
Serverless Clusters:
The Missing Piece for Interactive Batch Applications?

[Position Paper]

Ingo Müller
1

Rodrigo Bruno
1

Ana Klimovic
2

John Wilkes
2

Eric Sedlar
3

Gustavo Alonso
1

1{ingo.mueller,rodrigo.bruno,alonso}@inf.ethz.ch 2{anakli,johnwilkes}@google.com 3eric.sedlar@oracle.com
Systems Group, Department of Computer Science, ETH Zurich Google Inc., Mountain View, CA Oracle Labs

ABSTRACT
The massive, instantaneous parallelism of serverless functions has

created a lot of excitement for interactive batch applications. We

argue that functions are in fact the wrong abstraction for this use

case. We call instead for another type of infrastructure, “serverless

clusters,” and discuss what is missing to make them a reality.

1 INTRODUCTION
Parallelization has emerged as one of the main techniques to in-

crease performance after the end of CPU frequency scaling. Thanks

to the elasticity of the cloud, massive degrees of parallelism are

available to and affordable by essentially anybody. Recently, server-
less functions (or Function-as-a-Service), have pushed elasticity into
previously unchartered territory: These services allow to get an

extremely high degree of parallelism (in the order of several thou-

sand) within a very short amount of time (typically a few seconds)

and are billed at sub-second granularity. Furthermore, functions are

typically programmed in a high-level language such as JavaScript,

Python, or Java and do not require any administration or mainte-

nance from the user. Serverless functions thus have the potential

to make massive parallelization available to the masses.

Due to this potential, an increasing number of workloads has

been proposed for taking advantage of serverless functions. In par-

ticular, functions have been used for batch applications, which run

in short but intense bursts of related invocations. Examples include

distributed make [5, 13], sorting [11, 13, 17, 19], video encoding [4,

5, 6], image and video classification [4, 5, 13], unit tests [5], as well

as MapReduce-style [11, 12, 15, 17, 19] and SQL-style analytics [15,

16, 17]. The massive parallelism offered by functions often reduces

the end-to-end running time from hours to a few minutes or a few

dozen seconds—making them interactive where they previously

were not. Furthermore, functions “scale to zero”—they have no

economic or operational overhead even for very sporadic use.

2 FUNCTIONS ARE NOT DESIGNED FOR JOBS
However, we claim that functions are actually not a good fit for

the applications mentioned above
1
as they were designed for a

fundamentally different use case. The problem functions solve is

request serving—a long-running service that processes a stream

1
We are not the only ones to be skeptical [9].

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license.

SPMA ’20, April 27, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s).

https://doi.org/10.3929/ethz-b-000405616

of independent requests, whose volume may change rapidly and

unpredictably and thus needs fast auto-scaling of resources. For

example, AWS Lambda is advertised [2] “to execute code in response

to triggers” and “to handle web, mobile, [. . . ] and [. . . ] API requests.”

In contrast, the applicationsmentioned above runmassively parallel

jobs—a set of dependent tasks that run to completion and are best

solved by closely-coupled workers running at the same time. For

this set-up, the serverless functions architecture lacks a number of

fundamental features: Different function invocations have nomeans

of direct communication; there is no API for batch invocation; there

is no mechanism to know which functions are currently running;

and there is not even a guarantee how many concurrent invocations
there will be at any given point in time. We argue that the serverless

functions architecture does not provide these features by design as

they are not required to serve independent requests.

Previous work on using serverless functions for batch appli-

cations thus mainly consists of working around the limitations

of serverless functions (including our own [15]). For example, a

large number of authors have proposed methods that enable differ-

ent function invocations to communicate through some external

service [11, 12, 13, 15, 16, 17, 19]. The solutions either consist of

additional system components (which severely limits elasticity and

thus defeats the purpose of functions) or sophisticated communi-

cation mechanisms that are purpose-built for serverless functions,

potentially only for those of a particular cloud provider. Similarly,

we suspect that many of the proposed systems assume that server-
less functions are executed concurrently and that their results or

side-effects are available to other concurrent invocations immedi-

ately even though cloud providers do not guarantee that. These
systems could thus stop working from one day to the next if cloud

providers change the way they schedule invocations. While these

projects make a good case for interactive applications that need ex-

tremely elastic cloud infrastructure, we argue that they are actually

fighting the technology they run on and are thus not likely to find

broad and sustained adoption.

