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1 INTRODUCTION AND MOTIVATION
The public cloud, with its promise of elasticity and reduced total
cost of ownership, is experiencing unprecedented growth. However,
performance and cost efficiency are only achieved by choosing a
suitable configuration for each given application.

For data-intensive analytics commonly hosted in the cloud, the
choice of storage is essential. Cloud vendors offer a wide variety of
options: object, file and raw block storage. A block storage volume
can be supported by one or more hard disks (HDD), a solid-state
drive (SSD), or a high bandwidth, low-latency NVMe Flash device
(NVMe). The devices may be local (l ) to the cloud instances running
the application or remote (r ). These options alone lead to storage
configurations that can differ by orders of magnitude in terms of
throughput, latency, and cost per bit. Storage options continue to
diversify as 3D X-point-based technologies emerge [6, 11].

The large number of instance and storage configuration options
available make it challenging to select the right resources for an
application. Even if we limit ourselves to a single VM type, a few
storage options, and focus only on performance, Figure 1 shows the
choice of storage is non-trivial. The first workload is I/O-bound and
benefits from the higher throughput of local NVMe Flash whereas
BigBench-q3 is CPU-bound. The third application is I/O-bound but
performs best with the hybrid storage option since this configura-
tion minimizes the interference of read and write operations, which
have asymmetric performance on Flash [12]. Part of the challenge
is that analytics workloads access multiple data streams, including
input/output files, logs, and intermediate data (e.g., shuffle data).
Each stream has distinct data access patterns and lifetime, which
make different streams suitable for different types storage mediums.
In addition to storage, users must choose from a variety of VM
types to set the number of cores, amount of memory and network
bandwidth in their cluster. These choices impact storage and must
be considered together.

To navigate the complex cloud configuration space, we present
Selecta, a tool that learns near-optimal VM and storage configu-
rations for analytics applications and makes recommendations to
satisfy user-specified performance-cost objectives. Selecta targets
analytics jobs that are continuously re-run on newly arriving data
(around 40% of jobs in large production clusters [1, 9, 15]). Selecta
predicts application performance across all candidate configura-
tions using latent-factor collaborative filtering, a machine-learning
technique commonly used in recommender systems [3, 4, 17] and
recently applied to cluster scheduling [7, 8]. Selecta leverages per-
formance data from training application runs on various cloud
configurations, as well as execution time of the target application
profiled on only two configurations. Hence, Selecta learns signif-
icantly faster and more cost-effectively than exhaustive search.
The approach also improves on recent systems such as CherryPick
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Figure 1: Performance of three applications on 8-node clus-
ter of i3.xl instances with different storage configurations.

and Ernest whose performance prediction models require more
information about the target application and hence require more
application runs to converge [2, 22]. Moreover, past work does not
consider the heterogeneous cloud storage options or the varying
preferences of different data streams within each application [23].

We evaluate Selecta with over one hundred Spark SQL and ML
applications, showing that Selecta chooses a near-optimal perfor-
mance configuration (within 10% of actual optimal) with 94% prob-
ability and a near-optimal cost configuration with 80% probability.

2 SELECTA DESIGN
As shown in Figure 2, to make recommendations, Selecta takes
as input: i) execution time of training applications, each profiled
on several configurations, ii) execution time for the target applica-
tion on two reference configurations, and iii) the performance-cost
objective. Selecta uses collaborative filtering to predict target ap-
plication performance on the remaining candidate configurations.
A configuration defines the number of nodes, the CPU cores and
memory per node, as well as the storage type and capacity used for
input/output data and intermediate data streams – Selecta consid-
ers heterogeneous storage configurations for the different streams.
Given unit time costs, Selecta uses its predictions to recommend a
configuration that optimizes the performance-cost objective. For
example, Selecta can recommend configurations that minimize exe-
cution time, cost, or execution time within a budget. Application
performance on recommended configurations is fed back to im-
prove future predictions and reduce measurement noise.

Prediction approach: Selecta uses a latent factor model for
collaborative filtering. The model characterizes configurations and
applications in terms of latent (i.e., ‘hidden’) features [3]. These
features are automatically inferred from training application per-
formance data [16]. We use Singular Value Decomposition (SVD)
to uncover latent factors of a sparse input matrix in which each
element pi j represents the normalized performance of application
i on configuration j. Since SVD requires a fully populated input
matrix, we randomly initialize missing entries and run Stochastic
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Figure 2: An overview of performance prediction and config-
uration recommendation with Selecta.

