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ABSTRACT
The appeal of serverless (FaaS) has triggered a growing interest

on how to use it in data-intensive applications such as ETL, query

processing, or machine learning (ML). Several systems exist for

training large-scale ML models on top of serverless infrastructures

(e.g., AWS Lambda) but with inconclusive results in terms of their

performance and relative advantage over “serverful” infrastructures

(IaaS). In this paper we present a systematic, comparative study of

distributed ML training over FaaS and IaaS. We present a design

space covering design choices such as optimization algorithms and

synchronization protocols, and implement a platform, LambdaML,

that enables a fair comparison between FaaS and IaaS. We present

experimental results using LambdaML, and further develop an an-

alytic model to capture cost/performance tradeoffs that must be

considered when opting for a serverless infrastructure. Our results

indicate that ML training pays off in serverless only for models with

efficient (i.e., reduced) communication and that quickly converge.

In general, FaaS can be much faster but it is never significantly

cheaper than IaaS.
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•Computer systems organization→Cloud computing; •Com-
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1 INTRODUCTION
Serverless computing has recently emerged as a new type of com-

putation infrastructure. While initially developed for web microser-

vices and IoT applications, recently researchers have explored the

role of serverless computing in data-intensive applications, which

stimulates intensive interests in the data management commu-

nity [5, 44, 58, 82, 95]. Previous work has shown that adopting a

serverless infrastructure for certain types of workloads can signifi-

cantly lower the cost. Example workloads range from ETL [35] to

analytical queries over cold data [76, 80]. These data management

workloads benefit from serverless computing by taking advantage

of the unlimited elasticity, pay per use, and lower start-up and

set-up overhead provided by a serverless infrastructure.

Serverless Computing and FaaS. Serverless computing has

been offered bymajor cloud service providers (e.g., AWS Lambda [14],

Azure Functions [73], Google Cloud Functions [37]) and is favored

by many applications (e.g., event processing, API composition, API

aggregation, data flow control, etc. [20]) as it lifts the burden of

provisioning and managing cloud computation resources (e.g., with

auto-scaling) from application developers. Serverless computing

also offers a novel “pay by usage” pricing model and can be more

cost-effective compared to traditional “serverful” cloud computing

that charges users based on the amount of computation resources

being reserved. With serverless, the user specifies a function that

she hopes to execute and is only charged for the duration of the

function execution. The users can also easily scale up the computa-

tion by specifying the number of such functions that are executed

concurrently. In this paper, we use the term FaaS (function as a ser-

vice) to denote the serverless infrastructure and use the term IaaS

(infrastructure as a service) to denote the VM-based infrastructure.

ML and Data Management. Modern data management sys-

tems are increasingly tightly integrated with advanced analytics

such as data mining and machine learning (ML). Today, many data-

base systems support a variety of machine learning training and

inference tasks [32, 43, 49, 78, 85]. Offering ML functionalities

inside a database system reduces data movement across system

boundaries and makes it possible for the ML components to take

advantage of built-in database mechanisms such as access con-

trol and integrity checking. Two important aspects of integrat-

ing machine learning into DBMS are performance and scalability.
As a result, the database community has been one of the driving

forces behind recent advancement of distributed machine learn-

ing [22, 31, 33, 40, 43, 47, 51, 67, 69, 79, 88, 103].

Motivation: FaaS Meets ML Training. Inspired by these two

emerging technological trends, in this paper we focus on one of their
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intersections by enabling distributed ML training on top of server-

less computing.While FaaS is a natural choice for ML inference [48],

it is unclear whether FaaS can also be beneficial when it comes to

ML training. Indeed, this is a nontrivial problem and there has been

active recent research from both the academia and the industry. For

example, AWS provides one example of serverless ML training in

AWS Lambda using SageMaker and AutoGluon [10]. Such supports

are useful when building “training-as-a-service platforms” in which

requests of ML model training come in continuously from multiple

users or one model is continuously re-trained when new training

data arrives, and are also useful when providing users with “code-

free” experience of ML training without worrying about managing

the underlying infrastructure. Not surprisingly, training ML models

using serverless infrastructure has also attracted increasingly in-

tensive attention from the academia [21, 24, 25, 34, 39, 42, 92]. We

expect to see even more applications and researches focusing on

training ML models using FaaS infrastructures in the near future.

Our goal in this work is to understand the system tradeoff of
supporting distributed ML training with serverless infrastructures.
Specifically, we are interested in the following question:

When can a serverless infrastructure (FaaS) outperform
a VM-based, “serverful” infrastructure (IaaS) for dis-
tributed ML training?

State of the Landscape. Despite of these recent interests, these
early explorations depict a “mysterious” picture of the the relative

performance of IaaS and FaaS for training ML models. Although

previous work [25, 39, 42, 92] has illustrated up to two orders of

magnitude performance improvements of FaaS over IaaS over a

diverse range of workloads, the conclusion remains inconclusive.

In many of these early explorations, FaaS and IaaS are often not

put onto the same ground for comparison (see Section 6): either the

IaaS or FaaS implementations could be further optimized or only

micro-benchmarking is conducted. Moreover, similar to other non-

ML workloads, we expect a delicate system tradeoff in which FaaS

only outperforms IaaS in specific regimes [76, 80, 81]. However,

a systematic depiction of this tradeoff space, with an analytical

model, is largely lacking for ML training.

Summary of Contributions. In this paper, we conduct an ex-

tensive experimental study inspired by the current landscape of

FaaS-based distributed ML training. Specifically, we

systematically explore both the algorithm choice and
system design for both FaaS and IaaSML training strate-
gies and depict the tradeoff over a diverse range of ML
models, training workloads, and infrastructure choices.

In addition to the depiction of this empirical tradeoff using today’s

infrastructure, we further

develop an analytical model that characterizes the trade-
off between FaaS and IaaS-based training, and use it to
speculate performances of potential configurations used
by future systems.

In designing our experimental study, we follow a set of principles

for a fair comparison between FaaS and IaaS:

(1) Fair Comparison. To provide an objective benchmark and evalu-

ation of Faas and IaaS, we stick to the following principled method-

ology in this empirical study: (1) both FaaS and IaaS implement the

same set of algorithms (e.g., SGD and ADMM) to avoid apple-to-

orange comparisons such as comparing FaaS running ADMMwith

IaaS running SGD; and (2) we compare FaaS and IaaS running the

most suitable algorithms with the most suitable hyper-parameters

such as VM type and number of workers.

(2) End-to-end Benchmark. We focus on the end-to-end training

performance – the wall clock time (or cost in dollar) that each

system needs to converge to the same loss.
(3) Strong IaaS Competitors and Well-optimized FaaS System.

We use state-of-the-art systems as the IaaS solution, which are

often much faster than what has been used in previous work

showing FaaS is faster than IaaS. We also conduct careful system

optimizations and designs for FaaS. The prototype system, Lamb-

daML, can often pick a point in the design space that is faster than

what has been chosen by previous FaaS systems.

Summary of Insights. Our study leads to two key insights:

(1) FaaS can be faster than IaaS, but only in a specific regime: when
the underlying workload can be made communication efficient,

in terms of both convergence and amount of data communicated.

On one hand, there exists realistic datasets and models that can

take advantage of this benefit; on the other hand, there are also

workloads under which FaaS performs significantly worse.

(2) When FaaS is much faster, it is not much cheaper : One insight that
holds across all scenarios is that even when FaaS is much faster

than IaaS, it usually incurs a comparable cost in dollar. Thismirrors

the results for other workloads in Lambada [76] and Starling [80],

illustrating the impact of FaaS pricing model.

(Paper Organization) We start by an overview of existing dis-

tributed ML technologies and FaaS offerings (Section 2). We then

turn to an anatomy of the design space of FaaS-based ML systems,

following which we implement a Serverless ML platform called

LambdaML (Section 3). We present an in-depth evaluation of var-

ious design options when implementing LambdaML (Section 4).

We further present a systematic study of FaaS-based versus IaaS-

based ML systems, both empirically and analytically (Section 5).

