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Abstract

Serverless computing frameworks allow users to launch
thousands of concurrent tasks with high elasticity and
fine-grain resource billing without explicitly managing
computing resources. While already successful for IoT
and web microservices, there is increasing interest in
leveraging serverless computing to run data-intensive
jobs, such as interactive analytics. A key challenge in
running analytics workloads on serverless platforms is
enabling tasks in different execution stages to efficiently
communicate data between each other via a shared data
store. In this paper, we explore the suitability of different
cloud storage services (e.g., object stores and distributed
caches) as remote storage for serverless analytics. Our
analysis leads to key insights to guide the design of an
ephemeral cloud storage system, including the perfor-
mance and cost efficiency of Flash storage for server-
less application requirements and the need for a pay-
what-you-use storage service that can support the high
throughput demands of highly parallel applications.

1 Introduction

Serverless computing is an increasingly popular execu-
tion model in the cloud. With services such as AWS
Lambda, Google Cloud Functions, and Azure Functions,
users write applications as collections of stateless func-
tions which they deploy directly to a serverless frame-
work instead of running tasks on traditional virtual ma-
chines with pre-allocated resources [8, 14, 19, 2]. The
cloud provider schedules user tasks onto physical re-
sources with the promise of automatically scaling ac-
cording to application demands and charging users only
for the fine-grain resources their tasks consume.

While already popular for web microservices and IoT
applications, the elasticity and fine-grain billing advan-
tages of serverless computing are also appealing for
a broader range of applications, including interactive

data analytics. Several frameworks are being developed
which leverage serverless computing to exploit high de-
grees of parallelism in analytics workloads and achieve
near real-time performance [13, 17, 10].

A key challenge in running analytics workloads on
serverless computing platforms is efficiently sharing data
between tasks. In contrast to simple event-driven appli-
cations that consist of a single task executed in response
to an event trigger, analytics workloads typically consist
of multiple stages and require intermediate results to be
shared between stages of tasks. In traditional analytics
frameworks (e.g., Spark, Hadoop), tasks buffer interme-
diate data in local storage and exchange data between
tasks directly over the network [25, 24]. In contrast,
serverless computing frameworks achieve high elastic-
ity and scalability by requiring tasks to be stateless [15].
In other words, a task’s local file system and child pro-
cesses are limited to the lifetime of the task itself. Fur-
thermore, since serverless platforms do not expose con-
trol over task scheduling and placement, direct commu-
nication between tasks is difficult. Thus, the natural ap-
proach for inter-task communication is to store interme-
diate data in a common, remote storage service. We refer
to data exchanged between tasks as ephemeral data.

There are several storage options for data sharing in
serverless analytics jobs, each providing different cost,
performance and scalability trade-offs. Managed object
storage services like S3 offer pay-what-you-use capac-
ity and bandwidth for storage resources managed by the
provider [7]. Although primarily intended for long term
data storage, they can also be used for ephemeral data.
In-memory key-value stores like Redis and Memcached
offer high performance, at the high cost of DRAM [21,
4]. They also require users to manage their own stor-
age VMs. It is not clear whether existing storage options
meet the demands of serverless analytics or how we can
design a storage system to rule them all.

In this paper, we characterize the I/O requirements
for data sharing in three different serverless applications



including MapReduce sort, distributed software com-
pilation, and video processing. Using AWS Lambda
as our serverless platform, we analyze application per-
formance using three different types of storage sys-
tems. We consider a disk-based, managed object stor-
age service (Amazon S3), an in-memory key value store
(ElastiCache Redis), and a Flash-based distributed stor-
age system (Apache Crail with a ReFlex Flash back-
end [1, 23, 18]). Our analysis leads to key insights for
the design of distributed ephemeral storage, such as the
use of Flash to cost-efficiently support the throughput,
latency and capacity requirements of most applications
and the need for a storage service that scales to meet the
demands of applications with abundant parallelism. We
conclude with a discussion of remaining challenges such
as resource auto-scaling and QoS-aware data placement.

2 Serverless Analytics I/O Properties

We study three different serverless analytics applications
and characterize their throughput and capacity require-
ments, data access frequency and I/O size. We use AWS
Lambda as our serverless platform and configure lamb-
das with the maximum supported memory (3 GB) [8].
Figure 1 plots each job’s cumulative storage bandwidth
usage over time. Figure 2 shows the I/O size distribution.

Parallel software build: We use a framework called
gg to automatically synthesize the dependency tree of a
software build system and coordinate lambda invocations
for distributed compilation [12, 3]. Each lambda fetches
its dependencies from ephemeral storage, computes (i.e.,
compiles, archives or links depending on the stage), and
writes an output file. Compilation stage lambdas read
source files which are generally up to 10s of KBs. While
55% of files are read only once (by a single lambda), oth-
ers are read hundreds of times (by many lambdas in par-
allel), such as glibc library files. Lambdas which archive
or link read objects up to 10s of MBs in size. We use gg
to compile cmake which has 850 MB of ephemeral data.

