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ABSTRACT
In today’s data-driven landscape, organizations have large amounts
of semi-structured data that they want to get quick insights from.
Query-as-a-Service (QaaS) systems are ideal for this use case, as
the user can query the data in situ without spinning up or main-
taining any dedicated infrastructure. However, these systems lack
traditional database structures (e.g. indexes) making their cost and
latency suboptimal in many cases. As a remedy, we show how QaaS
can utilize simple data transformations (transcoding, chunking,
sorting) using serverless functions (FaaS) to automatically modify
input data based on data characteristics and the incoming queries
to improve latency and cost. We envision that a cloud service can
act as a middleware between the user and QaaS to adopt such
transformations, where customers can opt in and specify their la-
tency/cost budgets. Finally, we evaluate the various trade-offs of
these transformations.

1 INTRODUCTION
Data management and analysis has changed rapidly over the last
few years, influenced by both the increasing amount of data pro-
duced every day and the influence of Machine and Deep Learning
(ML/DL) on data processing. This evolution is further pushed by
the prevalent use of semi-structured data (e.g. CSV, JSON, Parquet),
which are very popular both in the scientific domain and for ML
datasets [6, 7, 21, 26]. Especially textual formats (e.g. CSV, JSON)
offer simplicity and align well with the flexible nature of ML/DL
algorithms but on the other hand lack complex schemas and they
are optimized to be human-readable. Organizations, influenced by
the evolving landscape, find themselves still storing an increasing
portion of their data in textual format, which they need to ana-
lyze, get insights from, and use to their benefit. To do so, they can
use cloud data warehouses or analytics platforms (e.g. Databricks,
Snowflake)—or QaaS systems (e.g. Amazon Athena, Google Big
Query). Data warehouses are a very good fit for data that need to
be continuously processed and maintained because they optimize
data layouts and materialize views of transformations to optimize
∗Currently at Apple

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

CSV Parquet
Runtime[s] Cost[$] Runtime[s] Cost[$]

BigQuery 227 9.05 71.5 2.11
Athena 273.3 9.09 132.3 0.76

Table 1: Runtime and cost of running TPC-H SF-100 on Par-
quet and CSV for Amazon Athena and Google BigQuery

performance. However, there are many use cases that produce data
that will only be used and processed a handful of times or even
just once. Take, for example, a particle physicist producing insights
on a single experiment for High-Energy Physics [22]. For these
sparse, infrequent workloads, maintaining an always-on infrastruc-
ture is not efficient and QaaS are a great solution. By declaring
semi-structured data as external tables, users can query them and
extract the necessary information while only paying for the amount
of data they scanned and without the need to worry about scaling
the infrastructure or optimizing the input data layouts.

Between the two extremes of data warehousing and QaaS, there
are many opportunities for improvement in between. For example,
converting the input data to a columnar format (e.g. Apache Par-
quet) can have a huge impact on the execution time and cost of
QaaS. Consider the cost and runtime for running TPC-H SF-100
on two popular QaaS in Table 1. We observe that the runtime is
reduced more than 3x and the cost by an order of magnitude just
with a simple transformation. Nevertheless, for sporadic execution,
converting the whole dataset to Parquet might be ineffective in
terms of cost and/or latency. The ultimate decision depends on the
size of the dataset and the nature and arrival pattern of the queries.

Hence, in this paper we present our vision for adaptive data
transformations for QaaS, which adjust based on the characteristics
of incoming queries over time and a cost/latency budget provided
by the client. We show how simple transformations (e.g. transcod-
ing, sorting, chunking) can have a large impact on the cost and/or
execution time of QaaS, in contrast to a non-future proof one-time
transformation. To convert the data, we use FaaS because serverless
functions are a good fit for occasional, bursty workloads due to their
high elasticity, fine-grain resource billing, and the ability to scale to
zero at low load [29]. In this way, QaaS can invoke FaaS only when
additional budget is given by the customer and without introducing
query rewriting. To understand the various trade-offs with adaptive
transformations, we experiment with Amazon Athena and AWS
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Lambda . Based on our observations, we provide actionable advice
on where and which transformation pays off and how users can
reduce their cost and latency for their sporadic workloads. Our
insights are transferable between different cloud providers and also
pave the way to practical storage optimization in the cloud, an
area that is becoming increasingly important through data lake-
houses [14, 33, 34]. Finally, we sketch future directions on how
adaptive data transformations can be integrated in the cloud as part
of QaaS as a cost/runtime advisor that can help clients to perform
incremental transformations based on their own needs and budgets.