3 VMS ARE NOT SERVERLESS
In contrast, virtual machines (VM) or containers do not suffer from

the shortcomings of serverless functions mentioned above. They

represent the de-facto standard for packaging applications in a way

that they can be run on any physical infrastructure. A large number

of VMs can be easily batch-deployed, through orchestration tools

like Kubernetes or provider-specific APIs, and each of them can be

addressed directly through the standard network stack. In other

words, VMs are more versatile and mature for providing massive

parallel resources than functions.

https://doi.org/10.3929/ethz-b-000405616


SPMA ’20, April 27, 2020, Heraklion, Greece Ingo Müller, Rodrigo Bruno, Ana Klimovic, John Wilkes, Eric Sedlar, Gustavo Alonso

However, serverless functions have two huge advantages com-

pared to the current VM and container stacks, which explains the

excitement around them in spite of their short-comings: i) extremely

low startup time, and ii) lower operational complexity. Amazon’s

and Google’s median invocation latency of “cold” functions has

been measured to be in the order of 200ms [20]. In contrast, the

deployment times of VMs in the cloud currently range around

20 s–60 s [1] and, interestingly, startup times for managed general-

purpose containers are not significantly lower [8]. In order to amor-

tize this startup effort, the cloud providers also have a much higher

minimum billing time for VMs or containers than for functions:

for example, 100ms in AWS Lambda vs. 1min in both AWS EC2

(VMs) and AWS Fargate (containers). What VMs and containers

thus lack is burstability—low-latency deployment at large scale

with correspondingly low billing granularity.

Containers and VMs might also expose more system complexity

to the user. While functions essentially only consist of high-level

code with few configuration knobs, the user has to provide con-

tainer or VM images with up-to-date and correctly configured soft-

ware and set up the network among the different components of the

application. Furthermore, she might need to choose the number and

type of VM instances, which may have a significant impact on the

performance and price of her application. Finally, in order to avoid

the long delay of per-job start-ups, the user might instead keep

a cluster of VMs running, which increases operational complex-

ity further and leads to potentially high under-utilization and thus

overall higher cost. In particular, for sporadic usage, this complexity

has the risk to be too high to be worth doing.

4 SERVERLESS CLUSTERS
To fill the gap in current cloud computing offerings, we call for a new

type of cloud infrastructure, “serverless clusters,” which combines

features from VMs or containers and serverless functions. With this

type of service, users submit descriptions of jobs, which define a set

of workers along with their type, size, number, configuration, and

addressable name, and the maximum running time. The service sets

up the workers, including the allocation of the necessary resources,

the starting of the workers’ runtimes, and the set-up of the network

between them. The set-up process takes a few seconds at most—this

is, at the same time the biggest challenge and, as we argue below,

within reach. When the job has completed or reached the given

timeout, the service stops the resources and charges the user with

second-granularity or finer, ideally from the first second.

We think that serverless clusters perfectly fulfill the needs of

interactive batch applications. They offer the benefits of serverless

functions, but without their limitations for batch applications. In

a way, they turn the cloud into an infinitely-sized supercomputer

with interactive scheduling latency accessible by anyone. In the talk,

we will illustrate the potential gains of serverless clusters based on

the extensive measurements and cost estimates from our previous

work [15].

Note that, while some existing services come close to the idea,

cloud providers do not offer serverless clusters just yet. For example,

Google’s Cloud Dataproc allows to run Hadoop and Spark jobs on

ephemeral, “job-scoped” clusters, but with an advertised cluster

start-up time of 90 s [7], which is two orders of magnitude higher

than that of functions. Google’s Batch and Amazon’sAWS Batch run

jobs on long-running, user-specific clusters, which are likely to be

heavily under-utilized in interactive scenarios. AWS Step Functions
allow to invoke serverless functions in batches, which has low start-

up time and usage-based billing, but still suffers from the lack of

direct communication as discussed above. Finally, Google Cloud
Run offers serverless containers, but since they are designed for

request serving like functions, they also lack the same features

(batch-invocation, addressability, etc).

5 OPEN RESEARCH QUESTIONS
While we argue for the attractiveness of serverless clusters, we think

that they are not yet feasible due to a number of open questions

and challenges, including the following:

Job programming abstraction. The serverless functions ab-
straction provides a clean and simple interface to process a stream

of independent events. A similar abstraction should be provided

for jobs that allows workers to communicate—whether they are

deployed as high-level code (similar to Amazon Lambda) or as con-

tainers (similar to Google Cloud Run). A related question is what

the job submission interface should look like: Are existing solu-

tions such as Kubernetes, YARN, or Slurm suitable or do we need

something new?

Interactive cluster start-up time.Datacenter infrastructure is
currently not optimized for deploying a large number of ephemeral

resources in a short amount of time. The problem does not seem

to be the start-up times of the traditional VM and container stacks

itself: optimized hypervisors are able to start VMs in the order of

100ms [3], Linux can be made to boot in 1 s–2 s [18], and specialized

kernels in as little as 6ms [14]. However, orchestrated deployments

(using Kubernetes, for example) can easily take up to several dozens

of seconds to deploy a set of VMs or containers. There is hence

a need to revisit cluster management in light of the requirement

of serverless clusters. One possible avenue for research is to use

specialized hardware for the control plane, which could help speed

up this process.