MapReduce Sort: We implement a MapReduce
style sort application on AWS Lambda, similar to Py-
Wren [17]. Map lambdas fetch input files from long-term
storage (S3) and write intermediate files to ephemeral
storage. Reduce lambdas merge and sort intermediate
data read from ephemeral storage and write output files
to S3. Sorting is I/O-intensive. For example, we measure
up to 7.5 cumulative GB/s when sorting 100 GB with 500
lambdas. Each intermediate file is written and read only
once and its size is directly proportional to the dataset
size and inversely related to the number of workers.

Video analytics: We use Thousand Island Scanner
(THIS) to run distributed video processing on lamb-
das [20]. The input is an encoded video that is divided
into batches and uploaded to ephemeral storage. First

Figure 1: Cumulative throughput over time.

Figure 2: I/Os range from 100s of bytes to 100s of MBs.

stage lambdas read a batch of encoded video frames from
ephemeral storage and write back decoded video frames.
Each lambda then launches a second stage lambda which
reads a set of decoded frames from ephemeral storage,
computes a MXNET deep learning classification algo-
rithm and outputs a classification result. We use a video
consisting of 6.2K 1080p frames and tune the batch size
to optimize runtime (62 lambdas in the decode stage and
310 lambdas for classification). The total ephemeral stor-
age capacity is 6 GB.

3 Remote Storage for Data Sharing

We consider three different categories of storage sys-
tems for ephemeral data sharing in serverless analytics:
fully managed cloud storage (e.g., S3), in-memory key-
value storage (e.g., Redis), and distributed Flash storage
(e.g., Crail-ReFlex). We focus on ephemeral storage as
the original input and final output data of analytics jobs
typically has long-term availability requirements that are
well served by various existing cloud storage systems.

Simple Storage Service (S3): Amazon S3 is a fully
managed object storage system that achieves high avail-
ability and scalability by replicating data across multiple
nodes with eventual consistency [9]. Users pay only for
the storage capacity and bandwidth they use, without ex-



Figure 3: Peak storage throughput per lambda

Read Write Metadata lookup
S3 12.1 ms 25.8 ms –
Redis 230 µs 232 µs –
Crail-ReFlex 283 µs 386 µs 185 µs

Table 1: Average unloaded latency for 1KB requests.

plicitly managing storage resources. S3 has significant
overhead, particularly for small requests. As shown in
Table 1, it takes on average over 25 ms to write 1KB. For
requests smaller than 100 KB, Figure 3 shows that a sin-
gle lambda achieves less than 5 MB/s (40 Mb/s) through-
put. For requests 10 MB or larger, throughput goes up to
70 MB/s. With up to 2500 concurrent lambda clients,
S3 scales to 80 GB/s with each client achieving approxi-
mately 30 MB/s (not shown in the figure).

Elasticache Redis: DRAM is a viable storage media
for ephemeral data, which is short-lived. We use Elas-
tiCache Redis with cluster mode enabled as an example
in-memory key-value store [21, 6]. Table 1 shows that
Redis latency is ∼240 µs, two orders of magnitude lower
than S3 latency. We find that AWS Lambda infrastruc-
ture introduces some overhead as the same c4.8xlarge
Redis cluster has ∼ 115µs lower round-trip latency from
a r4.8xlarge EC2 client (10 GbE). We also confirm the
640 Mb/s peak per-lambda throughput in Figure 3 is an
AWS Lambda limitation; the EC2 client achieves up to 5
Gb/s for the same, single TCP connection test. Since we
occasionally observe lambda throughput burst above 640
Mb/s, we suspect AWS throttles a 1 Gb/s link.

Crail-ReFlex: Finally, we consider a Flash-based dis-
tributed storage system as Flash offers a medium ground
between disk and DRAM for both performance and cost.
In particular, NVM Express (NVMe) Flash devices are
becoming increasingly popular in the cloud, offering
high performance and capacity per dollar [5]. We choose
to use the Apache Crail distributed storage system as
it is designed for high performance access to data with
low durability requirements, which matches the prop-
erties of ephemeral data. While Crail is originally de-

signed for RDMA networks which are not available on
AWS, its modular architecture supports pluggable stor-
age tiers. We implement a NVMe Flash storage tier for
Crail based on ReFlex, an open-source software system
for low-latency, high throughput access to Flash over
commodity networks [18]. We deploy Crail-ReFlex on
i3 EC2 nodes. Table 1 shows that from a lambda client,
remote access to Flash (using Crail-ReFlex) has similar
read latency as remote access to DRAM (using Redis).
However, while Redis uses a simple hash to assign keys
to storage servers, Crail relies on metadata servers to
route client requests and manage data placement across
nodes for more control over load balancing and quality
of service. Thus, Crail requires an extra round-trip for
metadata lookup which takes 185 µs.