We summarize related work in Section 6 and conclude in Section 7.

(Reproducibility and Open Source Artifact) LambdaML is pub-

licly available at https://github.com/DS3Lab/LambdaML. All experi-

ments can be reproduced following the instructions at https://github.

com/DS3Lab/LambdaML/blob/master/reproducibility.md.

2 PRELIMINARIES
In this section, we present a brief overview of state-of-the-art dis-

tributed ML technologies, as well as the current offerings of FaaS

(serverless) infrastructures by major cloud service providers.

2.1 Distributed Machine Learning
2.1.1 Data and Model. A training dataset 𝐷 consists of 𝑛 i.i.d. data

examples that are generated by the underlying data distribution

D. Let 𝐷 = {(x𝑖 ∈ R𝑛, 𝑦𝑖 ∈ R)}𝑁𝑖=1, where x𝑖 represents the feature
vector and 𝑦𝑖 represents the label of the 𝑖th data example. The goal

of ML training is to find an ML model w that minimizes a loss
function 𝑓 over the training dataset 𝐷 : argminw

1

𝑁

∑
𝑖 𝑓 (x𝑖 , 𝑦𝑖 ,w).

2.1.2 Optimization Algorithm. Different ML models rely on differ-

ent optimization algorithms. Most of these optimization algorithms

 https://github.com/DS3Lab/LambdaML
https://github.com/DS3Lab/LambdaML/blob/master/reproducibility.md
https://github.com/DS3Lab/LambdaML/blob/master/reproducibility.md


are iterative. In each iteration, the training procedure would typ-

ically scan the training data, compute necessary quantities (e.g.,

gradients), and update the model. This iterative procedure termi-

nates/converges when there are no more updates to the model.

During the training procedure, each pass over the entire data is

called an epoch. For instance, mini-batch stochastic gradient descent

(SGD) processes one batch of data during each iteration, and thus

one epoch involves multiple iterations; on the other hand, k-means

processes all data, and thus one epoch, in each iteration.

(DistributedOptimization)When a singlemachine does not have

the computation power or storage capacity (e.g., memory) to host an

ML training job, one has to deploy and execute the job across mul-

tiple machines. Training ML models in a distributed setting is more

complex, due to the extra complexity of distributed computation

as well as coordination of the communication between executors.

Lots of distributed optimization algorithms have been proposed.

Some of them are straightforward extensions of their single-node

counterparts (e.g., k-means), while the others require more sophisti-

cated adaptations dedicated to distributed execution environments

(e.g., parallelized SGD [106], distributed ADMM [23]).

2.1.3 Communication Mechanism. One key differentiator in the

design and implementation of distributedML systems is the commu-

nication mechanism employed. In the following, we present a brief

summary of communication mechanisms leveraged by existing sys-

tems, with respect to a simple taxonomy regarding communication
channel, communication pattern, and synchronization protocol.
(Communication Channel) The efficiency of data transmission

relies on the underlying communication channel.While one can rely

on pure message passing between executors, this shared-nothing

mechanism may be inefficient in many circumstances. For example,

when running SGD in parallel, each executor may have to broadcast

its local versions of global states (e.g., gradients, model parame-

ters) to every other executor whenever a synchronization point is

reached. As an alternative, one can use certain storage medium,

such as a disk-based file system or an in-memory key-value store,

to provide a central access point for these shareable global states.

(Communication Pattern) A number of collective communica-

tion primitives can be used for data exchange between execu-

tors [70], such as Gather, AllReduce, and ScatterReduce.
(Synchronization Protocol) The iterative nature of the optimiza-

tion algorithms may imply certain dependencies across successive

iterations, which force synchronizations between executors at cer-

tain boundary points [94]. A synchronization protocol has to be

specified regarding when such synchronizations are necessary. Two

common protocols used by existing systems are bulk synchronous
parallel (BSP) and asynchronous parallel (ASP). BSP is preferred

if one requires certain convergence or reproducibility guarantees,

where no work can proceed to the next iteration without having

all workers finish the current iteration. In contrast, ASP does not

enforce such synchronization barriers, but could potentially hurt

the empirical convergence rate in some applications.

2.2 FaaS vs. IaaS for ML
Most of the aforementioned distributed ML technologies have only

been applied in IaaS environments on cloud, where users have to

build a cluster by renting VMs or reserve a cluster with predeter-

mined configuration parameters (e.g., Azure HDInsight [74]). As a

MPI/RPC

ModelTrain Data
Intermediate
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IaaS-based FaaS-based

Merged

State

Storage

Channel

Figure 1: IaaS vs. FaaS-based ML system architectures.

result, users pay bills based on the computation resources that have

been reserved, regardless of whether these resources are in use or

not. Moreover, users have to manage the resources by themselves—

there is no elasticity or auto-scaling if the reserved computation

resources turn out to be insufficient, even for just a short moment

(e.g., during the peak of a periodic or seasonal workload). There-

fore, to tolerate such uncertainties, users tend to overprovisioning
by reserving more computation resources than actually needed.

The move towards FaaS infrastructures lifts the burden of man-

aging computation resources from users. Resource allocation in

FaaS is on-demand and auto-scaled, and users are only charged by

their actual resource usages. The downside is that FaaS currently

does not support customized scaling and scheduling strategies. Al-

though the merits of FaaS are very attractive, current offerings

by major cloud service providers (e.g., AWS Lambda [14], Azure

Functions [73], Google Cloud Functions [37]) impose certain limi-

tations and/or constraints that shed some of the values by shifting

from IaaS to FaaS infrastructures. Current FaaS infrastructures only

support stateless function calls with limited computation resource

and duration. For instance, a function call in AWS Lambda can use

up to 3GB of memory and must finish within 15 minutes [15]. Such

constraints automatically eliminate some simple yet natural ideas

on implementing FaaS-based ML systems. For example, one cannot

just wrap the code of SGD in an AWS Lambda function and execute

it, which would easily run out of memory or hit the timeout limit

on large training data. Indeed, state-of-the-art FaaS systems raise

lots of new challenges for designing ML systems and leads to a rich

design space, as we shall cover in the next section.

3 LAMBDAML
We implement LambdaML, a prototype FaaS-based ML system built

on top of Amazon Lambda, and study the trade-offs in training ML

models over serverless infrastructure.

3.1 System Overview
(Challenges) As mentioned in Section 2, we need to consider four

dimensions when developing distributed ML systems: (1) the dis-
tributed optimization algorithm, (2) the communication channel, (3)
the communication pattern, and (4) the synchronization protocol.
These elements remain valid when migrating ML systems from

IaaS to FaaS infrastructures, though new challenges arise. One

main challenge is that current FaaS infrastructures do not allow

direct communication between stateless functions. As a result, one

has to use certain storage channel to allow the functions to read-

/write intermediate state information generated during the iterative

training procedure. Figure 1 highlights this key difference between

IaaS and FaaS designs of ML training systems.

(Framework of LambdaML) Figure 2 shows the framework of

LambdaML. When one user specifies the training configurations in

AWS web UI (e.g., data location, resources, optimization algorithm,
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Figure 2: Framework of LambdaML.

and hyperparameters), AWS submits job to the serverless infrastruc-
ture that allocates resources (i.e., serverless instances) according to

the user request. Each running instance is a worker in LambdaML.

The training data is partitioned and stored in S3, a distributed stor-

age service in AWS. Each worker maintains a local model copy and

uses the library of LambdaML to train a machine learning model.

(Job Execution) A training job in LambdaML has the steps below:

(1) Load data. Each worker loads the corresponding partition of train-

ing data from S3.

(2) Compute statistics. Each worker creates the ML model with Py-

Torch and computes statistics for aggregation using the train-

ing data and the local model parameters. Different optimization

algorithms may choose different statistics for aggregation, e.g.,

gradient in distributed SGD and local model in distributed model

averaging (see Section 3.2.1 for more details).

(3) Send statistics. In a distributed setting, the statistics are sent to a

communication channel (see Section 3.2.2).

(4) Aggregate statistics. The statistics from all the workers, which are

considered as intermediate states, are aggregated using a certain

pattern, generating a global state of the statistics (see Section 3.2.3).

