-weight-queue-length policy to maximize Flash utilization and throughput [77].
ParaFS also weighs requests as part of its parallelism-aware scheduling algorithm [83].
Prefetching [14] has been proposed to reduce tail latency. In contrast to prior techniques,
RAIL is the first device-level technique that supports strict tail latency guarantees.

Redundancy: Storage systems use replication or erasure coding to improve relia-
bility [13, 26, 34, 37, 38, 45, 50, 51, 69]. Several systems and studies have shown that
redundancy is an effective way to reduce tail latency [22, 27, 76, 80]. EC-Cache uses
erasure codes and late binding of redundant requests to reduce tail latency and improve
load balance for in-memory cache systems [61]. These approaches requires application-
level changes while RAIL provides stronger guarantees while being transparent to the
application layer.

Data placement: Prior work has examined various page allocation schemes on Flash
to leverage internal device parallelism [17, 41, 75]. Gordon [12] uses a 2-D striping
scheme to leverage channel and die-level parallelism, increasing throughput. OFSS is an
object-based FTL co-designed in hardware/software to reduce write amplification [53].
Chopper [31] and F2Fs [47] are two file system proposals that improve performance for
Flash based storage devices. Autostream [82] separates writes into streams to improve
data placement. RAIL differs from these systems by making data placement decisions
based on reducing the probability of read-write conflict, thus improving tail latency.

Garbage Collection: Several systems [15, 20, 29, 44, 49, 54, 78, 81] have deter-
mined garbage collection as the culprit for high tail latency and try to reduce or eliminate
its effect. While GC arguably has a strong impact on tail latency, we showed that ad-
dressing read-write interference is even more important. User writes increase read
latency by an order of magnitude and so far have been ignored by prior work.

8 CONCLUSION
We described RAIL, a Flash management technique that relies on redundancy to
improve the tail read latency in the presence of high latency operations. We showed
that RAIL’s page placement algorithm and parity-based read datapath eliminates the
possibility of a read operation getting stuck behind writes and erases, allowing RAIL to
achieve 7× lower tail read latency than a conventional SSD. We implemented RAIL
within Linux PBLK, a host-side, software FTL whose design parameters can be tuned
by users to balance trade-offs between tail latency QoS, bandwidth, capacity and fault-
tolerance according to application requirements and device properties. RAIL contributes
over prior approaches by avoiding read-after-write serialization, enforcing stricter tail
latency guarantees and by reducing write overheads by leveraging latency-aware hot-
cold separation.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis

9 ACKNOWLEDGEMENTS
This work has been supported by Samsung and by NSF grants CCF-1942754 and
CNS-1841545.

REFERENCES
[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark S. Manasse, and Rina Panigrahy.

Design tradeoffs for ssd performance. In USENIX Annual Technical Conference, pages 57–70, 2008.
[2] George Amvrosiadis, Angela Demke Brown, and Ashvin Goel. Opportunistic storage maintenance. In

Proceedings of the 25th Symposium on Operating Systems Principles, pages 457–473. ACM, 2015.
[3] Kyle Banker. MongoDB in action. Manning Publications Co., 2011.
[4] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard

Bugnion. IX: A protected dataplane operating system for high throughput and low latency. In Proc. of
USENIX Operating Systems Design and Implementation, OSDI’14, pages 49–65, October 2014.

[5] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual Technical Conference,
FREENIX Track, volume 41, page 46, 2005.

[6] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to flash memory. Proceedings of the
IEEE, 91(4):489–502, April 2003.

[7] Yitzhak Birk. Random raids with selective exploitation of redundancy for high performance video
servers. In Network and Operating System Support for Digital Audio and Video, 1997., Proceedings of
the IEEE 7th International Workshop on, pages 13–23. IEEE, 1997.

[8] Matias Bjorling. Getting started with open-channel-ssd with cnex ssd(cnex labs westlake asic), 2016.
[9] Matias Bjorling. Open-channel solid state drives nvme specification. http://lightnvm.io, 2016.

[10] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet. Linux block io: introducing multi-
queue ssd access on multi-core systems. In Proc. of International Systems and Storage Conference,
page 22. ACM, 2013.