Gradient Descent (SGD) with an objective function that minimizes
the mean squared error on known matrix entries [5]. Although the
model does not tell us what the latent factors physically represent,
a hypothetical example of a factor Selecta might infer is sequential
I/O throughput. This factor would correlate how much an applica-
tion’s performance depends on sequential I/O throughput and the
sequential I/O throughput each configuration provides.

We chose collaborative filtering since the approach works well
with sparse inputs and is agnostic to the application type [16]. Alter-
native, content-based approaches such as linear regression, random
forests, and neural networks build a model based on features of
the application (e.g., bytes read/write) and configuration (e.g., CPU
cores per VM).We find that such predictors do not provide sufficient
accuracy unless they rely on features like CPU utilization which
require running the target application on each target configuration.

Using the tool: Each new target application is profiled on two
reference configurations. Profiling involves running the application
to completion and recording execution time and CPU utilization
(including iowait). Feedback helps Selecta detect when a recurring
application’s properties have changed and a new recommendation
is needed. In addition to picking the storage type (e.g., SSD vs.
NVMe), Selecta allocates the right capacity based on statistics of
bytes read/written from run logs [20].

3 SELECTA EVALUATION
Methodology: We consider 17 different 9-node configurations
in Amazon EC2 using the i3 and r4 instance families, xlarge,
2xlarge and 4xlarge instances sizes, combined with the following
storage options: r -HDD, r -SSD, l-NVMe, and S3 object storage. We
consider Spark [24] as a representative data analytics framework
and evaluate Selecta with over one hundred SQL and ML appli-
cations, each with two different dataset scales (204 workloads in
total). We use TPC-DS, TPC-BB, terasort and a SQL equijoin query
as benchmarks [10, 13, 14, 21]. We run each application on all can-
didate configurations to obtain the ground truth performance and
optimal configurations for each application. To account for noise
in the cloud [19], we run each experiment (i.e. each application on
each candidate configuration) 3 times and take the mean. We train
and test Selecta using leave-one-out cross validation [18].

Prediction accuracy: Selecta predicts performance with a rela-
tive RMSE of 36%, on average across applications. To understand
how effectively Selecta’s performance predictions translate into

Figure 3: Probability of accurate recommendation for perf,
cost and cost*perf within a threshold from optimal. Dotted
lines show accuracy after a feedback iteration.

recommendations, in Figure 3 we plot recommendation accuracy
for performance, cost and cost*performance objectives. The plots
shows the probability of near-optimal recommendations as a func-
tion of the threshold defining what percentage from optimal is
considered close enough. Using a threshold makes our evaluation
more robust to noise and allows us to make more meaningful con-
clusions about Selecta’s accuracy, since a second-best configura-
tion may have similar or significantly worse performance than
the best configuration. When searching for the best performing
configuration, Selecta has a 94% probability of recommending a
configuration within 10% of optimal. For a minimum cost objective,
Selecta has a 80% probability of recommending a configuration
within 10% of the lowest cost. Predicting cost*performance is more
challenging since errors in Selecta’s relative execution time predic-
tions for an application across candidate configurations are squared:
cost ∗ per f = (execution_time)2 ∗ cost_per_hour . The dotted lines
in Figure 3 show how accuracy improves after one feedback round.

Sensitivity Analysis: Training matrix rows only need to be
around 25% dense for accurate predictions at steady state. To jump
start Selectawith dense training data and achieve desirable accuracy,
a user needs to provide 2.5× more training applications than the
number of candidate configurations.

4 INSIGHTS FROM ANALYSIS
Our analysis leads to several key insights about cloud storage sys-
tems and their use by analytics workloads. First, NVMe-based con-
figurations offer not only high performance but also low execution
cost for a wide range of applications. Second, our analysis motivates
cloud storage that supports fine-grain capacity and bandwidth al-
location along with high throughput. Finally, there is a need for
end-to-end cloud storage optimization – application frameworks,
operating systems, and cloud services – as several configurations
under-perform due to inefficiencies in the storage stack.

5 CONCLUSION
As data-intensive workloads grow in complexity and cloud options
for compute and storage increase, we believe that tools like Selecta,
which learn near-optimal cloud configurations based on previous
performance data, will become increasingly useful for end users,
systems researchers, and even cloud providers (e.g., for scheduling
‘serverless’ application code).
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