(5) Update model. Each worker gets the merged state of the statistics,

with which the local model is updated. For an iterative optimiza-

tion algorithm, if one worker is allowed to proceed according to a

synchronization protocol (see Section 3.2.4), it goes back to step

(2) and runs the next iteration.

(Components of LambdaML Library) As shown in Figure 2, the

computation library of LambdaML is developed on top of PyTorch,

which provides a wide range of ML models and autograd function-
alities. To run distributed optimization algorithms, the communica-

tion library of LambdaML relies on some communication channel
to aggregate local statistics via certain communication pattern and

governs the iterative process using a synchronization protocol.
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Figure 3: An FaaS-based data aggregation.

3.2 Implementation of LambdaML
In this section we elaborate the aforementioned four major aspects

in the implementation of LambdaML— distributed optimization

algorithm, communication channel, communication pattern, and

synchronization protocol. Each aspect contains a rich design space

which should be studied carefully.

3.2.1 Distributed Optimization Algorithm. In our study, we focus

on the following distributed optimization algorithms.

(Distributed SGD) Stochastic gradient descent (SGD) is perhaps
the most popular optimization algorithm in today’s world, partly

attributed to the success of deep neural networks. We consider

two variants when implementing SGD in a distributed manner:

(1) gradient averaging (GA) and (2) model averaging (MA). In both

implementations, we partition training data evenly and have one ex-

ecutor be in charge of one partition. Each executor runs mini-batch

SGD independently and in parallel, while sharing and updating the

global ML model at certain synchronization barriers (e.g., after one

or a couple of iterations). The difference lies in the way that the

global model gets updated. GA updates the global model in every
iteration by harvesting and aggregating the (updated) gradients

from the executors. In contrast, MA collects and aggregates the

(updated) local models, instead of the gradients, from the executors

and do not force synchronization at the end of each iteration. That

is, executors may combine the local model updates accumulated in

a number of iterations before synchronizing with others to obtain

the latest consistent view of the global model. We refer readers

to [103] for a more detailed comparison between GA and MA.

(Distributed ADMM) Alternating direction method of multipliers

(ADMM) is another popular distributed optimization algorithm

proposed by Boyd et al. [23]. ADMM breaks a large-scale convex

optimization problem into several smaller subproblems, each of

which is easier to handle. In the distributed implementation of

LambdaML, each executor solves one subproblem (i.e., until conver-

gence of the local solution) and then exchanges local models with

other executors to obtain the latest view of the global model. While

this paradigm has a similar pattern as model averaging, it has been

shown that ADMM can have better convergence guarantees [23].

3.2.2 Communication Channel. As we mentioned, it is necessary

to have a storage component in an FaaS-based ML system to al-

low stateless functions to read/write intermediate state information

generated during the lifecycle ofML training.With this storage com-

ponent, we are able to aggregate data between running instances in

the implementation of distributed optimization algorithms. Often,

there are various options for this storage component, with a broad

spectrum of cost/performance tradeoffs. For example, in Amazon

AWS, one can choose between four alternatives—S3, ElastiCache

for Redis, ElastiCache for Memcached, and DynamoDB. S3 is a

disk-based object storage service [18], whereas Redis and Mem-

cached are in-memory key-value data stores provided by Amazon
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ElastiCache [13]. DynamoDB is an in-memory key-value database

hosted by Amazon AWS [11]. In addition to using external cloud-

based storage services, one may also consider building his/her own

customized storage layer. For instance, Cirrus [25] implements a

parameter server [51] on top of a virtual machine (VM), which

serves as the storage access point of the global model shared by the

executors (implemented using AWS Lambda functions). This design,

however, is not a pure FaaS architecture, as one has to maintain the

parameter server by himself. We will refer to it as a hybrid design.

Different choices on communication channel lead to different

cost/performance tradeoffs. For example, on AWS, it usually takes

some time to start an ElastiCache instance or a VM, whereas S3

does not incur such a startup delay since it is an “always on” service.

On the other hand, accessing files stored in S3 is in general slower

but cheaper than accessing data stored in ElastiCache.

(An FaaS-based Data Aggregation) We now design a communi-

cation scheme for data aggregation using a storage service, such

as S3 or ElastiCache, as the communication channel. As shown in

Figure 3, the entire communication process contains the following

steps: 1) Each executor stores its generated intermediate data as a

temporary file in S3 or ElastiCache; 2) The first executor (i.e., the

leader) pulls all temporary files from the storage service and merges

them to a single file; 3) The leader writes the merged file back to the

storage service; 4) All the other executors (except the leader) read

the merged file from the storage service; 5) All executors refresh

their (local) model with information read from the merged file.

Figure 3 also presents an alternative implementation using a

VM-based parameter server as in the hybrid design exemplified by

Cirrus [25]. In this implementation, 1) each executor pushes local

updates to the parameter server, with which 2) the parameter server

further updates the global model. Afterwards, 3) each executor pulls

the latest model from the parameter server.

3.2.3 Communication Pattern. To study the impact of commu-

nication patterns, we focus on two MPI primitives, AllReduce
and ScatterReduce, that have been widely implemented in dis-

tributed ML systems [103]. Figure 4 presents the high-level designs

of AllReduce and ScatterReduce in an FaaS environment with

an external storage service such as S3 or ElastiCache.

(AllReduce) With AllReduce, all executors first write their local
updates to the storage. Then the first executor (i.e., the leader)

reduces/aggregates the local updates and writes the aggregated

updates back to the storage service. Finally, all the other executors

read the aggregated updates back from the storage service.

(ScatterReduce) When there are too many executors or a large

amount of local updates to be aggregated, the single leader executor

in AllReduce may become a performance bottleneck. This is alle-

viated by using ScatterReduce. Here, all executors are involved
in the reduce/aggregate phase, each taking care of one partition
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Figure 5: Invocation structure of Lambda workers.

of the local updates being aggregated. Specifically, assume that

we have 𝑛 executors. Each executor divides its local updates into

𝑛 partitions, and then writes each partition separately (e.g., as a

file) to the storage service. During the reduce/aggregate phase, the

executor 𝑖 (1 ≤ 𝑖 ≤ 𝑛) collects the 𝑖th partitions generated by all

executors and aggregates them. It then writes the aggregated result

back to the storage service. Finally, each executor 𝑖 pulls aggregated

results produced by all other executors to obtain the entire model.

3.2.4 Synchronization Protocol. We focus on two synchronization

protocols that have been adopted by many existing distributed ML

systems. One can simply implement these protocols on top of server-

ful architectures by using standard primitives of message passing

interface (MPI), such as MPI_Barrier. Implementations on top of

FaaS architectures, however, are not trivial, given that stateless

functions cannot directly communicate with each other.

(Synchronous)Wedesign a two-phase synchronous protocol, which

includes a merging and an updating phase. We illustrate this in

FaaS architecture that leverages an external storage service:

• Merging phase. All executors first write their local updates to

the storage service. The reducer/aggregator (e.g., the leader in

AllReduce and essentially every executor in ScatterReduce)
then needs to make sure that it has aggregated local updates from

all other executors. Otherwise it should just wait.

• Updating phase. After the aggregator finishes aggregating all data

and stores the aggregated information back to the storage service,

all executors can read the aggregated information to update their

local models and then proceed with next round of training.

All executors are synchronized using this two-phase framework.

Moreover, one can rely on certain atomicity guarantees provided

by the storage service to implement these two phases. Here we

present the implementation of our proposed synchronous protocol.

• Implementation of the Merging Phase. We name the files that store

local model updates using a scheme that includes all essential

information, such as the training epoch, the training iteration,

and the partition ID. The reducer/aggregator can then request the

list of file names from the storage service (using APIs that are

presumed atomic), filter out uninteresting ones, and then count

the number of files that it has aggregated. When the number of

aggregated files equals the number of workers, the aggregator can

proceed. Otherwise, it should wait and keep polling the storage

service until the desired number of files is reported.

