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Abstract
Data analytics are an important class of data-intensive

workloads on public cloud services. However, selecting
the right compute and storage configuration for these ap-
plications is difficult as the space of available options is
large and the interactions between options are complex.
Moreover, the different data streams accessed by analyt-
ics workloads have distinct characteristics that may be
better served by different types of storage devices.

We present Selecta, a tool that recommends near-
optimal configurations of cloud compute and storage re-
sources for data analytics workloads. Selecta uses latent
factor collaborative filtering to predict how an applica-
tion will perform across different configurations, based
on sparse data collected by profiling training workloads.
We evaluate Selecta with over one hundred Spark SQL
and ML applications, showing that Selecta chooses a
near-optimal performance configuration (within 10% of
optimal) with 94% probability and a near-optimal cost
configuration with 80% probability. We also use Se-
lecta to draw significant insights about cloud storage
systems, including the performance-cost efficiency of
NVMe Flash devices, the need for cloud storage with
support for fine-grain capacity and bandwidth allocation,
and the motivation for end-to-end storage optimizations.

1 Introduction

The public cloud market is experiencing unprecedented
growth, as companies move their workloads onto plat-
forms such as Amazon AWS, Google Cloud Platform
and Microsoft Azure. In addition to offering high elastic-
ity, public clouds promise to reduce the total cost of own-
ership as resources can be shared among tenants. How-
ever, achieving performance and cost efficiency requires
choosing a suitable configuration for each given applica-
tion. Unfortunately, the large number of instance types
and configuration options available make selecting the
right resources for an application difficult.
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Figure 1: Performance of three applications on eight
i3.xl instances with different storage configurations.

The choice of storage is often essential, particularly
for cloud deployments of data-intensive analytics. Cloud
vendors offer a wide variety of storage options including
object, file and block storage. Block storage can consist
of hard disks (HDD), solid-state drives (SSD), or high
bandwidth, low-latency NVMe Flash devices (NVMe).
The devices may be local (l) to the cloud instances run-
ning the application or remote (r). These options alone
lead to storage configuration options that can differ by
orders of magnitude in terms of throughput, latency, and
cost per bit. The cloud storage landscape is only becom-
ing more diverse as emerging technologies based on 3D
X-point become available [35, 16].

Selecting the right cloud storage configuration is crit-
ical for both performance and cost. Consider the exam-
ple of a Spark SQL equijoin query on two 128 GB ta-
bles [53]. We find the query takes 8.7× longer when
instances in an 8-node EC2 cluster access r-HDD com-
pared to l-NVMe storage. This is in contrast to a recent
study, conducted with a prior version of Spark, which
found that faster storage can only improve the median job
execution time by at most 19% [50]. The performance
benefits of l-NVMe lead to 8× lower execution cost for
this query, even though NVMe storage has higher cost
per unit time. If we also consider a few options for the
number of cores and memory per instance, the perfor-
mance gap between the best and worst performing VM-
storage configurations is over 30×.



Determining the right cloud configuration for analyt-
ics applications is challenging. Even if we limit our-
selves to a single instance type and focus on optimizing
performance, the choice of storage configuration for a
particular application remains non-trivial. Figure 1 com-
pares the performance of three Spark applications using
8 i3.xl AWS instances with l-NVMe, r-SSD, and a hy-
brid (r-SSD for input/output data, l-NVMe for interme-
diate data). The first application is I/O-bound and bene-
fits from the high throughput of NVMe Flash. The sec-
ond application has a CPU bottleneck and thus performs
the same with all three storage options. The third ap-
plication is I/O-bound and performs best with the hybrid
storage option since it minimizing interference between
read and write I/Os, which have asymmetric performance
on Flash [40]. This result should not be surprising. An-
alytics workloads access multiple data streams, includ-
ing input and output files, logs, and intermediate data
(e.g., shuffle and broadcast). Each data stream has dis-
tinct characteristics in terms of access frequency, access
patterns, and data lifetime, which make different streams
more suitable for different types of storage devices. For
example, for TPC-DS query 80 in Figure 1, storing in-
put/output data on r-SSD and intermediate data on l-
NVMe Flash outperforms storing all data on l-NVMe as
it isolates streams and eliminates interference.

We present Selecta, a tool that learns near-optimal VM
and storage configurations for analytics applications for
user-specified performance-cost objectives. Selecta tar-
gets analytics jobs that are frequently or periodically re-
run on newly arriving data [1, 25, 55]. A configuration
is defined by the type of cloud instance (core count and
memory capacity) along with the storage type and capac-
ity used for input/output data and for intermediate data.
To predict application performance for different config-
urations, Selecta applies latent-factor collaborative fil-
tering, a machine-learning technique commonly used in
recommender systems [10, 57, 11, 22, 23]. Selecta uses
sparse performance data for training applications profiled
on various cloud configurations, as well as performance
measurements for the target application profiled on only
two configurations. Selecta leverages the sparse training
data to learn significantly faster and more cost-effectively
than exhaustive search. The approach also improves on
recent systems such as CherryPick and Ernest whose per-
formance prediction models require more information
about the target application and hence require more ap-
plication runs to converge [3, 69]. Moreover, past work
does not consider the heterogeneous cloud storage op-
tions or the varying preferences of different data streams
within each application [71].

We evaluate Selecta with over one hundred Spark SQL
and ML workloads, each with two different dataset scal-
ing factors. We show that Selecta chooses a near-optimal

performance configuration (within 10% of optimal) with
94% probability and a near-optimal cost configuration
with 80% probability. We also analyze Selecta’s sensi-
tivity to various parameters such as the amount of in-
formation available for training workloads or the target
application.

