
tf.data service: A Case for Disaggregating ML Input
Data Processing

Andrew Audibert
Google

Yang Chen
Google

Dan Graur
ETH Zürich

Ana Klimovic
ETH Zürich

Jiří Šimša
Google

Chandramohan A.
Thekkath

Google

ABSTRACT
Machine learning (ML) computations commonly execute on
expensive specialized hardware, such as GPUs and TPUs,
which provide high FLOPs and performance-per-watt. For
cost efficiency, it is essential to keep these accelerators highly
utilized. This requires preprocessing input data at the rate
at which the accelerators can ingest and perform ML com-
putations on the data. To avoid data stalls, the host CPU
and RAM required for input data processing per accelerator
core used for ML computations varies across jobs. Hence,
the traditional approach of processing input data on ML ac-
celerator hosts with a fixed hardware ratio leads to either
under-utilizing the accelerators or the host CPU and RAM.
In this paper, we address these concerns by building a disag-
gregated ML data processing system.
We present tf.data service, an open-source disaggregated

input data processing service built on top of tf.data in Tensor-
Flow. We show that disaggregating data preprocessing has
three key advantages for large-scale ML training jobs. First,
the service can horizontally scale-out to right-size CPU/RAM
host resources for data processing in each job, saving 32×
training time and 26× cost, on average. Second, the ser-
vice can share ephemeral preprocessed data results across
jobs, to optimize CPU usage and reduce redundant compu-
tations. Finally, the service supports coordinated reads, a
technique that avoids stragglers due to different input sizes
in distributed training, reducing training time by 2.2×, on
average. Our design is inspired by lessons learned from de-
ploying tf.data service in production, including relaxing data
visitation guarantees without impacting model accuracy.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0387-4/23/10.
https://doi.org/10.1145/3620678.3624666

KEYWORDS
Machine Learning, Data Processing, Distributed Systems

ACM Reference Format:
Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiří Šimša,
and Chandramohan A. Thekkath. 2023. tf.data service: A Case for
Disaggregating ML Input Data Processing. In ACM Symposium on
Cloud Computing (SoCC ’23), October 30-November 1, 2023, Santa
Cruz, CA, USA. ACM, New York, NY, USA, 18 pages. https://doi.org/
10.1145/3620678.3624666

1 INTRODUCTION
The ubiquity of ML has led to widespread deployment of spe-
cialized hardware to accelerate ML computations (e.g., GPUs
and TPUs). While vastly improving the performance per watt
of ML training and inference [39, 40], accelerators are signif-
icantly more expensive than traditional CPU servers [4, 23].
Hence, achieving energy and cost efficiency benefits requires
keeping hardware accelerators highly utilized.
Operating ML accelerators at high utilization requires

feeding fresh batches of preprocessed data at the rate at
which ML computations executing on accelerators request
new data. Data preprocessing typically executes on CPU host
resources of ML servers, as data transformations consist of
user-defined functions [56]. This makes it right-sizing host
CPU/RAM (for data preprocessing) to ML accelerator cores
(for ML model computations) imperative, in order to avoid
data preprocessing stalls and maximize resource efficiency.

However, ML jobs require diverse ratios of host CPU/RAM
and ML accelerator resources [30, 55]. Figure 1 shows the dis-
tributions of host CPU and memory resource requirements
for data preprocessing across ML jobs at Google, normalized
to the peak usage for each resource. As the distributions are
heavy-tailed, picking a particular CPU and memory configu-
ration for ML accelerator hosts satisfy the requirements of a
limited set of jobs at a particular point 𝑝 on the x-axes of the
CDFs. This leaves many jobs on the left of 𝑝 underutilizing
CPU/RAM and many jobs on the right of 𝑝 with insufficient
CPU/RAM for data preprocessing, idling ML accelerators.
Hence, provisioning ML jobs with a one-size-fits-all ratio of

https://doi.org/10.1145/3620678.3624666
https://doi.org/10.1145/3620678.3624666
https://doi.org/10.1145/3620678.3624666

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Audibert A., Chen Y., Graur D., Klimovic A., Šimša J., and Thekkath C.

(a) CPU usage (b) Memory capacity usage (c) Memory bandwidth usage

Figure 1: CDFs of normalized ML host resource usage for over 73k colocated processing jobs running in Google
datacenters over a 24 hour period. The takeaway is that host resource requirements vary widely across ML jobs.