• Implementation of the Updating Phase.We name the merged file

that contains the aggregated model updates in a similar manner,

which consists of the training epoch, the training iteration, and

the partition ID. For an executor that is pending on the merged

file, it can then keep polling the storage service until the name of

the merged file shows up.



(Asynchronous) Following the approach of SIREN [92], the imple-

mentation of asynchronous communication is simpler. One replica

of the trained model is stored on the storage service as a global

state. Each executor runs independently – it reads the model from

the storage service, updates the model with training data, writes

the new model back to the storage service – without caring about

the speeds of the other executors.

3.3 Other Implementation Details
This section provides the additional implementation details of

LambdaML that are relevant for understanding its performance.

3.3.1 Handling Limited Lifetime. One major limitation of Lambda

functions is their (short) lifetime, that is, the execution time cannot

be longer than 15 minutes. We implement a hierarchical invocation
mechanism to schedule their executions, as illustrated in Figure 5.

Assume that the training data has been partitioned and we have

one executor (i.e., a Lambda function) for each partition. We start

Lambda executors with the following steps: (1) a starter Lambda

function is triggered once the training data has been uploaded

into the storage service, e.g., S3; (2) the starter triggers 𝑛 worker
Lambda functionswhere𝑛 is the number of partitions of the training

data. Each worker is in charge of its partition, which is associated

with metadata such as the path to the partition file and the ID of

the partition/worker. Moreover, a worker monitors its execution

to watch for the 15-minute timeout. It pauses execution when

the timeout is approaching, and saves a checkpoint to the storage

service that includes the latest local model parameters. It then

resumes execution by triggering its Lambda function with a new

worker. The new worker inherits the same worker ID and thus

would take care of the same training data partition (using model

parameters saved in the checkpoint).

(Limitation) Under the current design, this mechanism cannot

support the scenario in which a single iteration takes longer than

15 minutes. We have not observed such a workload in our evalua-

tion, and it would require a very large model and batch size for a

single iteration to exceed 15 minutes. Especially given the memory

limitation (3GB) of FaaS, we do not expect this to happen in most

realistic scenarios. A potential workaround to accommodate this

limitation is to use a smaller batch size so that one iteration takes

less than 15 minutes. A more fundamental solution might be to

explore model-parallelism [61, 77] in the context of FaaS, which is

an interesting direction for future research.

4 EVALUATION OF LAMBDAML
We evaluate LambdaML with the goal of comparing the various de-

sign options that have been covered in Section 3. We start by laying

out the experiment settings and then report evaluation results with

respect to each dimension of the design space.

4.1 Experiment Settings
(Datasets) Figure 6a presents the datasets used in our evaluation. In
this section, we focus on smaller datasets to understand the system

behavior and leave the larger datasets (YFCC100M and Criteo)

to the next section when we conduct the end-to-end study. We

focus on Higgs, RCV1 and Cifar10. Higgs is a dataset for binary
classification, produced by using Monte Carlo simulations. Higgs
contains 11 million instances, and each instance has 28 features.

Dataset Size # Ins # Feat

Cifar10 220 MB 60 K 1 K

RCV1 1.2 GB 697 K 47 K

Higgs 8 GB 11 M 28

(a)Micro benchmark.

Dataset Size # Ins # Feat

Cifar10 220 MB 60 K 1 K

YFCC100M 110 GB 100 M 4 K

Criteo 30 GB 52 M 1M

(b) End-to-end benchmark.
Figure 6: Datasets used in this work.

RCV1 is a two-class classification corpus of manually categorized

newswire storiesmade available by Reuters [62]. The feature of each

training instance is a 47236-dimensional sparse vector, in which

every value is a normalized TF-IDF value. Cifar10 is an image

dataset that consists of 60 thousand 32×32 images categorized by

10 classes, with 6 thousand images per class.

(ML Models)We use the following ML models in our evaluation.

Logistic Regression (LR) and Support Vector Machine (SVM) are

linear models for classification that are trained by mini-batch SGD

or ADMM. The number of the model parameters is equal to that of

input features. MobileNet (MN) is a neural network model that uses

depth-wise separable convolutions to build lightweight deep neural

networks. The size of each input image is 224× 224× 3, and the size

of model parameters is 12MB. ResNet50 (RN) is a famous neural

network model that was the first to introduce identity mapping

and shortcut connection. KMeans (KM) is a clustering model for

unsupervised problems, trained by expectation maximization (EM).

(Protocols) We randomly shuffle and split the data into a training

set (with 90% of the data) and a validation set (with 10% of the

data). We report the number for Higgs with batch size 100K, while

setting it as 10K or 1M will not change the insights and conclusions;

whereas it is 128 for MN and 32 for RN over Cifar10 according

to the maximal memory constraint (3GB) of Lambda. We tune the

optimal learning rate for each ML model in the range from 0.001

to 1. We set a threshold for the observed loss, and we stop training

when the threshold is reached. The threshold is 0.68 for LR on

Higgs, 0.2 for MN on Cifar10, and 0.1 for KM on Higgs.
(Metrics) We decouple the system performance into statistical effi-
ciency and system efficiency. We measure statistical efficiency by

the loss observed over the validation set. Meanwhile, we measure

system efficiency by the execution time of each iteration or epoch.

4.2 Distributed Optimization Algorithms
Carefully choosing the right algorithm goes a long way in
optimizing FaaS-based system, and the widely adopted SGD
algorithm is not necessarily “one-size-fits-all.”

We implemented GA-SGD (i.e., SGD with gradient averaging),

MA-SGD (i.e., SGD with model averaging), and ADMM on top

of LambdaML, using ElastiCache for Memcached as the external

storage service. Figure 7 presents the results for various data andML

models we tested.Wemeasure the convergence rate in terms of both

the wall clock time and the number of rounds for communication.

(Results for LR and SVM)When training LR onHiggs using 300
workers, GA-SGD is the slowest because transmitting gradients

every batch can lead to high communication cost. ADMM converges

the fastest, followed by MA-SGD. Compared with GA-SGD, MA-

SGD reduces the communication frequency from every batch to

every epoch, which can be further reduced by ADMM. Moreover,

MA-SGD and ADMM can converge with fewer communication

steps, in spite of reduced communication frequency. We observe
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Figure 7: Comparison of distributed optimization methods.

similar results when training SVM on Higgs: ADMM converges

faster than GA-SGD and MA-SGD.

(Results for MN) We have different observations when turning

to training neural network models. Figure 7c presents the results

of training MN on Cifar10. First, we note that ADMM can only

be used for optimizing convex objective functions and therefore is

not suitable for training neural network models. Comparing GA-

SGD and MA-SGD, we observe that the convergence of MA-SGD

is unstable, though it can reduce the communication cost. On the

other hand, GA-SGD can converge steadily and achieve a lower

loss. As a result, in this case, we have no choice but to use GA-SGD.

4.3 Communication Channels
For many workloads, a pure FaaS architecture can be competi-
tive to the hybrid design with a dedicated VM as parameter
server, given the right choice of the algorithm; A dedicated PS
can definitely help in principle, but its potential is currently
bounded by the communication between FaaS and IaaS.

We evaluate the impact of communication channels. We train

LR, MN, and KM using LambdaML. LR is optimized by ADMM,

MN is optimized by GA-SGD, and KM is optimized by EM. Table 1

presents the settings and compares using disk-based S3 with other

memory-based mediums.

(Pure FaaS Solutions)We compare design choices includingMem-

cached, S3, Redis, and DynamoDB.