A key contribution of our work is our analysis of cloud
storage systems and their use by analytics workloads,
which leads to several important insights. We find that in
addition to offering the best performance, NVMe-based
configurations also offer low execution cost for a wide
range of applications. We observe the need for cloud
storage options that support fine-grain allocation of ca-
pacity and bandwidth, similar to the fine-grain allocation
of compute and memory resources offered by serverless
cloud services [7]. Disaggregated NVMe Flash can pro-
vide the substrate for such a flexible option for cloud stor-
age. Finally, we showcase the need for end-to-end opti-
mization of cloud storage, including application frame-
works, operating systems, and cloud services, as several
storage configurations fail to meet their potential due to
inefficiencies in the storage stack.

2 Motivation and Background

We discuss current approaches for selecting a cloud stor-
age configuration and explain the challenges involved.

2.1 Current Approaches
Conventional configurations: Input/output files for data
analytics jobs are traditionally stored in a distributed file
system, such as HDFS or object storage systems such
as Amazon S3 [62, 6]. Intermediate data is typically
read/written to/from a dedicated local block storage vol-
ume on each node (i.e., l-SSD or l-NVMe) and spilled to
r-HDD if extra capacity is needed. In typical Spark-as-a-
service cloud deployments, two remote storage volumes
are provisioned by default per instance: one for the in-
stance root volume and one for logs [19].

Existing tools: Recent work focuses on automat-
ically selecting an optimal VM configuration in the
cloud [71, 69, 3]. However, these tools tend to ignore
the heterogeneity of cloud storage options, at best distin-
guishing between ‘fast’ and ‘slow’. In the next section,
we discuss the extent of the storage configuration space.

2.2 Challenges
Complex configuration space: Cloud storage comes in
multiple flavors: object storage (e.g., Amazon S3 [6]),
file storage (e.g., Azure Files [45]), and block storage
(e.g., Google Compute Engine Persistent Disks [29]).
Block and object storage are most commonly used for



data analytics. Block storage is further sub-divided into
hardware options: cold or throughput-optimized hard
drive disk, SAS SSD, or NVMe Flash. Block storage can
be local (directly attached) or remote (over the network)
to an instance. Local block storage is ephemeral; data
persists only as long as the instance is running. Remote
volumes persist until explicitly deleted by the user.

Table 1 compares three block storage options available
in Amazon Web Services (AWS). Each storage option
provides a different performance, cost, and flexibility
trade-off. For instance, l-NVMe storage offers the high-
est throughput and lowest latency at higher cost per bit.
Currently, cloud providers typically offer NVMe in fixed
capacity units directly attached to select instance types,
charged per second or hour. AWS currently charges
$0.023 more per hour for an instance with 475 GB of
NVMe Flash compared to without NVMe. In contrast,
S3 fees are based on capacity ($0.023 per GB/month)
and bandwidth ($0.004 per 10K GET requests) usage.

In addition to the storage configuration, users must
choose from a variety of VM types to determine the right
number of CPU cores and memory, the number of VMs,
and their network bandwidth. These choices often af-
fect storage and must be considered together. For ex-
ample, on instances with 1 Gb/s network bandwidth, the
network limits the sequential throughput achievable with
r-HDD and r-SSD storage volumes in Table 1.

Performance-cost objectives: While configurations
with the most CPU cores, the most memory, and fastest
storage generally provide the highest performance, opti-
mizing for runtime cost is much more difficult. Systems
designed to optimize a specific objective (e.g., predict the
configuration that maximizes performance or minimizes
cost) are generally not sufficient to make recommenda-
tions for more complex objectives (e.g., predict the con-
figuration that minimizes execution time within a spe-
cific budget). By predicting application execution time
on candidate configurations, our approach remains gen-
eral. Unless otherwise specified, we refer to cost as the
cost of executing an application.

Heterogeneous application data: We classify data
managed by distributed data analytics frameworks (e.g.,
Spark [74]) into two main categories: input/output data
which is typically stored long-term and intermediate
data which lives for the duration of job execution. Exam-

Storage Seq
Read
MB/s

Seq
Write
MB/s

Rand
Read
IOPS

Rand
Write
IOPS

Rand
Rd/Wr
IOPS

r-HDD 135 135 132 132 132
r-SSD 165 165 3,068 3,068 3,068
l-NVMe 490 196 103,400 35,175 70,088

Table 1: Block storage performance for 500GB vol-
umes. Sequential IOs are 128 KB, random IOs are 4 KB.
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Figure 2: Comparison of execution time and cost for
TPC-DS query 64 on various VM and storage configu-
rations, defined as <VM size, storage for input/output
data, storage for intermediate data>.

ples of intermediate data include shuffle data exchanged
between mappers and reducers, broadcast variables, and
cached dataset partitions spilled from memory. These
streams typically have distinct access frequency, data
lifetime, access type (random vs. sequential), and I/O
size. For example, input/output data is generally long-
lived and sequentially accessed, whereas intermediate
data is short-lived and most accesses are random.

Storage decisions are complex: Selecting the right
configuration for a job significantly reduces execution
time and cost, as shown in Figure 2, which compares
a Spark SQL query (TPC-DS query 64) on various VM
and storage configurations in an 8-node cluster. We con-
sider 3 i3 VM instance sizes in EC2 (xl, 2xl, and

4xl) and heterogeneous storage options for input/output
and intermediate data. The lowest performing configura-
tion has 24× the execution time of the best performing
configuration. Storing input/output data on r-SSD and
intermediate data on l-NVMe (the lowest cost configura-
tion) has 7.5× lower cost than storing input/output data
on r-HDD and intermediate data on r-SSD.