2 BACKGROUND
In this section we go over the necessary background needed for
our paper. We start covering Apache Parquet, a popular columnar
storage format and briefly discuss QaaS and FaaS, the technologies
we built our transformations around.

2.1 Apache Parquet
Apachet Parquet [3] is an open-source columnar storage file format,
designed to improve storage and access efficiency of tabular data
compared to row-based files like CSV. Internally, Parquet files are
divided into row groups. Each row group contains part of the data
and within a row group, data are organized into column chunks.
Each column chunk is divided into pages. Finally, each file has footer
metadata about row groups and columns chunks (e.g. data types,
total row group size, encodings, min-max indexes). The columnar
storage, together with the footer metadata allow for compression
techniques such as dictionary or run-length encoding. Additionally,
using metadata, query engines can apply various optimizations
(e.g. predicate pushdown, bloom filters, column statistics) to skip
reading irrelevant row groups based on query predicates. All these
features, together with the fact that Parquet is language-agnostic,
have made this format the backbone of lakehouse formats, such as
Deltalake [8] and Apache Iceberg [2].

2.2 Query-as-a-Service (QaaS)
Query-as-a-Service (QaaS) systems are cloud computing systems
that allow users to execute SQL (or SQL-like) queries directly on
data stored in the object storage. They offer significant advantages
compared to traditional databases, as they can query datasets on de-
mand through external tables without the need for upfront loading.
Additionally, there is no need to manage the underlying infrastruc-
ture. Popular examples of such systems are Amazon Athena [1],
and Google BigQuery [9]. QaaS support a variety of data formats
(e.g CSV, JSON, Avro, Parquet). They only charge users based on
the amount of data scanned by individual queries. However, when
working on external data, they are lacking other traditional opti-
mizations (e.g. join reordering) because most of these optimizations
are based on statistics calculated upon table ingestion. This can
lead to an increase in cost or execution time since, for example,
they might read tables more than once or pick a non-optimal path
to execute a query.

2.3 Serverless functions
Serverless functions or Function-as-a-Service (FaaS) are a cloud
execution model where cloud providers dynamically manage the
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Figure 1: System architecture

allocation and provisioning of servers. They are called serverless as
managing instrastructure is abstracted away from developers, who
only need to focus on writing the application code. The functions
are executed in response to events (e.g. HTTP requests). Popular
examples of serverless functions are AWS Lambda [4], Azure Func-
tions [5], and Google Cloud Functions [10]. FaaS are a good fit
for sparse, bursty workloads. First of all, users only pay for the
compute time they consume when needed and they do not need
to keep the infrastructure on the whole time. They are also highly
scalable, reaching up to a few thousand function invocations per
second, while keeping a simple and quick deployment. Additionally,
they are especially useful for data-independent tasks that start up
and shut down quickly and run on an infrequent basis [29].

3 DATA TRANSFORMATIONS IN PRACTICE
We first describe how we imagine that our adaptive data transfor-
mations will be integrated as a cloud service (Figure 1). The user
submits a workload consisting of semi-structured, uncompressed
data, queries, and the frequency of the workload to QaaS. Our sys-
tem has visibility on the queries, table metadata (e.g. types), and
the frequency at which the workload will execute. The service then
analyzes the queries to check the size of the tables, their predicates,
how often this table is queried, and the number of partitions each ta-
ble has. The user optionally gives a monetary budget to drive more
targeted optimizations. For our initial implementation, our module
will only have three transformations (transcoding, chunking, and
sorting) since these are the most influential and well-known in
terms of latency/cost. The controller first checks if the budget is
enough to convert a few or all of the largest tables of the dataset to
a compressed format. It then checks for additional optimizations.
For example, if the number of partitions on large tables is very low
or there are many queries that have the same selection predicates,
the controller checks if it can combine more than one optimizations.
For a transformation to be valid, the execution cost should be lower
than the budget that the user has given but the execution cost is di-
rectly proportional to the execution time since FaaS has a cost on a
per-use basis. After the necessary analysis has been performed and
the transformations are decided, the controller launches serverless
functions through the transformer, which has access to the data
through the cloud storage, to perform the required transformations.
The transformed data are then available to the QaaS for running
the initial workload. Subsequent executions of the workload follow
again the same execution flow. For every set of transformations
performed, we keep additional copies of the data in S3. We do not
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Figure 2: Query runtime (left axis) and query cost (right axis)
of running TPC-H on Amazon Athena with different tables
on Parquet