• Memcached vs. S3. Memcached introduces a lower latency than

S3, therefore one round of communication using Memcached is

significantly faster than using S3. Furthermore, Memcached has a

well-designed multi-threading architecture [17]. As a result, its

communication is faster than S3 over a large cluster with up to 50

workers, showing 7× and 7.7× improvements when training LR
andKM. Nonetheless, the overall execution time of Memcached is

Workload

Memcached vs. S3 DynamoDB vs. S3 VM-PS vs. S3

cost slowdown cost slowdown cost slowdown

LR,Higgs,W=10 5 4.17 0.95 0.83 4.7 3.85

LR,Higgs,W=50 4.5 3.70 0.92 0.81 4.47 3.70

KMeans,Higgs,W=50,k=10 1.58 1.32 1.13 0.93 1.48 1.23

KMeans,Higgs,W=50,k=1K 1.43 1.19 1.03 0.90 1.52 1.27

MobileNet,Cifar10,W=10 0.9 0.77 N/A N/A 4.8 4.01

MobileNet,Cifar10,W=50 0.89 0.75 N/A N/A 4.85 4.03

Table 1: Comparison of S3, Memcached, DynamoDB, and
VM-based parameter server. We present the slowdown and
relative costs of using different mediums w.r.t. using S3. A
relative cost larger than 1 means S3 is cheaper, whereas a
slowdown larger than 1 means S3 is faster. DynamoDB can-
not handle a large model such as MobileNet.

Lambda Type EC2 Type

Data Transmission Model Update

gRPC / Thrift gRPC / Thrift

1×Lambda-3GB (1.8vCPU) t2.2xlarge 2.62s / 21.8s 2.9s / 0.5s

1×Lambda-1GB (0.6vCPU) t2.2xlarge 3.02s / 34.4s 2.9s / 0.5s

1×Lambda-3GB (1.8vCPU) c5.4xlarge 1.85s / 19.7s 2.3s / 0.4s

1×Lambda-1GB (0.6vCPU) c5.4xlarge 2.36s / 32s 2.3s / 0.4s

10×Lambda-3GB (1.8vCPU) t2.2xlarge 5.7s / 68.5s 33s / 13s

10×Lambda-1GB (0.6vCPU) t2.2xlarge 8.2s / 82s 34s / 13s

10×Lambda-3GB (1.8vCPU) c5.4xlarge 3.7s / 52s 27s / 6s

10×Lambda-1GB (0.6vCPU) c5.4xlarge 5.6s / 84s 25s / 6s

Table 2: Hybrid solution: Communication between Lambda
and VM-based parameter server. Transferred data size is
75MB. The time is averaged over ten trials. Transfer time
includes time spent on serialization/deserialization. In each
pair, the left is result of gRPC and the right is result ofThrift.

actually longer than S3, because it takes more than two minutes to

start Memcached whereas starting S3 is instant (as it is an “always

on” service). When we turn to training MN on Cifar10, using
Memcached becomes faster than using S3, since it takes much

longer forMN to converge.

• Redis vs. Memcached.According to our benchmark, Redis is similar

to Memcached when training small MLmodels. However, when an

ML model is large or is trained with a big cluster, Redis is inferior

to Memcached since Redis lacks a similar high-performance multi-

threading mechanism that underlies Memcached.

• DynamoDB vs. S3. Compared to S3, DynamoDB reduces the com-

munication time by roughly 20% when training LR on Higgs,

though it remains significantly slower than IaaS if the startup

time is not considered. Nevertheless, DynamoDB only allows

messages smaller than 400KB [12], making it infeasible for many

median models or large models (e.g., RCV1 and Cifar10).

(Hybrid Solutions)Cirrus [25] presents a hybrid design — having

a dedicated VM to serve as parameter server and all FaaS workers

communicate with this centralized PS. This design definitely has its

merit, in principle—giving the PS the ability of doing computation

can potentially save 2× communication compared with an FaaS

communication channel via S3/Memcached. However, we find that

this hybrid design has several limitations, which limit the regime

under which it outperforms a pure FaaS solution.

When training LR and KM, VM-based PS performs similarly

using Memcached or Redis, which are slower than S3 considering

the start-up time. In this case, a pure FaaS solution is competitive

evenwithout the dedicated VM. This is as expected—when themode

size is small and the runtime is relatively short, communication is

not a significant bottleneck.



Model & Dataset Model Size AllReduce ScatterReduce

LR,Higgs,W=50 224B 9.2s 9.8s

MobileNet,Cifar10,W=10 12MB 3.3s 3.1s

ResNet,Cifar10,W=10 89MB 17.3s 8.5s

Table 3: Impact of different communication patterns.

When model is larger and workload is more communication-

intensive, we would expect that the hybrid design performs sig-

nificantly better. However, this is not the case under the current
infrastructure. To confirm our claim, we use two RPC frameworks

(Thrift and gRPC), vary CPUs in Lambda (by varying memory size),

use different EC2 types, and evaluate the communication between

Lambda and EC2. The results in Table 2 reveal several constraints of

communication between Lambda and VM-based parameter server:

(1) The communication speed from the PS is much slower than

Lambda-to-EC2 bandwidth (up to 70MBps reported by [57, 95])

and EC2-to-EC2 bandwidth (e.g., 10Gbps for c5.4xlarge). Hybrid

solution takes at least 1.85 seconds to transfer 75MB. (2) Increasing

the number of vCPUs can decrease the communication time by

accelerating data serialization and deserialization. But the serializa-

tion performance is eventually bounded by limited CPU resource of

Lambda (up to 1.8 vCPU). (3) Model update on parameter server is

costly when the workload scales to a large cluster due to frequent

locking operation of parameters. As a result, HybridPS is currently

bounded not only by the maximal network bandwidth but also seri-

alization/deserialization and model update. However, if this problem
is fixed, we would expect that a hybrid design might be a perfect fit
for FaaS-based deep learning. We will explore this in Section 5.3.1.

We also study the impact of the number of parameter servers.

Intuitively, adding parameter servers can increase the bandwidth

for model aggregation. However, when we increase the number of

parameter servers from 1 to 5 for the hybrid solution, we do not

observe significant performance change. As we explained above, the

hybrid architecture is not bounded by the bandwidth; instead, the

bottleneck is the serialization/deserialization operation in Lambda.

Therefore, adding parameter servers cannot solve this problem.

4.4 Communication Patterns
We use another model, called ResNet50 (RN), in this study to in-

troduce a larger model than MN. We train LR on Higgs, and train

MN and RN on Cifar10, using S3 as the external storage service.
Table 3 shows the time spent on communication by AllReduce
and ScatterReduce. We observe that using ScatterReduce is

slightly slower than AllReduce when training LR. Here commu-

nication is not a bottleneck and ScatterReduce incurs extra over-

head due to data partitioning. On the other hand, the communica-

tion costs of AllReduce and ScatterReduce are roughly the same

when trainingMN. AllReduce is 2× slower than ScatterReduce
when trainingRN, as communication becomes heavy and the single

reducer (i.e., aggregator) in AllReduce becomes a bottleneck.

4.5 Synchronization Protocols
Finally, we study the impact of the two synchronization proto-

cols: Synchronous and Asynchronous. Note that the Asynchronous

protocol here is different from ASP in traditional distributed learn-

ing. In traditional distributed learning, ASP is implemented in the

parameter-server architecture where there is an in-memory model

replica that can be requested and updated by workers [30, 45, 51].

However, this ASP routine is challenging, if not infeasible, in FaaS
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Figure 8: Comparison of Synchronization Protocols.

infrastructure. We thus follow SIREN [92] to store a global model

on S3 and let every FaaS instance rewrite it. This makes the impact

of Asynchronous on convergence in our scenario more significant

than that of ASP in distributed learning.We use GA-SGD to train LR
onHiggs, LR on RCV1, andMN on Cifar10, with Asynchronous

or Synchronous enabled for the executors. As suggested by previ-

ous work [104], we use a learning rate decaying with rate 1/
√
𝑇 for

S-ASP (our Asynchronous implementation) where 𝑇 denotes the

number of epochs. Figure 8 presents the results. We observe that

Synchronous converges steadily whereas Asynchronous suffers

from unstable convergence, although Asynchronous runs faster per

iteration. The convergence problem of Asynchronous is caused by

the inconsistency between local model parameters. If stragglers ex-

ist, those faster executors may read stale model parameters from the

stragglers. Consequently, the benefit of system efficiency brought

by Asynchronous is offset by its inferior statistical efficiency.