3 Selecta Design

3.1 Overview
Selecta is a tool that automatically predicts the perfor-
mance of a target application on a set of candidate con-
figurations. As shown in Figure 3, Selecta takes as in-
put: i) execution time for a set of training applications
on several configurations, ii) execution time for the tar-
get application on two reference configurations, and iii) a
performance-cost objective for the target application. A
configuration is defined by the number of nodes (VM in-
stances), the CPU cores and memory per node, as well as
the storage type and capacity used for input/output data
and for intermediate data. Selecta uses latent factor col-
laborative filtering (see §3.2) to predict the performance
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Figure 3: An overview of performance prediction and configuration recommendation with Selecta.

of the target application on the remaining (non-reference)
candidate configurations. With these performance pre-
dictions and the per unit time cost of various VM in-
stances and storage options, Selecta can recommend the
right configuration for the user’s performance-cost ob-
jective. For example, Selecta can recommend configu-
rations that minimize execution time, minimize cost, or
minimize execution time within a specific budget.

As new applications are launched over time, these per-
formance measurements become part of Selecta’s grow-
ing training set and accuracy improves (see § 4.4). We
also feed back performance measurements after running
a target application on a configuration recommended by
Selecta — this helps reduce measurement noise and im-
prove accuracy. Since Selecta takes ∼1 minute to gen-
erate a new set of predictions (the exact runtime de-
pends on the training matrix size), a user can re-run Se-
lect when re-launching the target application with a new
dataset to get a more accurate recommendation. In our
experiments, the recommendations for each target appli-
cation converge after two feedback iterations. The ability
to grow the training set over time also provides Selecta
with a mechanism for expanding the set of configurations
it considers. Initially, the configuration space evaluated
by Selecta is the set of configurations that appear in the
original training set. When a new configuration becomes
available and Selecta receives profiling data for applica-
tions on this configuration, the tool will start predicting
performance for all applications on this configuration.

3.2 Predicting Performance
Prediction approach: Selecta uses collaborative filter-
ing to predict the performance of a target application on
candidate configurations. We choose collaborative filter-
ing as it is agnostic to the details of the data analytics
framework used (e.g., Spark vs. Storm) and it allows us
to leverage sparse training data collected across appli-
cations and configurations [56]. While systems such as

CherryPick [3] and Ernest [69] build performance mod-
els based solely on training data for the target applica-
tion, Selecta’s goal is to leverage training data available
from multiple applications to converge to accurate rec-
ommendations with only two profiling runs of a target
application. We discuss alternatives to collaborative fil-
tering to explain our choice.

Content-based approaches, such as as linear regres-
sion, random forests, and neural network models, build
a model from features such as application characteris-
tics (e.g., GB of shuffle data read/written) and configu-
ration characteristics (e.g., I/O bandwidth or the num-
ber of cores per VM). We find that unless inputs fea-
tures such as the average CPU utilization of the target
application on the target configuration are used in the
model, content-based predictors do not have enough in-
formation to learn the compute and I/O requirements of
applications and achieve low accuracy. Approaches that
require running target applications on all candidate con-
figurations to collect feature data are impractical.

Another alternative is to build performance prediction
models based on the structure of an analytics frame-
work, such as the specifics of the map, shuffle, and re-
duce stages in Spark [36, 75]. This leads to framework-
specific models and may require re-tuning or even re-
modeling as framework implementations evolve (e.g., as
the CPU efficiency of serialization operations improves).

Latent factor collaborative filtering: Selecta’s col-
laborative filtering model transforms applications and
configurations to a latent factor space [10]. This space
characterizes applications and configurations in terms of
latent (i.e., ‘hidden’) features. These features are auto-
matically inferred from performance measurements of
training applications [56]. We use a matrix factoriza-
tion technique known as Singular Value Decomposition
(SVD) for the latent factor model. SVD decomposes an
input matrix P, with rows representing applications and
columns representing configurations, into the product of



three matrices, U,λ , and V . Each element pi j of P rep-
resents the normalized performance of application i on
configuration j. The latent features are represented by
singular values in the diagonal matrix λ , ordered by de-
creasing magnitude. The matrix U captures the strength
of the correlation between a row in P and a latent feature
in λ . The matrix V captures the strength of the corre-
lation between a column in P and a latent feature in λ .
Although the model does not tell us what the latent fea-
tures physically represent, a hypothetical example of a
latent feature is random I/O throughput. For instance,
Selecta could infer how strongly an application’s perfor-
mance depends on random I/O throughput and how much
random I/O throughput a configuration provides.

One challenge for running SVD is the input matrix P
is sparse, since we only have the performance measure-
ments of applications on certain configurations. In par-
ticular, we only have two entries in the target applica-
tion row and filling in the missing entries corresponds
to predicting performance on the other candidate con-
figurations. Since performing SVD matrix factorization
requires a fully populated input matrix P, we start by
randomly initializing the missing entries and then run
Stochastic Gradient Descent (SGD) to update these un-
known entries using an objective function that minimizes
the mean squared error on the known entries of the ma-
trix [13]. The intuition is that by iteratively decompos-
ing and updating the matrix in a way that minimizes the
error for known entries, the technique also updates un-
known entries with accurate predictions. Selecta uses the
Python sci-kit surprise library for SVD [33].

3.3 Using Selecta
New target application: The first time an application is
presented to Selecta, it is profiled on two reference con-
figurations which, preferably, are far apart in their com-
pute and storage resource attributes. Selecta requires that
reference configurations remain fixed across all applica-
tions, since performance measurements are normalized
to a reference configuration before running SVD. Profil-
ing application performance involves running the appli-
cation to completion and recording execution time and
CPU utilization (including iowait) over time.