have the cost of keeping additional data as part of our budget be-
cause this depends on the amount of time the user keeps the data
on S3. For sparse-running workloads, the cost pattern might be
very irregular and there is a possibility to even delete the data right
after the workload is completed.

4 EXPLORING THE TRADE-OFFS
In this section, we analyze the runtime and cost of performing the
three conversions (transcoding, chucking, sorting). We use AWS
Athena as an example QaaS and AWS Lambda to run the data
transformations. In both cases we read/write the data from/to S3.
To reduce the variability of serverless function latency, in particular,
due to cold starts [24, 27, 35], we pre-warm the functions and take
the median of 10 runs for each experiment.

4.1 Transcoding to columnar format
Conversion to a columnar format (or transcoding), such as Apache
Parquet, is one of the most effective transformations for users to
reduce cost and latency for QaaS because Parquet has a number
of optimizations (Section 2.1) compared to CSV/JSON. Although
transcoding is generally beneficial, for sparse-running workloads,
it is not obvious which tables to convert to Parquet to maximize
the potential benefit, because there are many factors to consider,
such as table sizes, the frequency each table appears in the query
set, and the projection and selection predicates of each query.

To understand the trade-offs, we run TPC-H SF-100 with 300
files per table on Amazon Athena. We transform combinations of
tables in Parquet and show the execution time and cost in Figure 2.
We transform either all tables or a combination of the three bigger
tables of the workload (lineitem, orders, and partsupp), which
constitute 97% of the total dataset size. Transforming all data to
Parquet reduces the overall runtime in half and the total cost around
10x. Since the first three tables make up almost the entire dataset,
transforming them brings the cost and the runtime very close to
having all data on Parquet.

We now experiment with transcoding combinations of two tables
from lineitem, orders, and partsupp. Transforming lineitem
and orders is very similar to transforming all three tables, whereas
converting lineitem and partsupp has both higher runtime and
cost, respectively 20s and 0.5$. This increase is much larger pro-
portionally than the 5GB difference between orders (17GB) and
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Figure 3: Transformation runtime (left axis) and transfor-
mation cost (right axis) of transcoding different tables on
Amazon Lambda

partsupp (12GB). We make similar observations when we con-
vert only orders and partsupp or individual tables in the right
side of the figure. More specifically, if we run the benchmark with
orders and partsupp on Parquet, the runtime reduces 12% and the
cost 13%, whereas both these tables are around 25% of the overall
workload size. The trend becomes even worse if we alter orders or
partsupp individually. For orders, the runtime is 11% lower and
the cost 10% lower. For partsupp, the runtime is identical to not
having converted the table and the cost is 5% lower. Finally, when
having lineitem in Parquet, the runtime reduces almost 40% and
the cost more than 4x, besides the table being only 70% of the work-
load. Therefore, it is not always straightforward or obvious which
tables we should transcode. That becomes even more complicated
if we take into account the latency and cost of converting our tables
from one format to another.

To understand how expensive and time-consuming transcoding
of the tables is, we show the runtime and cost of converting the
same table combinations as in the previous experiment to Parquet
in Figure 3. Every table is split across 300 files of equal size, and we
invoke one function per file for the conversion using a large degree
of parallelism for the function invocation.