5 FAAS VS. IAAS FOR ML TRAINING
We now compare FaaS and IaaS for ML training using LambdaML.

Here we focus on the case of training a single model. In this scenario,
a user submits a training job over a dataset stored on S3; the system

then (1) starts the (FaaS or IaaS) infrastructure and (2) runs the job

until it reaches the target loss.

5.1 Experiment Settings
Our experimental protocols are as follows:

(Competing Systems)We compare LambdaML, a pure FaaS-based

implementation, with the following systems:

• Distributed PyTorch.We partition training data and run PyTorch

1.0 in parallel across multiple machines. We use all available CPU

cores on each machine, if possible. To manage a PyTorch cluster,

we use StarCluster [75], a managing toolkit for EC2 clusters. We

use the AllReduce operator of Gloo, a collective communication

library, for cross-machine communication, and we implement

both mini-batch SGD and ADMM for training linear models.

• Distributed PyTorch on GPUs. For deep learning models, we also

consider GPU instances. The other settings are the same as above.

• Angel. Angel is an open-source ML system based on parameter

servers [51]. Angel works on top of the Hadoop ecosystem (e.g.,

HDFS, Yarn, etc.) and we use Angel 2.4.0 in our evaluation. We

chose Angel because it reports state-of-the-art performance on

workloads similar to our evaluations.

• HybridPS. Following the hybrid architecture proposed by Cir-

rus [25], we implement a parameter server on a VM using gRPC,

a cross-language RPC framework. Lambda instances use a gRPC

client to pull and push data to the parameter server. We also

implement the same SGD framework as in Cirrus.

(Datasets) In addition to Higgs, RCV1 and Cifar10, Figure 6b

presents two more datasets that are used for the current set of

performance evaluations, YFCC100M and Criteo. YFCC100M



Model Dataset # Workers Setting Loss threshold

LR/SVM/KMeans Higgs 10 𝐵=10K,𝑘=10 0.66/0.48/0.15

LR/SVM RCV1 5/5 𝐵=2K 0.68/0.05

KMeans RCV1 50 𝑘=3 0.01

LR/SVM/KMeans YFCC100M 100 𝐵=800,𝑘=10 50

MobileNet Cifar10 10 𝐵=128 0.2

ResNet50 Cifar10 10 𝐵=32 0.4

Table 4: ML models, datasets, and experimental settings. 𝐵
means batch size, and 𝑘 means the number of clusters.

(Yahoo Flickr Creative Commons 100 Million) is a computer vi-

sion [99], consisting of approximately 99.2 million photos and 0.8

million videos. We use the YFCC100M-HNfc6 [9] in which each

data point represents one image with several label tags and a fea-

ture vector of 4096 dimensions. We randomly sample 4 million data

points, and convert this subset into a binary classification dataset

by treating the “animal” tags as positive labels and the other tags

as negative labels. After this conversion, there are about 300K (out

of 4M) positive data examples. Criteo is a famous dataset for click-

through rate prediction hosted by Criteo and Kaggle. Criteo is a

high-dimensional sparse dataset with 1 million features.

(ML Models) As shown in Table 4, we evaluate different ML mod-

els on different datasets, including LR, SVM,KM andMN. We also

consider a more complex deep learning model ResNet50. ResNet50

(RN) is a famous neural network model that was the first to intro-

duce identity mapping and shortcut connection.

(EC2 Instances) We tune the optimal EC2 instance from the t2

family and the c5 family [16]. To run PyTorch on GPUs, we tune the

optimal GPU instances from the g3 family. We use one c5.4xlarge

EC2 instance as the parameter server in the hybrid architecture.

(Protocols)We choose the optimal learning rate between 0.001 and

1. We vary the number of workers from 1 to 150. Before running

the competing systems, we partition the training data on S3. We

trigger Lambda functions after data is uploaded and Memcached

is launched (if required). We use one cache.t3.small Memcached

node whose pricing is $0.034 per hour. Each ADMM round scans

the training data ten times. We stop training when the loss is below

a threshold, as summarized in Table 4.

5.1.1 “COST” Sanity Check. Before we report end-to-end exper-

imental results, we first report a sanity check as in COST [71] to

make sure all scaled-up solutions outperform a single-machine so-

lution. Taking Higgs and Cifar10 as examples, we store the datasets

in a single machine and use a single EC2 instance to train the

model and compare the performance with FaaS/IaaS. For the Higgs

dataset, using a single t2 instance (PyTorch) would converge in 960

seconds for LR trained by ADMM; while our FaaS (LambdaML) and

IaaS (distributed PyTorch) solutions, using 10 workers, converge

in 107 and 98 seconds. Similarly, on SVM/KMeans, FaaS and IaaS

achieve 9.4/6.2 and 9.9/7.2 speedups using 10 workers; on Cifar10

and MobileNet, FaaS and IaaS achieve 4.8 and 6.7 speedups.

5.2 Experimental Results
We first present two micro-benchmarks using the same number of

workers for FaaS and IaaS, and then discuss end-to-end results.

Algorithm Selection. We first analyze the best algorithm to use

for each workload. We first run all competing systems with the

minimum number of workers that can hold the dataset in memory.

We illustrate the convergence w.r.t wall-clock time in Figure 9.
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Figure 9: End-to-end comparison on various models.
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In our design space, both FaaS and IaaS implementations use
the same algorithm (but not necessarily SGD) for all workloads.

(1) We first trainLR, SVM, andKM overHiggs, RCV1, and YFCC100M.

Angel is the slowest as a result of slow start-up and computation.

Running ADMM on PyTorch is slightly faster than SGD, verifying

ADMM saves considerable communication while assuring conver-

gence meanwhile. HybridPS outperforms PyTorch as it only needs

to launch one VM and it is efficient in communication when the

model is relatively small. LambdaML achieves the fastest speed

due to a swift start-up and the adoption of ADMM. To assess

the performance of the baselines over high-dimensional features,

we train models using the Criteo dataset. LambdaML is still the

fastest for LR (and the results on other models are similar) while

the speed gap is smaller. This is unsurprising due to the high

dimensionality of Criteo.

(2) ForMN andRN, as analyzed above, data communication between

Lambda and VM is bounded by the serialization overhead, and

therefore the hybrid approach is slower than a pure FaaS approach

with a large model. Distributed PyTorch is faster than LambdaML

because communication between VMs is faster than using Elas-

tiCache in Lambda. PyTorch-GPU is the fastest as GPU can ac-

celerate the training of deep learning models. The improvement

of PyTorch-GPU on ResNet50 is smaller than on MobileNet be-

cause ResNet50 brings a heavier communication cost. For RN, we
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Figure 11: End-to-end comparison (w.r.t. # workers).
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Figure 12: End-to-end comparison (w.r.t. various instance
types and learning rates).

also increase the batch size to 64, which incurs a larger memory

footprint during the back-propagation training. FaaS encounters

an out-of-memory error due to hitting the memory limit of 3GB,

while PyTorch can finish and achieve similar performance as using

a batch size of 32. This demonstrates the limitation of the current

FaaS infrastructure when training large models.

Runtime Breakdown. To help understand the difference between
FaaS and IaaS, Figure 10 presents a breakdown of time spent on

executing 10 epochs, taking LR on Higgs as an example.

(1) Start-up. It takes more than 2 minutes to start a 10-node EC2

cluster, including the time spent on starting the VMs and starting

the training job. The start-up of VMs also contains mounting

shared volumes and configuring secure communication channels

between VMs. The launching of a job also requires a master node

dispensing scripts to all workers, meaning that it costs more time

for a larger cluster. It takes even more time to start Angel, as it

needs to first start dependent libraries such as HDFS and Yarn.

The hybrid solution also needs to start and configure VMs, but it

avoids the time spent on submitting job due to quick startup of

FaaS functions. In contrast, LambdaML took 1.3 seconds to start.

(2) Data Loading and Computation. In terms of data loading and

computation, PyTorch, HybridPS, and LambdaML spend similar

amount of time because they all read datasets from S3 and use the

same underlying training engine. Angel spends more time on data

loading since it needs to load data from HDFS. Its computation is

also slower due to inefficient matrix calculation library.