Defining performance-cost objectives: After pre-
dicting application performance across all configura-
tions, Selecta recommends a configuration based on a
user-defined ranking function. For instance, to mini-
mize runtime cost, the ranking function is min(runtime
× cost/hour). While choosing a storage technology
(e.g., SSD vs. NVMe Flash), Selecta must also consider
the application’s storage capacity requirements. Selecta
leverages statistics from profiling runs available in Spark
monitoring logs to determine the intermediate (shuffle)
data and and input/output data capacity [63].

Adapting to changes: Recurring jobs and their input
datasets are likely to evolve. To detect changes in appli-
cation characteristics that may impact the choice of op-
timal configuration, Selecta relies on CPU utilization in-
formation from both initial application profiling and sub-
sequent executions rounds. When an application is first
introduced to the system, Selecta assigns a unique ID to
store application specific information such as iowait CPU
utilization. Whenever an application is re-executed, Se-
lecta compares the current iowait time to the stored con-
figuration. Depending on the difference in iowait time,
Selecta will either compute a refined prediction based on
available measurements or treat the workload as new ap-
plication, starting a new profiling run.

Dealing with noise in the cloud: An additional chal-
lenge for recommending optimal configurations is noise
on public cloud platforms, which arises due to interfer-
ence with other tenants, hardware heterogeneity, or other
sources [59]. To account for noise, Selecta relies on the
feedback of performance and CPU utilization measure-
ments. Initially, with few profiling runs, Selecta’s perfor-
mance predictions are affected by noise. As more mea-
surements are fed into the system, Selecta averages per-
formance and CPU utilization and uses reservoir sam-
pling to avoid high skew from outliers [70]. Selecta
keeps a configurable number of sample points for each
entry in the application-configuration matrix (e.g., three)
to detect changes in applications as described above.
If a particular run is heavily impacted by noise such
that the compute and I/O bottlenecks differ significantly
from previous runs, Selecta’s mechanism for detecting
changes in applications identifies the outlier.

4 Selecta Evaluation

Selecta’s collaborative filtering approach is agnostic to
the choice of applications and configurations. We evalu-
ate Selecta for data analytics workloads on a subset of the
cloud configuration space with the goal of understanding
how to provision cloud storage for data analytics.

4.1 Methodology
Cloud configurations: We deploy Selecta on Amazon
EC2 and consider configurations with the instance and
storage options shown in Tables 2 and 3. Among the
possible VM and storage combinations, we consider sev-
enteen candidate configurations. We trim the space to
stay within our research budget and to focus on experi-
ments that are most likely to uncover interesting insights
about cloud storage for analytics. We choose EC2 in-
stance families that are also supported by Databricks, a
popular Spark-as-a-service provider [18]. i3 is currently
the only instance family available with NVMe Flash and



Instance CPU cores RAM (GB) NVMe
i3.xlarge 4 30 1 x 950 GB
r4.xlarge 4 30 -
i3.2xlarge 8 60 1 x 1.9 TB
r4.2xlarge 8 60 -
i3.4xlarge 16 120 2 x 1.9 TB
r4.4xlarge 16 120 -

Table 2: AWS instance properties

Storage Type Locality
Use for

Input/Output
Data?

Use for
Intermediate

Data?
r-HDD Block Remote X -
r-SSD Block Remote X X
l-NVMe Block Local X X
S3 Object Remote X -

Table 3: AWS storage options considered

r4 instances allow for a fair comparison of storage op-
tions as they have the same memory to compute ratio.
We only consider configurations where the intermediate
data storage IOPS are equal to or greater than the in-
put/output storage IOPS, as intermediate data has more
random accesses. Since we find that most applications
are I/O-bound with r-HDD, we only consider r-HDD for
the instance size with the least amount of cores. We limit
our analysis to r-HDD because our application datasets
are up to 1 TB whereas instances with l-HDD on AWS
come with a minimum of 6 TB disk storage, which would
not be an efficient use of capacity. We do not consider
local SAS/SATA SSDs as their storage capacity to CPU
cores ratio is too low for most Spark workloads. We use
Elastic Block Store (EBS) for remote block storage [5].

We use a cluster of 9 nodes for our evaluation. The
cluster consists of one master node and eight executor
nodes. The master node runs the Spark driver and YARN
Resource Manager. Unless input/output data is stored in
S3, we run a HDFS namenode on the master server as
well. We configure framework parameters, such as the
JVM heap size and number of executors, according to
Spark tuning guidelines and match the number of execu-
tor tasks to the VM’s CPU cores [15, 14].

Applications: We consider Spark [74] as a represen-
tative data analytics framework, similar to previous stud-
ies [50, 68, 3]. We use Spark v2.1.0 and Hadoop v2.7.3
for HDFS. We evaluate Selecta with over one hundred
Spark SQL and ML applications, each with two different
dataset scales, for a total of 204 workloads. Our appli-
cation set includes 92 queries of the TPC-DS benchmark
with scale factors of 300 and 1000 GB [67]. We use the
same scale factors for Spark SQL and ML queries from
the TPC-BB (BigBench) benchmark which has of struc-
tured, unstructured and semi-structured data modeled af-
ter the retail industry domain [27]. Since most BigBench
queries are CPU-bound, we focus on eight queries which
have more substantial I/O requirements: queries 3, 8,

14, 16, 21, 26, 28, 29. We also run 100 and 400 GB
sort jobs [52]. Finally, we run a SQL equijoin query on
two tables with 16M and 32M rows each and 4KB en-
tries [53]. For all input and output files, we use the un-
compressed Parquet data format [26].