The experiment mirrors partially what we noticed previously.
First, there is a sub-linear behavior depending on the table size,
both for latency and cost. That comes from the fixed “setup” cost
(e.g. invocation of functions, time until a function starts etc.), which
is independent of the input size. Additionally, converting lineitem
with other table combinations takes roughly the same time as con-
verting lineitem alone, although the cost increases as we convert
more tables. That shows that transforming a large table dominates
the running time when the overall number of function invocations
is not very large (up to a 1000). On the other hand, if we convert
all tables to Parquet, the overall runtime and cost increase signifi-
cantly, in a disproportionate way compared to the additional data
transformed. In particular, the rest of the tables are only 5GB but
the overall increase both in runtime and cost is more than 30%.
That shows the influence of the setup cost in the overall runtime as
well as the impracticality of always transforming everything into a
more suitable format as it may not be cost effective, especially for
large data amounts.
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Figure 4: Runtime of running TPC-H on Amazon Athena
with different number of parquet partitions per table

4.2 Splitting by size (chunking)
Changing the number of files a table consists of is another effective
transformation that influences the latency but not the cost of a work-
load. However, it is not obvious what partition file size to choose
because cloud providers do not provide explicit instructions. For
example, Athena’s documentation says that “datasets that consist
of many small files result in poor overall query performance” [11]
but does not give indications on what the file size should be.

The performance drop that Athena mentions happens because,
first, QaaS systems need to keep a list of all the partition locations
and, therefor, with an increasing number of partitions, the listing
time increases and, second, because they usually schedule the num-
ber of tasks based on the number of partitions. If there are too
many small files, each task has negligible work and most of the
time is spent communicating across different tasks in exchange
phases. However, a few large files can also be detrimental because
not enough tasks are scheduled and the overall CPU power is not
sufficient.

To understand the file size effect, we alter the number of table
CSV partitions from 20 to 900. In a plot not shown, we see that the
number of CSV partitions has no influence on the execution time.
Because the actual implementation of Athena is not open source, we
can only speculate about why. When observing the query plans, we
notice that the number of tasks stays the same independently of the
number of partitions and is also quite high. Therefore, a plausible
explanation is that Athena sets a high degree of parallelism directly
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Figure 5: Runtime of running TPC-H on Amazon Athena
when having different number of parquet partitions in a
subset of tables
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Figure 6: Transformation runtime (left axis) and transforma-
tion cost (right axis) of splitting tables into smaller files on
Amazon Lambda

when reading CSV and splits the data across the workers with a
mechanism that is independent of the number of files.

In contrast, the number of Parquet files has a big influence on the
query runtime. We observe this in Figure 4, where we run TPC-H
SF 100 with an increasing number of Parquet files per table. The
plot has a U-shape: If we have a very small or very large number of
files, the performance is not optimal. Especially, for small numbers
of files (e.g., 20 files per table), the overall runtime is even larger
than running the same workload on CSV. The optimal performance
occurs with 100 partitions per table. After that, increasing the num-
ber of partitions increases gradually the execution time. Based on
the query plans, we observe that Athena sublinearly increases the
number of tasks as the number of partitions increases. For a small
number of partitions, based on the CPU time, there is not enough
parallelism to process data as fast as possible, whereas for large
number of partitions, the CPUs are underutilized. The parallelism
does not only have to do with the number of partitions but also
the size of each partition. From our experiments, we observed that
Athena can handle I/O better with Parquet file size less than 300MB.

We repeat a similar experiment to Section 4.1. We run TPC-H
using 20 partitions per table while using 100 chunks for the tables
denoted in the x-axis (Figure 5). We pick either all tables or combi-
nations of the three largest tables. We notice that chunking orders,
partsupp, or both at the same time gives a marginal or no per-
formance advantage, especially when considering their size in the
overall benchmark (around 25%). On the other hand, transforming
only lineitem is 8% slower than splitting all the tables into 100
partitions and dividing more tables other than that gives marginal
increases, if any. The rationale for that is that the number of tasks
that can be scheduled for a particular table increases for tables like
lineitem but not for small tables like partsupp.

To gain insights into how time and cost-effective chunking is,
we use serverless workers to divide an individual Parquet file into
smaller ones for various TPC-H tables. We use one function per
input file, load the file gradually from S3, and transform it in batches
to be as memory efficient as possible (Figure 6). We see that the
overall cost is much lower than if we convert files from CSV to
Parquet because we use a smaller number of functions compared
to transcoding and transfer less data from S3 to Lambda due to the
compression that Parquet has.