Figure 2: RetinaNet [48] CPU/MEM usage when train-
ing on COCO [49] using a GCP TPU v2-8 VM [24].

host CPU/RAMandML accelerator resources is inefficient for
most jobs. Meanwhile, datacenter providers must typically
limit server heterogeneity to simplify resource management
and server maintenance at scale [42].
As today’s ML accelerator servers are typically provi-

sioned with generous amounts of CPU and RAM [5, 24],
one could improve resource utilization by loaning spare
CPU/RAM on ML accelerator hosts to other CPU workloads.
However, colocating workloads with ML data preprocessing
is challenging. Figure 2 shows that data preprocessing has
highly bursty CPU usage as batches of data are processed and
loaded to the accelerator. Even if the average CPU utilization
on many ML accelerator hosts may be low, the bursty nature
of ML data preprocessing makes it difficult to share host
resources with other jobs without significant interference.
An alternative approach is to disaggregate resources for

data preprocessing and ML computations. Disaggregation
enables allocating CPU/RAM and ML accelerators indepen-
dently for each job to meet its unique requirements. Just as
disaggregating storage from compute is known to improve
resource efficiency in datacenters [17, 42, 60], disaggregat-
ing ML accelerators from CPU/RAM enables right-sizing
resources for ML workloads. For example, Meta has reported
that their internal closed-source ML data preprocessing sys-
tem, DPP [77], relies on scaling out data preprocessing to
disaggregated CPU hosts to meet the data ingestion demands

of large-scale recommender systems [51]. DisaggregatingML
data processing does not come for free: it requires recruiting
potentially many remote nodes for data processing, dealing
with failures of distributed nodes, and sending large volumes
of preprocessed data over the network. There is a need for
a data processing platform that optimizes these tradeoffs to
support resource-efficient ML input data preprocessing.
We present the design and implementation of the first

open-source disaggregated data processing framework, tf.data
service, available through the TensorflowGitHub project [68].
We evaluate ourwork on productionMLworkloads at Google
from vision and natural language processing (NLP) domains.
We show that the primary advantage of disaggregation is
horizontally scaling-out data processing to remote workers to
remove data stalls, which improves training throughput by
31.7× and reduces cost by 26.2×, on average, for input-bound
jobs. The cost savings of maximizing accelerator utilization
and reducing training time significantly outweigh the cost
of using extra CPU hosts for data processing.

We also show that the disaggregated architecture of tf.data
service has two additional advantages. First, enabling ML
jobs to fetch preprocessed data from remote hosts enables
sharing intermediate preprocessing results between a set of
jobs that execute in overlapping timewindows. This ephemeral
data sharing feature saves CPU cycles by avoiding redundant
computations. Second, the disaggregated system architec-
ture of tf.data service enables coordinating data ingestion
across clients in distributed ML training jobs to reduce strag-
glers and improve training time and cost. For example, NLP
models typically ingest data with a wide variety of input
sizes, which can lead to stragglers among training clients.
The coordinated reads feature in tf.data service allows all ML
accelerator clients in a job to fetch data from remote workers
that prepare batches of data with similar size per training
iteration, resulting in up to 2× overall speedup due to less
data padding and synchronization overheads.
Contrary to the conventional wisdom of enforcing strict

data ordering guarantees and ensuring that each example is

tf.data service: A Case for Disaggregating ML Input Data Processing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

visited exactly once per training epoch [21, 54, 55], we design
the data sharing and coordinated reads features of tf.data
service with more relaxed data visitation guarantees. We
find that relaxing data visitation to at-most-once (instead of
exactly-once) guarantees generally has negligible impact on
model accuracy, as models are typically trained with larger
datasets than in academic settings. Relaxing data visitation
guarantees simplifies the design of ephemeral data sharing,
coordinated reads, and fault tolerance mechanisms (e.g., com-
pared to other ML data caching systems [30, 45, 55]).
We present the first open-source disaggregated data pro-

cessing framework for ML workloads and show it has three
key advantages for large-scale ML training jobs: 1) horizon-
tal scale-out to right-size CPU/RAM host resources for data
processing, 2) ephemeral data sharing to avoid redundant
preprocessing among fully or partially concurrent jobs, and
3) coordinated reads to avoid stragglers in distributed train-
ing that can arise due to differences in input data sizes. Our
design is inspired by lessons from deploying tf.data service in
production, including the ability to relax data visitation guar-
antees without impacting model accuracy. Since launching
tf.data service open source in 2020, the system has already
been used as the foundation for several research projects,
including data echoing [13], Cachew [30], and FastFlow [71].