4 Serverless Analytics Storage Analysis

We compare three different storage systems for
ephemeral data sharing in serverless analytics and dis-
cuss how application latency sensitivity, parallelism, and
I/O intensity impact ephemeral storage requirements.

Latency-sensitive jobs: We find that jobs in which
lambdas mostly issue fine-grain I/O operations are
latency-sensitive. Out of the applications we study, only
gg shows some sensitivity to storage latency since the
majority of files accessed are under 100 KB. Figure 4
shows the runtime for a parallel build of cmake as a
function of the number of concurrent lambdas (gg allows
users to set the maximum lambda concurrency, similar to
-j in make). The job benefits from the lower latency of
Redis storage compared to S3 with up to 100 concurrent
lambdas. The runtime with S3 and Redis converges as
we increase concurrency because the job eventually be-
comes compute-bound on AWS Lambda.

Jobs with limited parallelism: While serverless plat-
forms allow users to exploit high application parallelism
by launching many concurrent lambdas, individual lamb-
das are wimpy. Hence, we find that jobs with inherently
limited parallelism (e.g., due to dependencies between
lambdas) are likely to experience lambda resource bot-
tlenecks (e.g., memory, compute and/or network band-
width limits) rather than storage bottlenecks. This is the
case for gg . The first stage of the software build process
has high parallelism as each file can be pre-processed,
compiled and assembled independently. However, sub-
sequent lambdas which archive and link files depend on
the outputs of earlier stages. Figure 5 plots the per-
lambda read, compute and write times when using gg to
compile cmake with up to 650 concurrent lambdas (650
is the highest degree of parallelism in the job’s depen-
dency graph). Using Redis (Figure 5b) compared to S3
(Figure 5a) reduces the average time that lambdas spend
on I/O from 51% to 11%. However, the job takes approx-



Figure 4: Distributed compilation of cmake is latency-
sensitive at low concurrency and becomes compute-
bound when run with ∼100 or more concurrent lambdas.

imately 30 seconds to complete, regardless of the stor-
age system. This is because optimizing I/O does not af-
fect the lambdas with particularly high compute latency
which become the bottleneck.

Throughput-intensive jobs: MapReduce sort is an
I/O-intensive application with abundant parallelism. Fig-
ure 6 shows the average time each lambda spends on
I/O and compute to sort a 100 GB dataset [16]. We
use S3 for input/output files and compare performance
with S3, Redis (12 cache.r4.2xlarge nodes), Crail-
ReFlex (12 i3.2xlarge nodes) as ephemeral storage.
Storing ephemeral data in remote DRAM (Redis) or re-
mote Flash (Crail-ReFlex) gives similar end-to-end per-
formance, since we provision sufficient bandwidth in the
storage clusters and the bottleneck becomes lambda CPU
usage. Performance scales linearly as we increase the
number of lambdas. S3 achieves lower throughput than
Redis and Crail-ReFlex with 250 lambdas, leading to
higher execution time. However, S3 outperforms a single
node Redis or Crail-ReFlex cluster since a single node’s
network link becomes a bottleneck (not shown in the fig-
ure). Using S3 for ephemeral data shuffling with more
than 250 lambdas in the 100 GB sort job results in I/O
rate limit errors, preventing the job from completing.

Video analytics is another application with abundant
parallelism. Figure 7 shows the average time lambdas
in each stage spend reading, computing, and writing
data. Reading and writing ephemeral data to/from S3
increases execution time compared to Redis and Crail-
ReFlex. Stage 2 read time is higher with Crail-ReFlex
than Redis due to read-write interference on Flash. Some
lambdas in the first stage complete and launch second
stage lambdas sooner than others. Thus read I/Os for
some second stage lambdas interfere with the write re-
quests from first stage lambdas that are still running. This
interference can be problematic on Flash due to asym-
metric read-write latency [18]. However, this does not
noticeably affect overall performance as stage 2 lambdas
are compute-bound. Stage 2 has low write time as its
output (a list of objects detected in the video) is small.

(a) gg cmake with up to 650 concurrent workers and S3 storage

(b) gg cmake with up to 650 concurrent workers and Redis storage

Figure 5: Redis reduces I/O time compared to S3, but
compute is the bottleneck. Based on Figure 6 from [12].