[11] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. LightNVM: the linux open-channel SSD
subsystem. In Proc. of USENIX File and Storage Technologies, FAST’17. USENIX Association, 2017.,
2017.

[12] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon: Using flash memory to build
fast, power-efficient clusters for data-intensive applications. In Proc. of 14th International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS XIV, pages
217–228. ACM, 2009.

[13] Chandranil Chakraborttii and Heiner Litz. Improving the accuracy, adaptability, and interpretability of
ssd failure prediction models. In Proceedings of the 11th ACM Symposium on Cloud Computing, pages
120–133, 2020.

[14] Chandranil Chakraborttii and Heiner Litz. Learning i/o access patterns to improve prefetching in ssds.
In Proceedings of The European Conference on Machine Learning (ECML-PKDD), 2020.

[15] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-time garbage collection for flash-memory storage
systems of real-time embedded systems. ACM Transactions on Embedded Computing Systems (TECS),
3(4):837–863, 2004.

[16] Feng Chen, Binbing Hou, and Rubao Lee. Internal parallelism of flash memory-based solid-state drives.
Trans. Storage, 12(3):13:1–13:39, May 2016.

[17] Feng Chen, Rubao Lee, and Xiaodong Zhang. Essential roles of exploiting internal parallelism of flash
memory based solid state drives in high-speed data processing. In Proc. of IEEE 17th International
Symposium on High Performance Computer Architecture, HPCA’11, pages 266–277. IEEE Computer
Society, 2011.

[18] Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B Gibbons, Ryan Johnson, Ippokratis
Pandis, and Radu Stoica. Tpc-e vs. tpc-c: characterizing the new tpc-e benchmark via an i/o comparison
study. ACM SIGMOD Record, 39(3):5–10, 2011.

[19] Kristina Chodorow. MongoDB: The Definitive Guide: Powerful and Scalable Data Storage. " O’Reilly
Media, Inc.", 2013.

[20] John Colgrove, John D Davis, John Hayes, Ethan L Miller, Cary Sandvig, Russell Sears, Ari Tamches,
Neil Vachharajani, and Feng Wang. Purity: Building fast, highly-available enterprise flash storage
from commodity components. In Proceedings of the 2015 ACM SIGMOD International Conference on

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://lightnvm.io

RAIL: Predictable, Low Tail Latency for NVMe Flash 1:21

Management of Data, pages 1683–1694. ACM, 2015.
[21] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Benchmarking

cloud serving systems with ycsb. In Proceedings of the 1st ACM symposium on Cloud computing, pages
143–154. ACM, 2010.

[22] Jeffrey Dean and Luiz André Barroso. The tail at scale. Commun. ACM, 56(2):74–80, February 2013.
[23] Peter Desnoyers. Analytic modeling of ssd write performance. In Proceedings of the 5th Annual

International Systems and Storage Conference, page 12. ACM, 2012.
[24] Peter Desnoyers. Analytic models of ssd write performance. ACM Transactions on Storage (TOS),

10(2):8, 2014.
[25] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake, and Haryadi S Gunawi.

Limplock: understanding the impact of limpware on scale-out cloud systems. In Proceedings of the 4th
annual Symposium on Cloud Computing, page 14. ACM, 2013.

[26] Y. Du, Y. Zhang, N. Xiao, and F. Liu. Cd-rais: Constrained dynamic striping in redundant array of
independent ssds. In 2014 IEEE International Conference on Cluster Computing (CLUSTER), pages
212–220, Sept 2014.

[27] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, and Esa Hyytia. Reducing
latency via redundant requests: Exact analysis. In Proc. of ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS ’15, pages 347–360. ACM, 2015.

[28] Javier González and Matias Bjørling. Multi-tenant i/o isolation with open-channel ssds. In Nonvolatile
Memory Workshop (NVMW), 2017.

[29] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and Anand Sivasubramaniam. Leveraging value
locality in optimizing nand flash-based ssds. In FAST, pages 91–103, 2011.

[30] Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote, Andrew A. Chien, and
Haryadi S. Gunawi. The tail at store: A revelation from millions of hours of disk and SSD deployments.
In Proc. of the 14th USENIX Conference on File and Storage Technologies (FAST’16), pages 263–276.
USENIX Association, 2016.