2 BACKGROUND AND RELATEDWORK
ML input data processing. Input data processing involves
an “extract transform load” (ETL) pipeline. Jobs read source
data from storage, process data on-the-fly, and load batches
of transformed data to ML accelerators for model training
or inference. Common data transformations include decom-
pressing data, parsing file formats, extracting features, and
batching elements. It is also common to add randomness
to input data (e.g., randomly sample, augment, and shuffle
elements) to improve model generalization [15, 16, 18, 64].

While model training or inference typically executes on ex-
pensive, specialized hardware, user-defined input data trans-
formations execute on general purpose CPUs. Their relative
cost difference makes it particularly important to ensure that
accelerators operate at high utilization [4, 23]. If the ML com-
putation does not have to wait for data, the job is considered
model-bound. Otherwise, the job is considered input-bound.
Input-bound jobs are more problematic as they leave valu-
able ML hardware underutilized, however model-bound jobs
can also be costly by leaving CPUs underutilized. Removing
input bottlenecks is critical as input-bound jobs hog valuable
hardware for extended periods of time, incurring significant
costs and significant delays for the job itself as well as other
jobs that are waiting for the hardware resources to free up.
Data processing frameworks. Generic data processing
frameworks, such as Beam [1], Flume [2] and Spark [76] are

often used for offlineML data processing (i.e. processing that
takes place prior to any ML compute and handles data clean-
ing, feature engineering, normalization, etc.). These generic
frameworks are not suitable for online ML data processing
(i.e. on-the-fly data processing during a training job that han-
dles data augmentation, shuffling, batching, etc.), primarily
due to the overhead they impose. For instance, Spark Stream-
ing recommends batching work at 50ms granularity [65]
while ML training jobs often have step times below 1ms.
Other issues stem from API mismatches between generic
data processing frameworks and ML training frameworks, a
lack of holistic optimization opportunities to improve run-
time performance (as the preprocessing and ML compute
frameworks are disjoint), and the difficulty of accommodat-
ing ML-specific preprocessing requirements (such as relaxed
data visitation guarantees, which we describe below).

ML-specific data frameworks, used for online data prepro-
cessing, include PyTorchDataLoader [14], NVIDIADALI [31],
and tf.data [56]. We focus on tf.data as it is widely used in-
ternally at Google and in open-source Tensorflow programs.
tf.data provides an API and a runtime for creating and exe-
cuting efficient ML data processing pipelines. With tf.data,
users can express and execute input data pipelines using
a variety of libraries that integrate with ML frameworks
like PyTorch [58] and Tensorflow [3]. It provides generic
operators (e.g. map, filter, prefetch, etc.) and an autotun-
ing feature that automatically adjusts runtime configuration
knobs (e.g. parallelism, prefetching, etc.) [22].
Colocated vs. disaggregated data processing. Tradition-
ally, ML frameworks have colocated input data processing
andML computations on the samemachine [14, 57, 67]. How-
ever, feeding powerful modern accelerators with data at suffi-
cient throughput requires more CPU and memory resources
than are often locally available [30, 77]. This motivates a
disaggregated processing mode, where data processing exe-
cutes on separate machines whose resources can be scaled
independently from expensive ML accelerators. The ability
to right-size resource allocations is critical to satisfy the wide
variety of resource requirements in ML jobs (see Figure 2)
and ensure that all allocated resources — both costly ML
accelerators and CPU/MEM — remain highly utilized.
Data visitation guarantees. In the ML community, it is
customary to train models with exactly-once data visitation
semantics for each epoch [7, 8, 21, 54]. This means that every
sample in the dataset is visited exactly once before any sam-
ple is re-visited during training. For small datasets, deviating
from exactly-once guarantees can skew the data distribution,
potentially leading to a less generalizable or lower accuracy
model [21, 54]. In §3, we will discuss how relaxing data vis-
itation guarantees is possible for production ML jobs, as

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Audibert A., Chen Y., Graur D., Klimovic A., Šimša J., and Thekkath C.