Experiment methodology: We run each application
on all candidate configurations to obtain the ground truth
performance and optimal configuration choices for each
application. To account for noise in the cloud we run
each experiment (i.e., each application on each candidate
configuration) three times and use the average across
runs in our evaluation. Two runs are consecutive and one
run is during a different time of day. We also validate our
results by using data from one run as input to Selecta and
the average performance across runs as the ground truth.
To train and test Selecta, we use leave-one-out cross val-
idation [58], meaning one workload at a time serves as
the target application while the remaining workloads are
used for training. We assume training applications are
profiled on all candidate configurations, except for the
sensitivity analysis in §4.4 where we investigate training
matrix density requirements for accurate predictions.

Metrics: We measure the quality of Selecta’s predic-
tions using two metrics. First, we report the relative root
mean squared error (RMSE), a common metric for rec-
ommender systems. The second and more relevant met-
ric for Selecta is the probability of making an accurate
configuration recommendation. We consider a recom-
mendation accurate if the configuration meets the user’s
cost-performance objective within a threshold T of the
true optimal configuration for that application. For ex-
ample, for a minimum cost objective with T = 10%, the
probability of an accurate prediction is the percentage
of Selecta’s recommendations (across all tested applica-
tions) whose true cost is within 10% of the true optimal
cost configuration. Using a threshold is more robust to
noise and allows us to make more meaningful conclu-
sions about Selecta’s accuracy, since a second-best con-
figuration may have similar or significantly worse per-
formance than the best configuration. Our performance
metric is execution time and cost is in US dollars.

4.2 Prediction Accuracy

We provide a matrix with 204 rows as input to Selecta,
where one row (application) is designated as the target
application in each test round. We run Selecta 204 times,
each time considering a different application as the tar-
get. For now, we assume all remaining rows of train-
ing data in the matrix are dense, implying the user has
profiled training applications on all candidate configu-
rations. The single target application row is sparse, con-
taining only two entries, one for each of the profiling runs
on reference configurations.



Figure 4: Probability of accurate
recommendations within a thresh-
old from optimal. Dotted lines are
after one feedback iteration.

Figure 5: Probability of accu-
rate configuration recommendation
for performance within threshold,
given strict cost restrictions.

perf-predict-using-small 

cost-predict-using-small 

cost*perf-predict-using-small 

perf-predict-using-large 

cost-predict-using-large 

cost*perf-predict-using-large 

Figure 6: Accuracy with large
datasets using predictions from
small dataset vs. re-computing pre-
diction with large dataset.

Selecta predicts performance with a relative RMSE
of 36%, on average across applications. To understand
how Selecta’s performance predictions translate into rec-
ommendations, we plot accuracy in Figure 4 for perfor-
mance, cost and cost*performance objectives. The plot
shows the probability of near-optimal recommendations
as a function of the threshold T defining what percentage
from optimal is considered close enough. When search-
ing for the best performing configuration, Selecta has a
94% probability of recommending a configuration within
10% of optimal. For a minimum cost objective, Selecta
has a 80% probability of recommending a configuration
within 10% of optimal. Predicting cost*performance is
more challenging since errors in Selecta’s relative execu-
tion time predictions for an application across candidate
configurations are squared: cost*performance = (execu-
tion time)2 * config cost per hour.

The dotted lines in Figure 4 show how accuracy im-
proves after a single feedback round. Here, we assume
the target application has the same dataset in the feed-
back round. This provides additional training input for
the target application row (either a new entry if the rec-
ommended configuration was not a reference configura-
tion, or a new sample to average to existing data if the
recommended configuration was a reference configura-
tion). The probability of near-optimal recommendations
increases most noticeably for the cost*performance ob-
jective, from 52% to 65% after feedback, with T =10%.

Figure 5 shows the probability of accurate recommen-
dations for objectives of the form “select the best per-
forming configuration given a fixed cost restriction C.”
For this objective, we consider Selecta’s recommenda-
tion accurate if its cost is less than or equal to the budget
and if its performance is within the threshold of the true
best configuration for the objective. Selecta achieves be-
tween 83% and 94% accuracy for the cost restrictions in
Figure 5 assuming T =10%. The long tail is due to per-
formance prediction errors that lead Selecta to underesti-
mate the execution cost for a small percentage of config-

urations (i.e., cases where Selecta recommends a config-
uration that is actually over budget).

In Figure 7, we compare Selecta’s accuracy against
four baselines. The first baseline is a random forest pre-
dictor, similar to the approach used by PARIS [71]. We
use the following features: the number of CPU cores,
disk IOPS and disk MB/s the configuration provides, the
intermediate and input/output data capacity of the appli-
cation, and the CPU utilization, performance, and total
disk throughput measured when running the application
on each of the two reference configurations. Although
the random forest predictor leverages more features than
Selecta, it has lower accuracy. Collaborative filtering
is a better fit for the sparse nature of the training data.
We find the most important features in the random for-
est model are all related to I/O (e.g., the I/O throughput
measured when running the application on the reference
configurations and the read/write IOPS supported by the
storage used for intermediate data), which emphasizes
the importance of selecting the right storage.

The second baseline (labeled ‘default’) in Figure 7
uses the recommended default configurations docu-
mented in Databricks engineering blog posts: l-NVMe
for intermediate data and S3 for input/output data [19,
21, 20]. The ‘max cost per time’ baseline uses the simple
heuristic of always picking the most expensive instance
per unit time. The ’min cost per time’ baseline chooses
the least expensive instance per unit time. Selecta out-
performs all of these heuristic strategies, confirming the
need for a tool to automate configuration selection.