Infrastructure overhead. Guaranteeing interactive start-up

time increases infrastructure overhead significantly. For serverless

functions, the cloud providers need tomaintain a significant amount

of infrastructure that handles a high rate of function invocations

within tight latency bounds. This includes keeping around idle

resources to handle load spikes and caching function environments

to speed up future invocations. This is in contrast with the short

execution time of functions, which increases the relative overhead

of this additional infrastructure. Serverless clusters are likely to be

even more demanding as they require the short-term availability

of a large number of resources concurrently.
Accelerators for interactive jobs. Once general-purpose VMs

can be rented for extremely short bursts, it seems feasible to ex-

tend the serverless cluster model to specialized instance types with

hardware accelerators such as GPUs and FPGAs in order to in-

crease compute efficiency. However, these devices often have little

to no support for virtualization or multi-tenancy. Our group has

several ongoing projects [10], but more research is required in this

direction.



Serverless Clusters: The Missing Piece for Interactive Batch Applications? SPMA ’20, April 27, 2020, Heraklion, Greece

REFERENCES
[1] Samiha Islam Abrita, Moumita Sarker, Faheem Abrar, and Muham-

mad Abdullah Adnan. “Benchmarking VM Startup Time in the

Cloud.” In: Bench. 2019. doi: 10.1007/978-3-030-32813-9_6.
[2] AmazonWeb Services.AWS Lambda – Serverless Compute. url: https:

//aws.amazon.com/lambda/ (visited on 02/03/2020).

[3] Inc Amazon Web Services. Firecracker – Secure and fast microVMs for
serverless computing. 2019. url: https://firecracker-microvm.github.

io/ (visited on 02/13/2020).

[4] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.

“Sprocket: A Serverless Video Processing Framework.” In: SoCC. 2018.
doi: 10.1145/3267809.3267815.

[5] Sadjad Fouladi, Shuvo Chatterjee, and Francisco Romero. “From

Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of

Transient Functional Containers.” In: USENIX ATC. 2019.
[6] Sadjad Fouladi et al. “Encoding, Fast and Slow: Low-Latency Video

Processing Using Thousands of Tiny Threads.” In: NSDI. 2017.
[7] Google. Dataproc – Cloud-native Apache Hadoop & Apache Spark.

2020. url: https://cloud.google.com/dataproc (visited on 02/13/2020).

[8] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau,

and Remzi H Arpaci-Dusseau. “Slacker: Fast Distribution with Lazy

Docker Containers Slacker: Fast Distribution with Lazy Docker Con-

tainers.” In: FAST. 2016.
[9] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann

Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang

Wu. “Serverless Computing: One Step Forward, Two Steps Back.” In:

CIDR. 2019.
[10] Zsolt Istvan, Gustavo Alonso, and Ankit Singla. “Providing Multi-

tenant Services with FPGAs: Case Study on a Key-Value Store.” In:

FPL. 2018. doi: 10.1109/FPL.2018.00029.

[11] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-

jamin Recht. “Occupy the Cloud: Distributed Computing for the

99%.” In: SoCC. 2017. doi: 10.1145/3127479.3128601.
[12] Youngbin Kim and Jimmy Lin. “Serverless Data Analytics with Flint.”

In: CLOUD. 2018. doi: 10.1109/CLOUD.2018.00063.
[13] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas

Pfefferle, and Christos Kozyrakis. “Pocket: Elastic Ephemeral Storage

for Serverless Analytics.” In: OSDI. 2018.
[14] Waldek Kozaczuk. Making OSv Run on Firecracker - OSv Blog. url:

http://blog.osv.io/blog/2019/04/19/making-OSv-run-on-firecraker/

(visited on 02/12/2020).

[15] Ingo Müller, Renato Marroquín, and Gustavo Alonso. “Lambada:

Interactive Data Analytics on Cold Data using Serverless Cloud

Infrastructure.” In: SIGMOD. 2020. doi: 10.1145/3318464.3389758.
[16] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel

Madden. “Starling: A Scalable Query Engine on Cloud Function

Services.” In: (2019). arXiv: 1911.11727.

[17] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. “Shuffling , Fast

and Slow: Scalable Analytics on Serverless Infrastructure.” In: NSDI.
2019.

[18] Kaveh Razavi, Gerrit Van Der Kolk, and Thilo Kielmann. “Prebaked

𝜇vMs: Scalable, Instant VM Startup for IaaS Clouds.” In: ICDCS. 2015.
doi: 10.1109/ICDCS.2015.33.

[19] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-

López. “Serverless data analytics in the IBM cloud.” In: Middleware
Industry. 2018. doi: 10.1145/3284028.3284029.

[20] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and

Michael Swift. “Peeking Behind the Curtains of Serverless Platforms.”

In: USENIX ATC. 2018.

https://doi.org/10.1007/978-3-030-32813-9_6
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://doi.org/10.1145/3267809.3267815
https://cloud.google.com/dataproc
https://doi.org/10.1109/FPL.2018.00029
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1109/CLOUD.2018.00063
http://blog.osv.io/blog/2019/04/19/making-OSv-run-on-firecraker/
https://doi.org/10.1145/3318464.3389758
https://arxiv.org/abs/1911.11727
https://doi.org/10.1109/ICDCS.2015.33
https://doi.org/10.1145/3284028.3284029

	Abstract
	1 Introduction
	2 Functions are not Designed for Jobs
	3 VMs are not Serverless
	4 Serverless Clusters
	5 Open Research Questions