they generally train on significantly larger datasets that are
continuously updated [36].
Prior work on optimizing input processing. Several ap-
proaches have been proposed to alleviate input data stalls in
ML training jobs. Plumber [44] and tf.data’s autotuning har-
ness [67] dynamically tune software parallelism and memory
buffer sizes to maximize performance on a given training
node. However, this tuning does not scale resources beyond a
single node. NVIDIA DALI supports offloading data process-
ing to GPUs [31]. This alleviates CPU bottlenecks but may
lead to GPU resource contention among input data transfor-
mation tasks and model training tasks. Other works cache
and reuse (transformed) data across epochs [13, 46] or across
jobs [30, 45, 55], trading storage capacity to save CPU cycles
for repeated data processing. However, caching solutions
are still not guaranteed to eliminate data stalls. In-memory
caching solutions have capacity limitations sinceML datasets
often exceed the size of a training node’s RAM [67]. SSD-
based caching requires high parallelism to avoid I/O bottle-
necks when reading large volumes of data from storage.
Meta’s closed source Distributed Data Processing (DPP)

service [77] proposes horizontally scaling data workers with
disaggregated data processing. Zhao et. al [77] characterize
the compute, memory, and network resource requirements
of data processing compared to model training for recom-
mender systemmodels at Meta and advocated for disaggrega-
tion to scale-out data processing and avoid input bottlenecks.
However, they do not quantify the performance and cost ben-
efits of disaggregated data processing compared to colocated
data processing. In contrast, we provide the first quantitative
analysis of howmuch disaggregated data processing actually
improves the overall performance and cost of production ML
workloads. We also go beyond DPP’s design and show the
benefits of disaggregation besides horizontal scaling, such
as enabling ephemeral data sharing and coordinated reads.
FastFlow [71] builds on top of tf.data service, leveraging

its ability to preprocess data on both local and remote re-
sources. FastFlow extends our disaggregation mechanism
to support splitting data preprocessing between local and
remote workers at specific points in an input pipeline. The
system selects a pipeline split that maximizes throughput
in a fixed-size tf.data service deployment, i.e., the system
decides which portion of an input pipeline to process locally
vs. remotely. FastFlow is complementary to our work and
further shows the benefits that flexible resource allocation
with disaggregation can bring to ML data processing.

3 TF.DATA SERVICE DESIGN
We present tf.data service, a system that enables disaggre-
gating and distributing data processing for ML workloads.
tf.data service integrates seamlessly with ML frameworks,

such as TensorFlow or PyTorch, and is particularly designed
to meet the data processing needs of ML training jobs. We
design tf.data service with three key principles in mind:
(1) Eliminate input data stalls. Eliminating data stalls is
key to maximizing throughput, which is an important perfor-
mance metric for ML training jobs. As we will demonstrate in
§4, using extra CPU/RAM resources to alleviate data prepro-
cessing stalls is often cost-efficient for input-bound jobs as
it helps them complete faster and hence consume expensive
hardware accelerators for less time.
(2) Avoid redundant data preprocessing. Input data pipelines
are often repeatedly executed in ML clusters, for example
in hyperparameter tuning or model search workflows [41,
56]. Since data preprocessing can be compute, memory, and
power-intensive [56, 77], reducing redundant data prepro-
cessing (i.e., sharing intermediate results) across jobs is im-
portant for hardware and energy efficiency.
(3) Simplify the design by relaxing constraints. While
guaranteeing exactly-once data visitation is customary when
benchmarking ML training on academic datasets [54, 55],
we find that production ML training jobs allow for more
relaxed data visitation guarantees with negligible impact
on accuracy. These jobs train on vast volumes of data that
are continuously updated [21, 36]. Some datasets are large
enough that training on all data may not be practical as the
model can safely converge on a subset of the entire dataset
without the risk of overfitting [21]. Hence, we find that at-
most-once data visitation is sufficient for most jobs (i.e., each
sample is visited at most once per epoch) 1. We can leverage
relaxed data ordering guarantees to simplify fault-tolerance.
With the above principles in mind, we design tf.data ser-

vice as a disaggregated system that enables: eliminating input
data bottlenecks by horizontally scaling out data workers
(§3.1), reducing CPU usage for data processing by sharing
ephemeral data transformations between jobs (§3.5), and
avoiding stragglers in distributed training by coordinating
reads between multiple clients (§3.6).