[31] Jun He, Duy Nguyen, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Reducing file system
tail latencies with chopper. In FAST, volume 15, pages 119–133, 2015.

[32] Windsor W Hsu and Alan Jay Smith. Characteristics of i/o traffic in personal computer and server
workloads. IBM Systems Journal, 42(2):347–372, 2003.

[33] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka. Write amplification
analysis in flash-based solid state drives. In Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference, page 10. ACM, 2009.

[34] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and
Sergey Yekhanin. Erasure coding in windows azure storage. In Proc. of the 2012 USENIX Conference
on Annual Technical Conference, USENIX ATC’12, pages 2–2. USENIX Association, 2012.

[35] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta Sengupta, Bikash Sharma, and
Moinuddin K. Qureshi. Flashblox: Achieving both performance isolation and uniform lifetime for
virtualized ssds. In Proc. of the 15th USENIX Conference on File and Storage Technologies, FAST’17,
pages 375–390, 2017.

[36] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hibench benchmark suite:
Characterization of the mapreduce-based data analysis. In Data Engineering Workshops (ICDEW),
2010 IEEE 26th International Conference on, pages 41–51. IEEE, 2010.

[37] Soojun Im and Dongkun Shin. Flash-aware raid techniques for dependable and high-performance flash
memory ssd. IEEE Transactions on Computers, 60(1):80–92, 2011.

[38] Micron Technology Inc. Nand flash media management through rain. https://www.micron.com/~/
media/documents/products/technical-marketing-brief/brief_ssd_rain.pdf, 2011.

[39] Intel Corp. Intel Solid-State Drive DC P3608 Series. http://www.intel.com/content/www/us/en/solid-
state-drives/ssd-dc-p3608-spec.html, 2015.

[40] Jens Axboe. FIO: Flexible I/O Tester. https://github.com/axboe/fio, 2015.
[41] Myoungsoo Jung and Mahmut Kandemir. An evaluation of different page allocation strategies on high-

speed SSDs. In Proc. of USENIX Workshop on Hot Topics in Storage and File Systems, HotStorage’12.
USENIX, 2012.

[42] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. The multi-streamed solid-state
drive. In HotStorage, 2014.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.micron.com/~/media/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://www.micron.com/~/media/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
http://www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-p3608-spec.html
http://www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-p3608-spec.html
https://github.com/axboe/fio

1:22 Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis

[43] Swaroop Kavalanekar, Bruce Worthington, Qi Zhang, and Vishal Sharda. Characterization of storage
workload traces from production windows servers. In Workload Characterization, 2008. IISWC 2008.
IEEE International Symposium on, pages 119–128. IEEE, 2008.

[44] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards SLO complying ssds through OPS isolation. In
Proc. of the 13th USENIX Conference on File and Storage Technologies (FAST 15), pages 183–189,
2015.

[45] Jaeho Kim, Jongmin Lee, Jongmoo Choi, Donghee Lee, and Sam H Noh. Improving ssd reliability with
raid via elastic striping and anywhere parity. In Dependable Systems and Networks (DSN), 2013 43rd
Annual IEEE/IFIP International Conference on, pages 1–12. IEEE, 2013.

[46] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. ReFlex: remote flash == local flash. In Proc. of
Architectural Support for Programming Languages and Operating Systems, ASPLOS’17, 2017.

[47] Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho. F2fs: A new file system for flash
storage. In FAST, pages 273–286, 2015.

[48] Jongsung Lee and Jin-Soo Kim. An empirical study of hot/cold data separation policies in solid state
drives (ssds). In Proceedings of the 6th International Systems and Storage Conference, page 12. ACM,
2013.

[49] Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp Oral, Feiyi Wang, and Jongman Kim. A semi-
preemptive garbage collector for solid state drives. In Proc. of the IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS ’11, pages 12–21, 2011.

[50] Sehwan Lee, Bitna Lee, Kern Koh, and Hyokyung Bahn. A lifespan-aware reliability scheme for
raid-based flash storage. In Proceedings of the 2011 ACM Symposium on Applied Computing, pages
374–379. ACM, 2011.

