
Learning Heterogeneous Cloud Storage
Configuration for Data Analytics

Ana Klimovic
Stanford University
anakli@stanford.edu

Heiner Litz
UC Santa Cruz
hlitz@ucsc.edu

Christos Kozyrakis
Stanford University

kozyraki@stanford.edu

1 INTRODUCTION AND MOTIVATION
The public cloud, with its promise of elasticity and reduced total
cost of ownership, is experiencing unprecedented growth. However,
performance and cost efficiency are only achieved by choosing a
suitable configuration for each given application.

For data-intensive analytics commonly hosted in the cloud, the
choice of storage is essential. Cloud vendors offer a wide variety of
options: object, file and raw block storage. A block storage volume
can be supported by one or more hard disks (HDD), a solid-state
drive (SSD), or a high bandwidth, low-latency NVMe Flash device
(NVMe). The devices may be local (l ) to the cloud instances running
the application or remote (r ). These options alone lead to storage
configurations that can differ by orders of magnitude in terms of
throughput, latency, and cost per bit. Storage options continue to
diversify as 3D X-point-based technologies emerge [6, 11].

The large number of instance and storage configuration options
available make it challenging to select the right resources for an
application. Even if we limit ourselves to a single VM type, a few
storage options, and focus only on performance, Figure 1 shows the
choice of storage is non-trivial. The first workload is I/O-bound and
benefits from the higher throughput of local NVMe Flash whereas
BigBench-q3 is CPU-bound. The third application is I/O-bound but
performs best with the hybrid storage option since this configura-
tion minimizes the interference of read and write operations, which
have asymmetric performance on Flash [12]. Part of the challenge
is that analytics workloads access multiple data streams, including
input/output files, logs, and intermediate data (e.g., shuffle data).
Each stream has distinct data access patterns and lifetime, which
make different streams suitable for different types storage mediums.
In addition to storage, users must choose from a variety of VM
types to set the number of cores, amount of memory and network
bandwidth in their cluster. These choices impact storage and must
be considered together.

To navigate the complex cloud configuration space, we present
Selecta, a tool that learns near-optimal VM and storage configu-
rations for analytics applications and makes recommendations to
satisfy user-specified performance-cost objectives. Selecta targets
analytics jobs that are continuously re-run on newly arriving data
(around 40% of jobs in large production clusters [1, 9, 15]). Selecta
predicts application performance across all candidate configura-
tions using latent-factor collaborative filtering, a machine-learning
technique commonly used in recommender systems [3, 4, 17] and
recently applied to cluster scheduling [7, 8]. Selecta leverages per-
formance data from training application runs on various cloud
configurations, as well as execution time of the target application
profiled on only two configurations. Hence, Selecta learns signif-
icantly faster and more cost-effectively than exhaustive search.
The approach also improves on recent systems such as CherryPick

0

200

400

600

800

1000

1200

1400

TPC-DS-q35 BigBench-q3 TPC-DS-q80

Ex
ec

u
ti

o
n

 T
im

e 
(s

) l-NVMe r-SSD, l-NVMe r-SSD

Figure 1: Performance of three applications on 8-node clus-
ter of i3.xl instances with different storage configurations.

and Ernest whose performance prediction models require more
information about the target application and hence require more
application runs to converge [2, 22]. Moreover, past work does not
consider the heterogeneous cloud storage options or the varying
preferences of different data streams within each application [23].

We evaluate Selecta with over one hundred Spark SQL and ML
applications, showing that Selecta chooses a near-optimal perfor-
mance configuration (within 10% of actual optimal) with 94% prob-
ability and a near-optimal cost configuration with 80% probability.

2 SELECTA DESIGN
As shown in Figure 2, to make recommendations, Selecta takes
as input: i) execution time of training applications, each profiled
on several configurations, ii) execution time for the target applica-
tion on two reference configurations, and iii) the performance-cost
objective. Selecta uses collaborative filtering to predict target ap-
plication performance on the remaining candidate configurations.
A configuration defines the number of nodes, the CPU cores and
memory per node, as well as the storage type and capacity used for
input/output data and intermediate data streams – Selecta consid-
ers heterogeneous storage configurations for the different streams.
Given unit time costs, Selecta uses its predictions to recommend a
configuration that optimizes the performance-cost objective. For
example, Selecta can recommend configurations that minimize exe-
cution time, cost, or execution time within a budget. Application
performance on recommended configurations is fed back to im-
prove future predictions and reduce measurement noise.