4.3 Evolving Datasets
We study the impact of dataset size on application per-
formance and Selecta’s predictions using the small and
large dataset scales described in §4.1. We train Selecta
using all 102 workloads with small datasets, then evalu-
ate Selecta’s prediction accuracy for the same workloads
with large datasets. The dotted lines in Figure 6 plots Se-



lecta’s accuracy when recommending configurations for
applications with large datasets solely based on profil-
ing runs of the application with a smaller dataset. The
solid lines show accuracy when Selecta re-profiles appli-
cations with large datasets to make predictions. For ap-
proximately 8% of applications, profiling runs with small
datasets are not sufficient indicators of performance with
large datasets.

We find that in cases where the performance with a
small dataset is not indicative of performance with a
large dataset, the relationship between compute and I/O
intensity of the application is affected by the dataset size.
As described in §3.3, Selecta detects these situations by
comparing CPU utilization statistics for the small and
large dataset runs. Figure 8 shows an example of a work-
load for which small dataset performance is not indica-
tive of performance with a larger dataset. We use the
Intel Performance Analysis Tool to record and plot CPU
utilization [34]. When the average iowait percentage for
the duration of the run changes significantly between the
large and small profiling runs on the reference configura-
tion, it is generally best to profile the application on the
reference configurations and treat it as a new application.

4.4 Sensitivity Analysis

We perform a sensitivity analysis to determine input ma-
trix density requirements for accurate predictions. We
look at both the density of matrix rows (i.e., the percent-
age of candidate configurations that training applications
are profiled on) and the density of matrix columns (i.e.,
the number of training applications used). We also dis-
cuss sensitivity to the choice of reference configurations.

Figure 9a shows how Selecta’s accuracy for perfor-
mance, cost and cost*performance objectives varies as a
function of input matrix density. Assuming 203 training
applications have accumulated in the system over time,
we show that, on average across target applications, rows
only need to be approximately 20 to 30% dense for Se-
lecta to achieve sufficient accuracy. This means that at
steady state, users should profile training applications on
about 20-30% of the candidate configurations (including
reference configurations). Profiling additional configura-
tions has diminishing returns.

Next, we consider a cold start situation in which a user
wants to jump start the system by profiling a limited set
of training applications across all candidate configura-
tions. Figure 9b shows the number of training applica-
tions required to achieve desired accuracy. Here, for each
target application testing round, we take the 203 training
applications we have and randomly remove a fraction of
the rows (training applications). We ensure to drop the
row corresponding to the different dataset scale factor
run of the target application, to ensure Selecta’s accu-

Figure 7: Selecta’s accuracy compared to baselines.

(a) Query on 300GB is CPU-bound. (b) Query on 1TB is IO-bound.

Figure 8: CPU utilization over time for TPC-DS query
89 on r4.xlarge cluster with r-SSD. For this query,
performance with a small dataset is not indicative of per-
formance with a larger dataset. Selecta detects difference
in average iowait percentage (blue dotted line).

racy does not depend on a training application directly
related to the target application. Since the number of
training applications required to achieve desirable accu-
racy depends on the size of the configuration space a user
wishes to explore, the x-axis in Figure 9b represents the
ratio of the number of training applications to the number
of candidate configurations, R. We find that to jump start
Selecta with dense training data from a cold start, users
should provide 2.5× more training applications than the
number of candidate configurations to achieve desirable
accuracy. In our case, jump starting Selecta with more
than 43 = d2.5×17e training applications profiled on all
17 configurations reaches a point of diminishing returns.

Finally, we investigate whether, a cold start requires
profile training applications on all configurations. We
use R=2.5, which for 17 candidate configurations corre-
sponds to using 43 training applications. Figure 9c plots
accuracy as we vary the percentage of candidate config-
urations on which the training applications are profiled
(including reference configurations, which we assume
are always profiled). The figure shows that for a cold
start, it is sufficient for users to profile the initial train-
ing applications on 40% to 60% of candidate configu-
rations. As Selecta continues running and accumulates
more training applications, the percentage of configura-



(a) Sensitivity to input matrix density in
steady state: 20% density per row suffices
for accurate predictions.

(b) Sensitivity to number of training ap-
plications, profiled on all configurations:
2.5× the number of configs suffices.

(c) Sensitivity to input matrix density for
cold start: ∼50% density per row (train-
ing application) required.

Figure 9: Sensitivity analysis: accuracy as a function of input matrix density

tions users need to profile for training applications drops
to 20-30% (this is the steady state result from Figure 9a).

We experimented with different reference configura-
tions for Selecta. We find that accuracy is not very sen-
sitive to the choice of references. We saw a slight bene-
fit using references that have different VM and storage
types. Although one reference configuration must re-
main fixed across all application runs since it is used to
normalize performance, we found that the reference con-
figuration used for the second profiling run could vary
without significant impact on Selecta’s accuracy.

5 Cloud Storage Insights

Our analysis of cloud configurations for data analytics
reveals several insights for cloud storage configurations.
We discuss key takeaways and their implications for fu-
ture research on storage systems.

NVMe storage is performance and cost efficient for
data analytics: We find that configurations with NVMe
Flash tend to offer not only the best performance, but
also, more surprisingly, the lowest cost. Although NVMe
Flash is the most expensive type of storage per GB/hr, its
high bandwidth allows applications to run significantly
faster, reducing the overall job execution cost.