(3) Communications. Communication in LambdaML is slower than

in other baselines since LambdaML uses S3 as the medium.

(4) Total Run Time. In terms of the total run time, LambdaML

is the fastest when including the startup time. However, if the

startup time is excluded, PyTorch outperforms LambdaML since

LambdaML spends more time on communication. Especially, Py-

Torch does not incur start-up cost with reserved IaaS resources.

Workload Run time Test accuracy Cost

FaaS (LR,Higgs,W=10) 96 62.2% 0.47

IaaS (LR,Higgs,W=10) 233 62.1% 0.31

FaaS (MobileNet,Cifar10,W=10) 1712 80.45% 8.37

IaaS (MobileNet,Cifar10,W=10) 1350 80.52% 1.74

Table 5: ML Pipeline (time is in seconds and cost is in $).

End-to-end Comparison. Comparing FaaS and IaaS by forcing

them to use the same number of workers is not necessarily a fair

comparison—an end-to-end comparison should also tune the opti-

mal number of workers to use for each case.

For some communication-efficient workloads, FaaS-based im-
plementation can be significantly faster, but not significantly
cheaper in dollar; on other workloads, FaaS-based implemen-
tation can be significantly slower and more expensive.

Figure 11 illustrates two representative runtime vs. cost profiles.

For models that can take advantage of communication-efficient al-

gorithms (e.g., LR, SVM,Kmeans), adding workers initially makes

both FaaS and IaaS systems faster, and then flattened (e.g., FaaS

at 100 workers). Different systems plateaued at different runtime

levels, illustrating the difference in its start-up time and communi-

cation cost. On the other hand, the more workers we add, the more

costly the execution is. For models that cannot take advantage

of communication-efficient algorithms (e.g., MN, RN), the FaaS

system flattened earlier, illustrating the hardness of scale-up.

In Figure 12, we plot for different configurations such as learning

rate and instance type (GPU instance for MN). In addition to G3

GPU instances (NVIDIA M60), we also consider a G4 GPU instance

(NVIDIA T4) for MN. The red points refer to IaaS systems, and

the orange points refer to FaaS systems. Note that there are more

red points than orange points because we need to tune different

instance types for IaaS. For LR and SVM, there is an FaaS configu-

ration that is faster than all IaaS configurations in terms of runtime;

however, they are not significantly cheaper, mirroring the result

similar to Lambada [76] and Starling [80]. ForKMeans, a user min-

imizing for cost would use IaaS while FaaS implementations are

significantly faster if the user optimizes for runtime. ForMN, the
opposite is true — there exists an IaaS configuration that outper-

forms all FaaS configurations in both runtime and cost — using T4

GPUs is 8× faster and 9.5× cheaper than the best FaaS execution

(15% faster and 30% cheaper than M60).

Pipeline Comparison. A real-world training workload of an ML

model is typically a pipeline, consisting of data preprocessing,

model training, and hyperparameter tuning. To assess the per-

formance of IaaS- and FaaS-based systems on ML pipelines, we

construct a pipeline using Higgs and Cifar10: (1) normalize original

features to [−1, 1], and (2) grid-search the learning rate in the range

[0.01, 0.1] with an increment of 0.01. We perform preprocessing

using a single job with 10 workers, and parallelize hyperparameter

tuning using multiple jobs (each job with 10 workers and 10 epochs).

For IaaS, we use ten t2.medium instances as workers. For FaaS, we

(1) use a serverless job to perform the preprocessing and store the

transformed dataset to S3, and then (2) trigger one serverless job

for each hyperparameter, using S3 as the communication medium.

The other settings are the same as in Section 4.1. As Table 5 shows,

we observe similar results as in the end-to-end comparison. FaaS

is faster than IaaS for LR, however, is not cheaper. For MobileNet,

IaaS is significantly faster and cheaper.



Symbol Configurations Values
𝑡𝐹 (𝑤) 𝑤=10,50,100,200 (1.2±0.1)s,(11±1)s,(18±1)s,(35±3)s
𝑡 𝐼 (𝑤) 𝑤=10,50,100,200 (132±6)s,(160±5)s,(292±8)s,(606±12)s
𝐵𝑆3 Amazon S3 (65±7)MB/s

𝐵𝐸𝐵𝑆 gp2 (1950±50)MB/s

𝐵𝑛 t2.medium to t2.medium (120±6)MB/s

𝐵𝑛 c5.large to c5.large (225±8)MB/s

𝐵𝐸𝐶 cache.t3.medium (630±25)MB/s

𝐵𝐸𝐶 cache.m5.large (1260±35)MB/s

𝐿𝑆3 Amazon S3 (8±2)×10−2s
𝐿𝐸𝐵𝑆 gp2 (3±0.5)×10−5s
𝐿𝑛 t2.medium to t2.medium (5±1)×10−4s
𝐿𝑛 c5.large to c5.large (1.5±0.2)×10−4s
𝐿𝐸𝐶 cache.t3.medium (1±0.2)×10−2s
Table 6: Constants for the analytical model.

5.3 Analytical Model
Based on the empirical observations, we now develop an analytical

model that captures the cost/performance tradeoff between differ-

ent configuration points in the design space covered in Section 3.

Given an ML task, for which the dataset size is 𝑠 MB and the

model size is 𝑚 MB, let the start-up time of 𝑤 FaaS (resp. IaaS)

workers be 𝑡𝐹 (𝑤) (resp. 𝑡 𝐼 (𝑤)), the bandwidth of S3, EBS, network,

and ElastiCache be 𝐵𝑆3, 𝐵𝐸𝐵𝑆 , 𝐵𝑛 , 𝐵𝐸𝐶 , the latency of S3, EBS,

network, and ElastiCache be 𝐿𝑆3, 𝐿𝐸𝐵𝑆 , 𝐿𝑛 , 𝐿𝐸𝐶 . Assuming that the

algorithm used by FaaS (resp. IaaS) requires 𝑅𝐹 (resp. 𝑅𝐼 ) epochs

to converge with one single worker, we use 𝑓 𝐹 (𝑤) (resp. 𝑓 𝐼 (𝑤)) to
denote the “scaling factor” of convergence which means that using

𝑤 workers will lead to 𝑓 𝐹 (𝑤) times more epochs. Let𝐶𝐹
(resp.𝐶𝐼 )

be the time that a single worker needs for computation of a single

epoch. With 𝑤 workers, the execution time of FaaS and IaaS can

be modeled as follows (to model the cost in dollar we can simply

multiply the unit cost per second):

𝐹𝑎𝑎𝑆 (𝑤) := 𝑡𝐹 (𝑤) + 𝑠

𝐵𝑆3︸           ︷︷           ︸
start up & loading

+

convergence︷      ︸︸      ︷
𝑅𝐹 𝑓 𝐹 (𝑤) ×

(
(3𝑤 − 2) ( 𝑚/𝑤

𝐵𝑆3/𝐸𝐶
+ 𝐿𝑆3/𝐸𝐶 )︸                                   ︷︷                                   ︸

communication

+

computation︷︸︸︷
𝐶𝐹

𝑤

)
,

𝐼𝑎𝑎𝑆 (𝑤) := 𝑡 𝐼 (𝑤) + 𝑠

𝐵𝑆3︸          ︷︷          ︸
start up & loading

+

convergence︷     ︸︸     ︷
𝑅𝐼 𝑓 𝐼 (𝑤) ×

(
(2𝑤 − 2) (𝑚/𝑤

𝐵𝑛

+ 𝐿𝑛)︸                         ︷︷                         ︸
communication

+

computation︷︸︸︷
𝐶𝐼

𝑤

)
,

where the color-coded terms represent the “built-in” advantages

of FaaS/IaaS (greenmeans holding advantage) — FaaS incurs smaller

start-up overhead, while IaaS incurs smaller communication over-

head because of its flexible mechanism and higher bandwidth. The

difference in the constant, i.e., (3𝑤 − 2) and (2𝑤 − 2), is caused
by the fact that FaaS can only communicate via storage services

that do not have a computation capacity (Section 3.2.2). The latency

term 𝐿𝑆3/𝐸𝐶 and 𝐿𝑛 could dominate for smaller messages.