Prediction approach: Selecta uses a latent factor model for
collaborative filtering. The model characterizes configurations and
applications in terms of latent (i.e., ‘hidden’) features [3]. These
features are automatically inferred from training application per-
formance data [16]. We use Singular Value Decomposition (SVD)
to uncover latent factors of a sparse input matrix in which each
element pi j represents the normalized performance of application
i on configuration j. Since SVD requires a fully populated input
matrix, we randomly initialize missing entries and run Stochastic



Training	
AppTraining	
AppTraining	
AppTraining	
App

Target
App

2 2 2 1

8 7 1

6 4 1

5 1 1

2 3 4 1

2 1

2 2 2 2 1

5 8 7 3 1

6 2 4 7 1

1 4 5 1 1

2 3 4 7 1

5 2 3 4 1

performance		
prediction

feedback	
update

configurations

ap
pl
ic
at
io
ns

SVD

Rank	configs

Recommended	
VM & storage	
configuration

SELECTA

Perf/Cost
Objective

e.g.,	min	cost

Figure 2: An overview of performance prediction and config-
uration recommendation with Selecta.

Gradient Descent (SGD) with an objective function that minimizes
the mean squared error on known matrix entries [5]. Although the
model does not tell us what the latent factors physically represent,
a hypothetical example of a factor Selecta might infer is sequential
I/O throughput. This factor would correlate how much an applica-
tion’s performance depends on sequential I/O throughput and the
sequential I/O throughput each configuration provides.

We chose collaborative filtering since the approach works well
with sparse inputs and is agnostic to the application type [16]. Alter-
native, content-based approaches such as linear regression, random
forests, and neural networks build a model based on features of
the application (e.g., bytes read/write) and configuration (e.g., CPU
cores per VM).We find that such predictors do not provide sufficient
accuracy unless they rely on features like CPU utilization which
require running the target application on each target configuration.

Using the tool: Each new target application is profiled on two
reference configurations. Profiling involves running the application
to completion and recording execution time and CPU utilization
(including iowait). Feedback helps Selecta detect when a recurring
application’s properties have changed and a new recommendation
is needed. In addition to picking the storage type (e.g., SSD vs.
NVMe), Selecta allocates the right capacity based on statistics of
bytes read/written from run logs [20].

3 SELECTA EVALUATION
Methodology: We consider 17 different 9-node configurations
in Amazon EC2 using the i3 and r4 instance families, xlarge,
2xlarge and 4xlarge instances sizes, combined with the following
storage options: r -HDD, r -SSD, l-NVMe, and S3 object storage. We
consider Spark [24] as a representative data analytics framework
and evaluate Selecta with over one hundred SQL and ML appli-
cations, each with two different dataset scales (204 workloads in
total). We use TPC-DS, TPC-BB, terasort and a SQL equijoin query
as benchmarks [10, 13, 14, 21]. We run each application on all can-
didate configurations to obtain the ground truth performance and
optimal configurations for each application. To account for noise
in the cloud [19], we run each experiment (i.e. each application on
each candidate configuration) 3 times and take the mean. We train
and test Selecta using leave-one-out cross validation [18].

Prediction accuracy: Selecta predicts performance with a rela-
tive RMSE of 36%, on average across applications. To understand
how effectively Selecta’s performance predictions translate into

Figure 3: Probability of accurate recommendation for perf,
cost and cost*perf within a threshold from optimal. Dotted
lines show accuracy after a feedback iteration.

recommendations, in Figure 3 we plot recommendation accuracy
for performance, cost and cost*performance objectives. The plots
shows the probability of near-optimal recommendations as a func-
tion of the threshold defining what percentage from optimal is
considered close enough. Using a threshold makes our evaluation
more robust to noise and allows us to make more meaningful con-
clusions about Selecta’s accuracy, since a second-best configura-
tion may have similar or significantly worse performance than
the best configuration. When searching for the best performing
configuration, Selecta has a 94% probability of recommending a
configuration within 10% of optimal. For a minimum cost objective,
Selecta has a 80% probability of recommending a configuration
within 10% of the lowest cost. Predicting cost*performance is more
challenging since errors in Selecta’s relative execution time predic-
tions for an application across candidate configurations are squared:
cost ∗ per f = (execution_time)2 ∗ cost_per_hour . The dotted lines
in Figure 3 show how accuracy improves after one feedback round.

Sensitivity Analysis: Training matrix rows only need to be
around 25% dense for accurate predictions at steady state. To jump
start Selectawith dense training data and achieve desirable accuracy,
a user needs to provide 2.5× more training applications than the
number of candidate configurations.

4 INSIGHTS FROM ANALYSIS
Our analysis leads to several key insights about cloud storage sys-
tems and their use by analytics workloads. First, NVMe-based con-
figurations offer not only high performance but also low execution
cost for a wide range of applications. Second, our analysis motivates
cloud storage that supports fine-grain capacity and bandwidth al-
location along with high throughput. Finally, there is a need for
end-to-end cloud storage optimization – application frameworks,
operating systems, and cloud services – as several configurations
under-perform due to inefficiencies in the storage stack.