On average across applications, we observe that l-
NVMe Flash reduces job completion time of applica-
tions by 27% compared to r-SSD and 75% compared to
r-HDD. Although we did not consider l-SSD or l-HDD
configurations in our evaluation, we validate that local
versus remote access to HDD and SDD achieves simi-
lar performance since our instances have sufficient net-
work bandwidth (up to 10 Gb/s) and modern networking
adds little overhead on top of HDD and SSD access la-
tency [8]. In contrast, a previous study of Spark applica-
tions by Ousterhout et al. concluded that optimizing or
eliminating disk accesses can only reduce job completion

time by a median of at most 19% [50]. We believe the
main reason for the increased impact of storage on end-
to-end application performance is due to the newer ver-
sion of Spark we use in our study (v2.1.0 versus v1.2.1).
Spark has evolved with numerous optimizations target-
ing CPU efficiency, such as cache-aware computations,
code generation for expression evaluation, and serializa-
tion [17]. With ongoing work in optimizing the CPU
cycles spent on data analytics computations, for example
by optimizing the I/O processing path [66], we expect
the choice of storage to be of even greater importance.

The need for flexible capacity and bandwidth allo-
cation: Provisioning storage involves selecting the right
capacity, bandwidth, and latency. Selecta uses statistics
from Spark logs to determine capacity requirements and
applies collaborative filtering to explore performance-
cost trade-offs. However, the cost-efficiency of the stor-
age configuration selected is limited by numerous con-
straints imposed by cloud providers. For example, for re-
mote block storage volumes, the cloud provider imposes
minimum capacity limits (e.g., 500 GB for r-HDD on
AWS) and decides how data in the volume is mapped to
physical devices, which directly affects storage through-
put (e.g., HDD throughput is proportional to the number
of spindles). A more important restriction is for local
storage, such as l-NVMe, which is only available in fixed
capacities attached to particular instance types. The fixed
ratio between compute, memory and storage resources
imposed by cloud vendors does not provide the right bal-
ance of resources for many of the applications we stud-
ied. For example the SQL equijoin query on two 64 GB
tables saturates the IOPS of the 500 GB NVMe device on
a i3.xl instance, but leaves half the capacity underuti-
lized. Furthermore, local storage is ephemeral, meaning
instances must be kept on to retain data on local devices.
Thus, although we showed it is cost-efficient to store in-
put/output and intermediate data on l-NVMe for the du-
ration of a job, storing input/output files longer term on



l-NVMe would dramatically increase cost compared to
using remote storage volumes or an object storage sys-
tem such as S3.

We make the case for a fast and flexible storage op-
tion in the cloud. Emerging trends in cloud comput-
ing, such as serverless computing offerings like AWS
Lambda, Google Cloud Functions and Azure Functions,
provide fine-grain, pay-per-use access to compute and
memory resources [31, 7, 28, 46]. Currently, there is no
option that allows for fine-grain capacity and bandwidth
allocation of cloud storage with low latency and high
bandwidth characteristics [41]. Although S3 provides
pay-per-use storage with high scalability, high availabil-
ity and relatively high bandwidth, we show that data an-
alytics applications benefit from even higher throughput
(i.e., NVMe Flash). S3 also incurs high latency, which
we observed to be a major bottleneck for short-running
SQL queries that read only a few megabytes of data.

Disaggregated NVMe is a promising option for
fast and flexible cloud storage: Disaggregating NVMe
Flash by enabling efficient access to the resource over
the network is a promising option for fast and flexi-
ble cloud storage. Recent developments in hardware-
assisted [49, 44] and software-only [40] techniques en-
able access to remote NVMe devices with low latency
overheads over a wide range of network options, includ-
ing commodity Ethernet networking with TCP/IP pro-
tocols. These techniques allow us to build disaggre-
gated Flash storage that allows fine-grain capacity and
IOPS allocation for analytics workloads and independent
scaling of storage vs. compute resources. Applications
would allocate capacity and bandwidth on demand from
a large array of remotely accessible NVMe devices. In
this setting, Selecta can help predict the right capacity
and throughput requirements for each data stream in an
analytics workload to guide the allocation of resources
from a disaggregated Flash system.

There are several challenges in implementing flexi-
ble cloud storage based on disaggregated Flash. First,
networking requirements can be high. Current NVMe
devices on AWS achieve 500 MB/s to 4 GB/s sequen-
tial read bandwidth, depending on the capacity. Write
throughput and random access bandwidth is also high.
The networking infrastructure of cloud systems must be
able to support a large number of instances accessing
NVMe Flash remotely with the ability to burst to the
maximum throughput of the storage devices. An addi-
tional challenge with sharing remote Flash devices is in-
terference between read and write requests from differ-
ent tenants [40, 61]. We observed several cases where
separating input/output data and intermediate data on r-
SSD (or S3) and l-NVMe, respectively, led to higher
performance (and lower cost) than storing all data on l-
NVMe. This occurred for jobs where large input data

reads overlapped with large shuffle writes, such as for
TPC-DS query 80 shown in Figure 1. A disaggregated
Flash storage system must address interference using ei-
ther scheduling approaches [40, 47, 61, 51, 60] or device-
level isolation mechanisms [12, 54, 38]. Finally, the are
interesting trade-offs in the interfaces used to expose dis-
aggregated Flash (e.g., block storage, key-value storage,
distributed file system, or other).