5 Discussion

Our analysis leads to several insights for the design of
ephemeral storage for serverless analytics. We summa-
rize the properties an ephemeral storage system should
provide to address the needs of serverless analytics appli-
cations, make recommendations for the choice of storage
media, and outline areas for future work.

Desired ephemeral storage properties: To meet the
I/O demands of serverless applications, which can con-
sist of thousands of lambdas in one execution stage and
only a few lambdas in another, the storage system should
have high elasticity. The system should also support high
IOPS and high throughput. Since the granularity of data
access varies widely (Figure 2), storing both small and
large objects should be cost and performance efficient.
To relieve users from the difficulty of managing storage
clusters, the storage service should auto-scale resources
based on load and charge users for the bandwidth and
capacity used. This effectively extends the serverless
abstraction to storage. Finally, the storage system can
leverage the unique characteristics of ephemeral data.
Namely, ephemeral data is short-lived and can easily be
re-generated by re-running a job’s tasks. Thus, unlike
traditional long-term storage, an ephemeral storage sys-
tem can provide low data durability guarantees. Further-
more, since the majority of ephemeral data is written and
read only once (e.g., a mapper writes intermediate results
for a particular reducer), the storage system can optimize
capacity usage with an API that allows users to hint when
data should be deleted right after it is read.



Figure 6: Average time per lambda for 100GB sort. S3
gives I/O rate limit errors with over 250 lambdas.

Choice of storage media: A storage system can sup-
port arbitrarily high throughput by scaling resources up
and/or out. The more interesting question is which stor-
age technology allows the system to cost effectively sat-
isfy application throughput, latency and capacity require-
ments. Figure 1 plots cumulative GB/s over time for gg
cmake, sort, and video analytics which have 0.85, 100,
and 6 GB ephemeral datasets, respectively. Considering
typical throughput-capacity ratios for each storage tech-
nology (DRAM: 20GB/s

64GB = 0.3, Flash: 3.2GB/s
500GB = 0.006,

HDD: 0.7GB/s
6TB = 0.0001), we conclude that the sort ap-

plication is best suited for Flash-based ephemeral stor-
age. The throughput-capacity ratios of the gg-cmake and
video analytics jobs fall into the DRAM regime. How-
ever we observed that using Flash gives similar end-to-
end performance for these applications at lower cost per
GB, as lambda CPU is the bottleneck. I/O intensive ap-
plications with concurrent ephemeral read and write I/Os
are likely to prefer DRAM storage as Flash tail read la-
tency increases significantly with concurrent writes [18].

Future research directions: The newfound elastic-
ity and fine resource granularity of serverless comput-
ing platforms motivates many systems research direc-
tions. Serverless computing places the burden of re-
source management on the cloud provider, which typi-
cally has no upfront knowledge of user workload charac-
teristics. Hence, building systems that dynamically and
autonomously rightsize cluster resources to meet elastic
application demands is critical. The challenge involves
provisioning resources across multiple dimensions (e.g.,
compute resources, network bandwidth, memory and
storage capacity) in a fine-grain manner to find low cost
allocations that satisfy application performance require-
ments. With multiple tenants sharing serverless comput-
ing infrastructure to run jobs with high fan-out, another
challenge is providing predictable performance. Interfer-
ence often leads to high variability, yet a job’s runtime
often depends on the slowest lambda [11]. Developing
fine-grain isolation mechanisms and QoS-aware resource
sharing policies is an important avenue to explore.

Figure 7: Video analytics I/O vs. compute breakdown,
storing ephemeral data in S3, Redis and Crail-ReFlex.

6 Related Work

Fouladi et al. leverage serverless computing for dis-
tributed video processing and overcome the challenge
of lambda communication by implementing the mu soft-
ware framework to orchestrate lambda invocations with a
long lived coordinator that is aware of each worker’s state
and execution flow [13]. While their system uses S3 to
store ephemeral data, we study the suitability of three dif-
ferent types of storage systems for ephemeral data stor-
age. Jonas et al. implement PyWren to analyze the
applicability of serverless computing for generic work-
loads, including MapReduce jobs, and find storage to be
a bottleneck [17]. We build upon their work, provide
a more thorough analysis of ephemeral storage require-
ments for analytics jobs, and draw insights to guide the
design of future systems. Singhvi et al. show that current
serverless infrastructure does not support network inten-
sive functions like packet processing [22]. Among their
recommendations for future platforms, they also identify
the need for a scalable remote storage service.

7 Conclusion

To support data-intensive analytics on serverless plat-
forms, our analysis motivates the design of an ephemeral
storage service that supports automatic and fine-grain al-
location of storage capacity and throughput. For the three
different applications we studied, throughput is more im-
portant than latency and Flash storage provides a good
balance for performance and cost.
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