5 CONCLUSION
As data-intensive workloads grow in complexity and cloud options
for compute and storage increase, we believe that tools like Selecta,
which learn near-optimal cloud configurations based on previous
performance data, will become increasingly useful for end users,
systems researchers, and even cloud providers (e.g., for scheduling
‘serverless’ application code).

2



REFERENCES
[1] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu, Ion Stoica,

and Jingren Zhou. Re-optimizing data-parallel computing. In Proc. of the USENIX
Conference on Networked Systems Design and Implementation, NSDI’12, pages
21–21, 2012.

[2] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. CherryPick: Adaptively unearthing the best cloud
configurations for big data analytics. In Proc. of USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 469–482, 2017.

[3] Robert Bell, Yehuda Koren, and Chris Volinsky. Modeling relationships at multiple
scales to improve accuracy of large recommender systems. In Proc. of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’07, pages 95–104, 2007.

[4] Robert M. Bell, Yehuda Koren, and Chris Volinsky. The BellKor 2008 Solution to
the Netflix Prize. Technical report, 2008.

[5] Léon Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent,
pages 177–186. Physica-Verlag HD, 2010.

[6] IBM Corporation. Intel Optane SSD DC P4800X Available Now
on IBM Cloud. https://www.ibm.com/blogs/bluemix/2017/08/
intel-optane-ssd-dc-p4800x-available-now-ibm-cloud, 2017.

[7] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware scheduling
for heterogeneous datacenters. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 77–88, 2013.

[8] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and qos-
aware cluster management. In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’14, pages 127–144, 2014.

[9] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo
Fonseca. Jockey: Guaranteed job latency in data parallel clusters. In Proc. of the
7th ACM European Conference on Computer Systems, EuroSys ’12, pages 99–112,
2012.

[10] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain
Crolotte, and Hans-Arno Jacobsen. Bigbench: Towards an industry standard
benchmark for big data analytics. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’13, pages 1197–1208,
2013.

[11] Intel. Intel optane technology. https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-optane-technology.html , 2017.

[12] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote flash ==
local flash. In Proc. of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’17, pages
345–359, 2017.

[13] High performance IO Research Group at IBM Research Zurich. Example terasort
program. https://github.com/zrlio/crail-spark-terasort, 2017.

[14] High performance IO Research Group at IBM Research Zurich. Spark SQL
benchmarks. https://github.com/zrlio/sql-benchmarks, 2017.

[15] Adrian Daniel Popescu, Vuk Ercegovac, Andrey Balmin, Miguel Branco, and
Anastasia Ailamaki. Same Queries, Different Data: Can we Predict Query Perfor-
mance? In Proc. of the International Workshop on Self Managing Database Systems,
2012.

[16] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. Recommender
Systems Handbook. Springer-Verlag New York, Inc., 1st edition, 2010.

[17] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In
Proceedings of the 20th International Conference on Neural Information Processing
Systems, NIPS’07, pages 1257–1264, 2007.

[18] Claude Sammut and Geoffrey I. Webb, editors. Leave-One-Out Cross-Validation,
pages 600–601. Springer US, 2010.

[19] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtimemeasurements
in the cloud: Observing, analyzing, and reducing variance. Proc. VLDB Endow.,
3(1-2):460–471, September 2010.

[20] Apache Spark. Monitoring and instrumentation. https://spark.apache.org/docs/
latest/monitoring.html , 2017.

[21] Transaction Processing Performance Council TPC. TPC-DS is a Decision Support
Benchmark. http://www.tpc.org/tpcds/, 2017.

[22] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,
and Ion Stoica. Ernest: Efficient performance prediction for large-scale advanced
analytics. In 13th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16), pages 363–378, Santa Clara, CA, 2016.

[23] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton Smith, and
Randy H. Katz. Selecting the best VM across multiple public clouds: a data-driven
performance modeling approach. In Proceedings of the 2017 Symposium on Cloud
Computing, SOCC’17, pages 452–465, 2017.

[24] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10,
2010.

3

https://www.ibm.com/blogs/bluemix/2017/08/intel-optane- ssd-dc-p4800x-available- now-ibm- cloud
https://www.ibm.com/blogs/bluemix/2017/08/intel-optane- ssd-dc-p4800x-available- now-ibm- cloud
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://github.com/zrlio/crail-spark-terasort 
https://github.com/zrlio/sql-benchmarks 
https://spark.apache.org/docs/latest/monitoring.html
https://spark.apache.org/docs/latest/monitoring.html
http://www.tpc.org/tpcds/

	1 Introduction and Motivation
	2 Selecta Design
	3 Selecta Evaluation
	4 Insights from Analysis
	5 Conclusion
	References