4



Adaptive data transformations for QaaS CIDR 2025, January 19–22, 2025, Amsterdam, Netherlands

Table 2: TPC-H SF-100 queries with sorted and unsorted se-
lection predicate

Query Selectivity No sorting l_shipdate sorting
Runtime[s] Cost[$] Runtime[s] Cost[$]

Query 1 1% 23.21 0.026 21.75 0.021
Query 3 46% 12.33 0.033 11.58 0.040
Query 6 85% 9.53 0.023 5.31 0.013
Query 12 51% 14.44 0.021 11.55 0.020
Query 14 99% 11.18 0.037 7.07 0.020
Query 15 96% 12.52 0.070 8.21 0.046
Query 20 84 % 13.37 0.039 7.95 0.022
TPC-H total
(common data)

- 283.19 0.718 272.6 0.737

TPC-H total (sep-
arate data)

- 283.19 0.718 260.36 0.650

A second key observation is that any transformation involving
lineitem has roughly the same execution time, except for parti-
tioning all the tables. The difference between splitting lineitem
alone or together with other tables comes from the natural varia-
tion of cloud environments. Using this, we can partition a couple of
additional smaller tables together with a very large table without
increasing the overall execution time and with minimal additional
cost. Finally, transforming orders and partsupp separately or to-
gether has exactly the same runtime and a negligible difference in
cost. This occurs because, for transformation of small tables and for
a small number of files, the setup cost has minor duration compared
to the actual work the function does.

4.3 Sorting a selection column (sorting)
As a final transformation, we explore sorting Parquet files based on a
column: each FaaS invocation reads the Parquet file it gets assigned,
sorts the input by the sorting column, and writes the result into a
new Parquet file. This improves compression and makes min/max
indexing more effective. Sorting does not offer any performance
advantage on semi-structured file formats such as CSV.

We first experiment with isolating l_shipdate, the column in
lineitem that has the most selection predicates. This will give
an indication of the largest reduction that we can get since (1)
lineitem is the largest table and (2) one third of the benchmark
discards large amounts of data based on l_shipdate. We run these
queries on tables split over 20 files with and without the sorted
column and present the results in Table 2. The queries have a
ranging degree of selectivity from 1% to 99%. However, the decrease
in runtime and cost is also affected by other factors such as the query
plan and the other tables the query scans from. The biggest decrease
both for latency and cost is for Queries 6 and 20. Both of these have
a 43% cost and latency improvement due to less data scanned. In
contrast, for Query 3, we notice an interesting trend: although the
latency is reduced, the cost increases, meaning that Athena scans
more data. This happens because by sorting on a column, we are
disrupting the order of other columns. That may lead to unwanted
results, e.g. for tables that are sorted on the primary key, which
is the case for TPC-H by default. As a consequence, we cannot
predict the effect of altering the primary key order on the runtime
and cost. To verify this assumption, we run the whole benchmark
with the data sorted on l_shipdate (Table 2). The total runtime is
reduced only by 4% and the cost is increased by 3%. To avoid this
and to make sure that sorting will have a positive effect, we keep
two separate copies of the data: (1) the original data for queries
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Figure 7: Runtime of running TPC-H on unsorted data vs
sorted on l_shipdate data for various partitions per table on
Amazon Athena

that do not include a selection predicate on the columns that is
sorted and (2) the transformed data for the rest of the queries. With
this approach, we maximize the expected return. We verify this by
running TPC-H with two data copies (Table 2). The execution time
is reduced by 8% and the total cost is decreased by 10%.

Additionally, sorting also interacts with chunking. When we
have small files sorted by a previously unsorted column, the value
range of each fixed-size row group after sorting is larger. That
effectively means larger distance between the min and max values
per row group and, hence, less effective min/max filters.

We verify this hypothesis by increasing the number of files
and running TPC-H SF 100 with sorted and unsorted data on
l_shipdate (Figures 7 and 8). If running with sorted data, we have
two separate data copies. We observe similar trends for both plots:
As we increase the number of partitions, sorting provides a smaller
latency/cost reduction. Especially for 100 partitions, the time differ-
ence is less than 2%.We conclude that that sorting and chunking are
negating each other and that we have to pick only one of them if the
input file sizes are large. Finally, we discuss the cost and runtime of
sorting the l_shipdate column of lineitem using AWS Lambda.
While we used serverless functions with 2GB of main memory for
the previous transformations, for sorting, this is not sufficient. As
every file is around 1.1GB and sorting is memory-intensive, we
need to use the lambda functions with the highest memory (10GB).
Thus, sorting might not be feasible for every workload, table, and
partition size. The total execution time is 63s and the cost is 0.25$.
From a first look, sorting does not provide any advantage, given
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Figure 8: Cost of running TPC-H on unsorted data vs sorted
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the runtime and cost of transforming the files. While this is the
case for TPC-H, the actual advantage might be different for other
workloads or queries and depending on how many times we run a
workload.