The need for end-to-end optimization: In our ex-
periments, remote HDD storage performed poorly, de-
spite its cost effectiveness for long-living input/output
data and its ability to match the sequential bandwidth of-
fered by SSD. Using the Linux blktrace tool [37] to
analyze I/O requests at the block device layer, we found
that although each Spark task reads/writes input/output
data sequentially, streams from multiple tasks running on
different cores interleave at the block device layer. Thus,
the access stream seen by a remote HDD volume consists
of approximately 60% random I/O operations, dramati-
cally reducing performance compared to fully sequen-
tial I/O. This makes solutions with higher throughput for
random accesses (e.g., using multiple HDDs devices or
Flash storage) more appropriate for achieving high per-
formance in data analytics. Increasing random I/O per-
formance comes at a higher cost per unit time. In addi-
tion to building faster storage systems, we should attempt
to optimize throughout the stack for sequential accesses
when these accesses are available at the application level.
Of course, there will always be workloads with intrinsi-
cally random access patterns that will not benefit from
such optimizations.

6 Discussion

Our work focused on selecting storage configurations
based on their performance and cost. Other impor-
tant considerations include durability, availability, and
consistency, particularly for long-term input/output data
storage [42]. Developers may also prefer a particular
storage API (e.g., POSIX files vs. object interface).
Users can use these qualitative constraints to limit the
storage space Selecta considers. Users may also choose
different storage systems for high performance process-
ing versus long term storage of important data.

Our study showed that separating input/output data
and intermediate data uncovers a richer configuration
space and allows for better customization of storage re-
sources to the application requirements. We can further
divide intermediate data into finer-grained streams such
as shuffle data, broadcast data, and cached RDDs spilled
from memory. Understanding the characteristics of these
finer grain streams and how they should be mapped to
storage options in the cloud may reveal further benefits.

Compression schemes offer an interesting trade-off



between processing, networking, and storage require-
ments. In addition to compressing input/output files, sys-
tems like Spark allow compressing individual interme-
diate data streams using a variety of compression algo-
rithms (lz4, lzf, and snappy) [64]. In future work, we
plan to extend Selecta to consider compression options
in addition to storage and instance configuration.

We used Selecta to optimize data analytics applica-
tions as they represent a common class of cloud work-
loads. Selecta’s approach should be applicable to other
data-intensive workloads too, as collaborative filtering
does not make any specific assumptions about the appli-
cation structure. In addition to considering other types
of workloads, in future work, we will consider scenarios
in which multiple workloads share cloud infrastructure.
Delimitrou et al. have shown that collaborative filter-
ing can classify application interference sensitivity (i.e.,
how much interference an application will cause to co-
scheduled applications and how much interference it can
tolerate itself) [22, 23]. We also believe Selecta’s collab-
orative filtering approach can be extended to help con-
figure isolation mechanisms that limit interference be-
tween workloads, particularly on shared storage devices
like NVMe which exhibit dramatically different behavior
as the read-write access patterns vary [40].

7 Related Work

Selecting cloud configurations: Several recent sys-
tems unearth near-optimal cloud configurations for target
workloads. CherryPick uses Bayesian Optimization to
build a performance model that is just accurate enough to
distinguish near-optimal configurations [3]. Model input
comes solely from profiling the target application across
carefully selected configurations. Ernest predicts perfor-
mance for different VM and cluster sizes, targeting ma-
chine learning analytics applications [69]. PARIS takes
a hybrid online/offline approach, using random forests to
predict application performance on various VM config-
urations based on features such as CPU utilization ob-
tained from profiling [71]. These systems do not con-
sider the vast storage configuration options in the cloud
nor the heterogeneous data streams of analytics applica-
tions which can dramatically impact performance.

Resource allocation with collaborative filtering:
Our approach for predicting performance is most similar
to Quasar [23] and Paragon [22], which apply collabora-
tive filtering to schedule incoming applications on shared
clusters. ProteusTM [24] applies collaborative filtering
to auto-tune a transactional memory system. While these
systems consider resource heterogeneity, they focus on
CPU and memory. While Selecta applies a similar mod-
eling approach, our exploration of the cloud storage con-
figuration space is novel and reveals important insights.

Automating storage configurations: Many previ-
ous systems provide storage configuration recommen-
dations [9, 65, 2, 48, 4, 30, 39]. Our work analyzes
the trade-offs between traditional block storage and ob-
ject storage available in the cloud. We also considering
how heterogeneous streams in data analytics applications
should be mapped to heterogeneous storage options.

Analyzing performance of analytics frameworks:
While previous studies analyze how CPU, memory,
network and storage resources affect Spark perfor-
mance [50, 68, 66, 43], our work is the first to evalu-
ate the impact of new cloud storage options (e.g., NVMe
Flash) and provide a tool to navigate the diverse storage
configuration space.

Tuning application parameters: Previous work
auto-tunes data analytics framework parameters such as
the number of executors, JVM heap size, and compres-
sion schemes [32, 73, 72]. Our work is complementary.
Users set application parameters and then run Selecta to
obtain a near-optimal hardware configuration.

8 Conclusion

The large and increasing number of storage and com-
pute options on cloud services makes configuring data
analytics clusters for high performance and cost effi-
ciency difficult. We presented Selecta, a tool that learns
near-optimal configurations of compute and storage re-
sources based on sparse training data collected across
applications and candidate configurations. Requiring
only two profiling runs of the target application, Se-
lecta predicts near-optimal performance configurations
with 94% probability and near-optimal cost configura-
tions with 80% probability. Moreover, Selecta allowed
us to analyze cloud storage options for data analytics
and reveal important insights, including the cost benefits
of NVMe Flash storage, the need for fine-gain alloca-
tion of storage capacity and bandwidth in the cloud, and
the need for cross-layer storage optimizations. We be-
lieve that, as data-intensive workloads grow in complex-
ity and cloud options for compute and storage increase,
tools like Selecta will become increasingly useful for
end users, systems researchers, and even cloud providers
(e.g., for scheduling ‘serverless’ application code).
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