[51] Yangsup Lee, Sanghyuk Jung, and Yong Ho Song. Fra: a flash-aware redundancy array of flash storage
devices. In Proceedings of the 7th IEEE/ACM international conference on Hardware/software codesign
and system synthesis, pages 163–172. ACM, 2009.

[52] Seagate Technology LLC. SSD over-provisioning and its benefits. http://www.seagate.com/tech-
insights/ssd-over-provisioning-benefits-master-ti/, 2017.

[53] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending the lifetime of flash-based storage through
reducing write amplification from file systems. In USENIX Conference on File and Storage Technologies,
FAST’13, pages 257–270. USENIX, 2013.

[54] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom. Sfs: random write
considered harmful in solid state drives. In FAST, page 12, 2012.

[55] NVM Express Inc. NVM Express: the optimized PCI Express SSD interface. http://www.nvmexpress.
org, 2015.

[56] Jian Ouyang, Shiding Lin, Jiang Song, Zhenyu Hou, Yong Wang, and Yuanzheng Wang. SDF: software-
defined flash for web-scale internet storage systems. In Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages 471–484, 2014.

[57] Stan Park and Kai Shen. FIOS: a fair, efficient flash I/O scheduler. In Proc. of USENIX File and Storage
Technologies, FAST’12, page 13. USENIX Association, 2012.

[58] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of inexpensive disks
(raid). In Proc. of ACM SIGMOD International Conference on Management of Data, SIGMOD ’88,
pages 109–116. ACM, 1988.

[59] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind Krishnamurthy, Thomas
Anderson, and Timothy Roscoe. Arrakis: The operating system is the control plane. ACM Transactions
on Computer Systems (TOCS), 33(4):11, 2015.

[60] Manju Rajashekhar and Yao Yue. Fatchache. https://github.com/twitter/fatcache.
[61] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kannan Ramchandran. EC-Cache:

Load-balanced, low-latency cluster caching with online erasure coding. In Proc. of USENIX Symposium
on Operating Systems Design and Implementation, OSDI’16, pages 401–417. USENIX Association,
2016.

[62] Alma Riska and Erik Riedel. Disk drive level workload characterization. In USENIX Annual Technical
Conference, General Track, volume 2006, pages 97–102, 2006.

[63] Alma Riska and Erik Riedel. Evaluation of disk-level workloads at different time-scales. In Workload
Characterization, 2009. IISWC 2009. IEEE International Symposium on, pages 158–167. IEEE, 2009.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://www.seagate.com/tech-insights/ssd-over-provisioning-benefits-master-ti/
http://www.seagate.com/tech-insights/ssd-over-provisioning-benefits-master-ti/
http://www.nvmexpress.org
http://www.nvmexpress.org
https://github.com/twitter/fatcache

RAIL: Predictable, Low Tail Latency for NVMe Flash 1:23

[64] Samsung Electronics Co. Samsung PM1725 NVMe PCIe SSD. http://www.samsung.com/
semiconductor/global/file/insight/2015/11/pm1725-ProdOverview-2015-0.pdf, 2015.

[65] Omar Sandoval. Kyber multi-queue i/o scheduler. https://lwn.net/Articles/720071/.
[66] Kai Shen and Stan Park. FlashFQ: A fair queueing I/O scheduler for flash-based SSDs. In Proc. of

USENIX Annual Technical Conference, ATC’13, pages 67–78. USENIX, 2013.
[67] Woong Shin, Myeongcheol Kim, Kyudong Kim, and Heon Y Yeom. Providing qos through host

controlled flash ssd garbage collection and multiple ssds. In Big Data and Smart Computing (BigComp),
2015 International Conference on, pages 111–117. IEEE, 2015.

[68] David Shue and Michael J. Freedman. From application requests to virtual IOPs: provisioned key-
value storage with Libra. In Proc. of European Conference on Computer Systems, EuroSys’14, pages
17:1–17:14, 2014.

[69] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop distributed
file system. In Proc. of IEEE Mass Storage Systems and Technologies, MSST ’10, pages 1–10. IEEE
Computer Society, 2010.