When will FaaS outperform IaaS? From the above analytical model

it is clear to see the regime under which FaaS can hold an edge.

This regime is defined by two properties: (1) scalability–the FaaS
algorithm needs to scale well, i.e., a small 𝑓 𝐹 (𝑤) (thus a small

𝑓 𝐹 (𝑤)
𝑤 for large𝑤 ), such that the overall cost is not dominated by

computation; and (2) communication efficiency–the FaaS algorithm
needs to converge with a small number of rounds, i.e., a small 𝑅𝐹 .

(Validation) We provide an empirical validation of this analytical

model. First, we show that given the right constant, this model cor-
rectly reflects the runtime performance of FaaS-based and IaaS-based
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Figure 13: Evaluation of Analytical Model.
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Figure 14: Simulation: Faster FaaS-IaaS Communication.

systems. We train a logistic regression model on Higgs with ten

workers (the results on other models and datasets are similar) and

show the analytical model vs. the actual runtime in Figure 13(a).

Across a range of fixed number of epochs (from 1 to 100), and

using the constant in Table 6, we see that the analytical model

approximates the actual runtime reasonably well.

The goal of our analytical model is to understand the fundamen-

tal tradeoff governing the runtime performance, instead of serving

as a predictive model. To use it as a predictive model one has to

estimate the number of epochs that each algorithm needs. This

problem has been the focus of many previous works (e.g., [54]) and

is thus orthogonal to this paper. Nevertheless, we implement the

sampling-based estimator in [54] and use 10% of training data to

estimate the number of epochs needed. Then, the estimated epoch

numbers and unit runtime, together with the constant in Table 6, are

used to predict the end-to-end runtime. We choose four workloads

(LR/SVM & Higgs/YFCC100M) and train them with two optimiza-

tion algorithms (SGD and ADMM) in both FaaS (LambdaML) and

IaaS (distributed PyTorch). Figure 13(b) shows that this simple esti-

mator can estimate the number of epochs well for both SGD and

ADMM, and the analytical model can also estimate the runtime

accurately. It is interesting future work to develop a full-fledged pre-

dictive model for FaaS and IaaS by combining the insights obtained

from this paper and [54].

5.3.1 Case Studies. We can further use this analytical model to

explore alternative configurations in future infrastructures

Q1: What if Lambda-to-VM communication becomes faster (and
support GPUs)? As we previously analyzed, the performance of Hy-

bridPS is bounded by the communication speed between FaaS and

IaaS. How would accelerating the FaaS-IaaS communication change

our tradeoff? This is possible in the future by having higher FaaS-

to-IaaS bandwidth, faster RPC frameworks, or more CPU resources

in FaaS. To simulate this, we assume bandwidth between FaaS and
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Figure 15: Simulation: Hot Data.

IaaS can be fully utilized and change the bandwidth to 10GBps in

our analytical model. As shown in Figure 14, the performance of

HybridPS could be significantly improved. When training LR over

YFCC100M, HybridPS-10GBps is worse than FaaS since FaaS saves

the start-up time of one VM and uses ADMM instead of SGD. When

training MN over Cifar10, HybridPS-10GBps would be about 10%

faster than IaaS; however it is still slower than IaaS-GPU.

If future FaaS further supports GPUs and offers similar pricing

compared with comparable IaaS infrastructure — $0.75/hour for

g3s.xlarge — HybridPS-10GBps would be 18% cheaper than IaaS.

This wouldmake FaaS a promising platform for training deep neural

networks; otherwise, under the current pricing model, IaaS is still

more cost-efficient even compared with HybridPS-10GBps.

Q2: What if the data is hot? Throughout this work, we assumed

that both FaaS-based and IaaS-based implementations read data

from remote disk such as S3. What if the data is “hot” and has

already been stored in the VM? To understand this, suppose that

the YFCC100M dataset is stored in a powerful VM (m5a.12xlarge).

IaaS-based system (t2.medium), FaaS-based system, and HybridPS

all read the dataset from the VM. As shown in Figure 15, IaaS signifi-

cantly outperforms FaaS and HybridPS, due to the slow communica-

tion when FaaS reads hot data. This is consistent with observations

by Hellerstein et al. [42, 76, 80] for ML training, and resonates

observations by previous work on non-ML workloads [76, 80].

Q3: What about multi-tenancy? When the system is serving mul-

tiple users/jobs, FaaS-based solution can potentially provide a more

flexible provisioning strategy: start an FaaS run for each job on-

demand. Given the short start-up time of FaaS-based solution, this

might provide a benefit over both reserved VM solutions and on-

demand VM solutions, especially for “peaky” workloads. This ob-

servation has been reported for other non-ML workloads [76] and

we expect something similar for ML training. Given the space limi-

tations, we leave this aspect to future work.

6 RELATEDWORK
(Distributed ML) Data parallelism is a common strategy used

by distributed ML systems, which partitions and distributes data

evenly across workers. Each worker executes the training algo-

rithm over its local partition, and synchronizes with other workers

from time to time. A typical implementation of data parallelism

is parameter server [2, 29, 30, 45, 50, 63, 84]. Another popular

implementation is message passing interface (MPI) [38], e.g., the

AllReduceMPI primitive leveraged by MLlib [72], XGBoost [27],

PyTorch [64], etc [60]. We have also used data parallelism to imple-

ment LambdaML. Other research topics in distributed ML include

compression [6, 7, 52, 53, 93, 96, 97, 101], decentralization [28, 41,

59, 65, 90, 91, 100], synchronization [4, 19, 26, 46, 66, 68, 87, 94, 102],

straggler [8, 56, 83, 89, 98, 105], data partition [1, 3, 36, 55, 77], etc.

(Serverless Data Processing) Cloud service providers have intro-

duced their serverless platforms, such as AWS Lambda [14], Google

Could Functions [37], and Azure Functions [73]. Quite a few studies

have been devoted to leveraging these serverless platforms for large-

scale data processing. For example, Locus [81] explores the trade-off

of using fast and slow storage mediums when shuffling data un-

der serverless architectures. Numpywren [86] is an elastic linear
algebra library on top of a serverless architecture. Lambada [76]

designs an efficient invocation approach for TB-scale data analytics.

Starling [80] proposes a serverless query execution engine.

(Serverless ML) Building ML systems on top of serverless infras-

tructures has emerged as a new research area. Since MLmodel infer-

ence is a straightforward use case of serverless computing [21, 48],

the focus of recent research effort has been on ML model training.

For instance, Cirrus [25] is a serverless framework that supports

end-to-end ML workflows. In [34], the authors studied training neu-

ral networks using AWS Lambda. SIREN [92] proposes an asynchro-

nous distributed ML framework based on AWS Lambda. Hellerstein

et al. [42] show 21× to 127× performance gap, with FaaS lagging

behind IaaS because of the overhead of data loading and the limited

computation power. Despite these early explorations, it remains

challenging for a practitioner to reach a firm conclusion about the

relative performance of FaaS and IaaS for ML Training. On the other

hand, Fonseca et al. [25] in their Cirrus system, Gupta et al. [39]

in their OverSketched Newton algorithm, and Wang et al. [92]

in their SIREN system, depict a more promising picture in which

FaaS is 2× to 100× faster than IaaS on a range of workloads. The

goal of this work is to provide a systematic, empirical study.

7 CONCLUSION
We conducted a systematic study regarding the tradeoff between

FaaS-based and IaaS-based systems for training ML models. We

started by an anatomy of the design space that covers the optimiza-

tion algorithm, the communication channel, the communication

pattern, and the synchronization protocol, which had yet been

explored by previous work. We then implemented LambdaML, a

prototype system of FaaS-based training on Amazon Lambda, fol-

lowing which we systematically depicted the tradeoff space and

identified cases where FaaS holds an edge. Our results indicate that

ML training pays off in serverless infrastructures only for mod-

els with efficient (i.e., reduced) communication and that quickly

converge. In general, FaaS can be much faster but it is never signifi-

cantly cheaper than IaaS.
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