5 RELATEDWORK
Our vision is inspired by database cracking [23] but has important
differences. First of all, our approach examines data copying and
not only reorganization through different formats and other trans-
formations and it is not necessarily done on a per-query basis but
can be also done ahead of time. Additionally, it is tailored for QaaS
that use external data and not for in-memory databases that ingest
data and create tables. Our adaptive data transformations are also
similar in spirit with many in-situ and caching efforts [12, 15, 30, 31].
However, all these approaches are based on on-premise, disk-based
systems, which consequently do not consider data copies but sub-
stituting data, or use different data layouts in caches. Our approach
is cloud-based and does not use caching but different data copies.
Additionally, data formats like the one proposed by Snowflake [19]
or in self-organizing data containers [28] are orthogonal to our
work since we do not explore new data structures but instead reor-
ganize data on a per-need basis to take advantage of various QaaS
characteristics for querying external data. Systems that use FaaS to
do query processing [17, 29, 32] are independent from our approach
as we use FaaS not to perform query processing but to lower the
runtime and cost for QaaS. Finally, in parallel to our strategy, Boncz
et al [18] propose adaptive indexing for query optimization in the
cloud given a particular budget and Bang et al [16] suggest to avoid
using ML techniques to optimize cloud systems but instead to use
systems as oracles and perform convex optimization. We do not
necessarily build indexes but we instead perform data reorgani-
zation tailored for QaaS infrastructures and could also build on
linear/convex optimization to investigate which transformations
are feasible and worth given a particular cost/latency budget.

6 DISCUSSION AND FUTUREWORK
In this paper, we introduce the notion of adaptive data transfor-
mations for QaaS. We show how the end user can leverage simple
transformations to reduce the cost and latency of infrequent work-
loads that run on QaaS, leveraging FaaS infrastructure. This opens
up a few exciting avenues for future work.
Workload-instance advisor. Based on our study, we can develop
an advisor to minimize workload latency given a particular cost
budget. The advisor will be part of the controller in the system
architecture of Figure 1. In addition to queries, it can take as input
queries from theworkload andmetadata about the data set (e.g., data
types) and use optimization algorithms orML techniques to propose
transformations. This advisor would not need access to the actual
data to calculate the transformations and is easily extensible to other
cloud deployments/transformations/data formats with additional
recalibration. However, there are also challenges in developing this
type of solution due to the variability in the cloud and because
systems like Athena or BigQuery are not open-source. In case
we also have access to the internals of the QaaS, we could tailor
the budget to include the total budget of running the queries and
transformations. That would need knowledge on howQaaS perform

I/O operations since these transformations are effectively reducing
I/O time and they are not influencing query plans. Such a scheme
would also allow for more optimizations in case the users allow
transformations as long as the total budget decreases.
Transformation optimizations and data maintenance. Com-
pared to traditional database deployments, the cloud has “unlimited”
resources in terms of compute and storage. In our work, we did
not explore optimizations [25, 36] for the transformations done in
FaaS. We also did not experiment with more advanced optimiza-
tions like joins or QD-trees [20, 37], which can be considered as
more mature versions of chunking and sorting. Additionally, we
did not investigate partial transformations that only touch a part of
a table. A partial transformation introduces additional complexity
as the set of queries has to potentially be executed against many
different versions of the data. It is also interesting only for sorting.
Transcoding has to read the whole table, because there is not a
way of only partially reading a textual format on the cloud. Fur-
thermore, chunking is more effective for whole tables. In terms
of storage, databases are usually limited by the amount of system
memory, which is not the case for S3. Theoretically, we could keep
a large number of copies tailored to the minimal runtime and cost
of specific queries within a workload. However, this would become
infeasible in terms of cost and version management. We imagine
that the five-minute rule [13] would be also applicable here, where
periodically, we will need to clean up our storage by deleting un-
necessary dataset versions. We could also utilize Deltalake and/or
Iceberg to introduce a view maintenance of the dataset.
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