[70] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos Maltzahn, and Scott Brandt. Flash on
rails: Consistent flash performance through redundancy. In USENIX Annual Technical Conference,
USENIX ATC’14, pages 463–474. USENIX Association, 2014.

[71] Kent Smith. Understanding ssd over-provisioning. EDN Network, 2013.
[72] Radu Stoica and Anastasia Ailamaki. Improving flash write performance by using update frequency.

Proceedings of the VLDB Endowment, 6(9):733–744, 2013.
[73] Radu Stoica and Anastasia Ailamaki. Improving flash write performance by using update frequency.

Proc. VLDB Endow., 6(9):733–744, July 2013.
[74] Hui Sun, Xiao Qin, Fei Wu, and Changsheng Xie. Measuring and analyzing write amplification

characteristics of solid state disks. In 2013 IEEE 21st International Symposium on Modelling, Analysis
and Simulation of Computer and Telecommunication Systems, pages 212–221. IEEE, 2013.

[75] Arash Tavakkol, Pooyan Mehrvarzy, Mohammad Arjomand, and Hamid Sarbazi-Azad. Performance
evaluation of dynamic page allocation strategies in ssds. ACM Trans. Model. Perform. Eval. Comput.
Syst., 1(2):7:1–7:33, June 2016.

[76] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott
Shenker. Low latency via redundancy. In Proceedings of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT ’13, pages 283–294. ACM, 2013.

[77] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen Zhang, and Jason Cong. An
efficient design and implementation of lsm-tree based key-value store on open-channel ssd. In Proc. of
European Conference on Computer Systems, EuroSys’14, pages 16:1–16:14. ACM, 2014.

[78] Guanying Wu and Xubin He. Reducing SSD read latency via NAND flash program and erase suspension.
In Proc. of the 10th USENIX Conference on File and Storage Technologies, FAST’12, pages 10–10.
USENIX Association, 2012.

[79] Suzhen Wu, Yanping Lin, Bo Mao, and Hong Jiang. Gcar: Garbage collection aware cache management
with improved performance for flash-based ssds. In Proceedings of the 2016 International Conference
on Supercomputing, page 28. ACM, 2016.

[80] Zhe Wu, Curtis Yu, and Harsha V. Madhyastha. Costlo: Cost-effective redundancy for lower latency
variance on cloud storage services. In Proc. of USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’15, pages 543–557. USENIX, May 2015.

[81] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman, Andrew A.
Chien, and Haryadi S. Gunawi. Tiny-tail flash: Near-perfect elimination of garbage collection tail
latencies in NAND SSDs. In Proc. of the 15th USENIX Conference on File and Storage Technologies
(FAST 17), pages 15–28, 2017.

[82] Jingpei Yang, Rajinikanth Pandurangan, Changho Choi, and Vijay Balakrishnan. Autostream: Automatic
stream management for multi-streamed ssds. In Proc. of the 10th ACM International Systems and
Storage Conference, SYSTOR ’17, pages 3:1–3:11, 2017.

[83] Jiacheng Zhang, Jiwu Shu, and Youyou Lu. ParaFS: A log-structured file system to exploit the internal
parallelism of flash devices. In Proc. of USENIX Annual Technical Conference, ATC’16, pages 87–100.
USENIX Association, June 2016.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://www.samsung.com/semiconductor/global/file/insight/2015/11/pm1725-ProdOverview-2015-0.pdf
http://www.samsung.com/semiconductor/global/file/insight/2015/11/pm1725-ProdOverview-2015-0.pdf
https://lwn.net/Articles/720071/

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Parity Sector Placement (RAIL)
	3.2 Latency-Aware Hot-Cold Separation (HC)
	3.3 RAIL Implementation
	3.4 RAIL Overheads

	4 Implementation Challenges
	4.1 Bad Blocks
	4.2 Meta Data
	4.3 Flushes
	4.4 Reverse LBA Map
	4.5 Multi-Sector Reads
	4.6 Locking and Synchronization
	4.7 Write Buffer Races

	5 Evaluation
	5.1 Flexible I/O Tester
	5.2 RocksDB
	5.3 MongoDB

	6 Discussion
	6.1 FTL-Application Trade-offs
	6.2 Tail Latency Aware OSes
	6.3 Hardware Acceleration

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