3.1 System Architecture
Figure 3 shows the tf.data service architecture. The core sys-
tem is composed of a dispatcher, which manages various
metadata, and a pool of workers, which perform data pre-
processing. The dispatcher and workers are managed by an
ML job orchestrator. Clients execute ML computations (e.g.,
model training) on servers equipped with accelerators. Dis-
tributed training jobs consist of multiple clients. Source data

1Further relaxing visitation guarantees to zero-once-or-more can produce a
high quality model in some cases, as long as the random transformations
applied to the source data to ensure a sufficiently diverse and representative
distribution [13, 46].

tf.data service: A Case for Disaggregating ML Input Data Processing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

is stored in a distributed storage system (e.g. Colossus [26])
or object storage (e.g. GCS [27]) accessible by all workers.
Life of a job. As shown in Figure 3, the ML developer
first submits their ML job to the orchestrator. The orches-
trator spins up the tf.data service dispatcher and workers.
Clients then register their input data pipeline with the dis-
patcher, using the API we describe in §3.2. The dispatcher dis-
tributes a tf.data computation graph representing the input
data pipeline to all available workers. This informs workers
which source data to read from the storage layer and how
to preprocess data into batches. For each job, each worker
processes the same input data pipeline but on different parti-
tions of the source dataset, determined by the dispatcher’s
sharding policy. The dispatcher informs clients about the
IP addresses of workers and clients request batches from
workers over the network. All communication between the
clients, the dispatcher, and the workers is done via gRPC,
which uses HTTP/2, and multiplexes multiple calls on a sin-
gle TCP connection [28].
Dispatcher. The dispatcher manages metadata about regis-
tered workers, clients, and input pipelines. It receives heart-
beats from clients and workers, assigns dataset processing
tasks to workers for partitions of the input dataset using a
sharding policy (see §3.3), and notifies clients of worker pool
updates. It also keeps track of states of dataset processing
tasks and notifies clients of completed tasks. To avoid bottle-
necks, the dispatcher does not perform any data processing.
Workers. Workers execute data processing tasks defined in
a tf.data computation graph. Workers read data from storage,
apply requested transformations, and store the samples in a
buffer. Workers respond to client requests for buffered sam-
ples. The number of workers and their CPU/RAM resources
can be specified manually or tuned automatically by integrat-
ing tf.data service with an auto-scaling framework [30, 59].
Workers are logically disaggregated components, how-

ever they can be deployed on remote CPU servers or local
host resources on clients. Remote workers serialize data be-
fore sending it to clients over the network, hence clients
need to deserialize the data before copying it to accelerator
memory. In bandwidth constrained environments, workers
can also compress the data before serialization and clients
can decompress the data. In deployments where bandwidth
is abundant, we find that compression is not helpful as it
occupies unnecessary CPU cycles for both clients and work-
ers. In contrast to remote workers, local workers execute
as part of the client’s main TensorFlow process and hence
can communicate directly via function calls with the client.
Remote workers are useful for scaling out data preprocessing
to eliminate input bottlenecks when local host resources on
client machines are not sufficient. Local workers are useful
for jobs with relatively low data ingestion rate requirements

Worker1
. . .

Worker2 Workern

Storage

Client1
. . .

Request Preprocessing4.

tf.data service

Clientm
. . .

Dispatcher

. . .

ML Developer

ML Job Orchestrator

1. Receive Job
2. Lease Resources
3. Orchestrate Job

5. Assign
Worker TasksGenerate

Batches6. Generate
Batches6. Generate

Batches6.

Request Preprocessing4.

<orchestrate>

<orchestrate>

<submit job>

Figure 3: Architecture and workflow. Solid lines repre-
sent the data path, dashed lines represent the control
path, and dotted lines the execution flow.

that run on client machines with abundant CPU and mem-
ory. For jobs that rely on many remote workers to eliminate
input data bottlenecks, local CPU and memory resources on
clients are consumed by deserialization, decompression, and
data loading to accelerators, leaving few spare resources for
preprocessing data with local workers.
Clients. Without tf.data service, each client would run its
own local input pipeline for data preprocessing. With tf.data
service, clients instead send gRPC requests to workers to
fetch preprocessed data. To maximize data ingestion, clients
can request data from multiple workers in parallel. Each
client stores results in a client-side buffer and returns batches
to the downstream ML computation when requested.
Orchestrator. At Google, we use Borg [70, 73] as the tf.data
service orchestrator. Borg deploys clients, workers, and the
dispatcher as containers on machines in the same Borg cell.
In our fleet, client machines with accelerators are dedicated
to the ML job whereas the tf.data service workers run on
multi-tenant machines with fungible resources. Borg uses
Autopilot [59] to horizontally scale the number of worker
nodes based on user hints and CPU utilization. Autopilot can
also vertically scale the resources allocated to each worker
or dispatcher container using machine learning and other
statistical techniques that leverage raw hardware utilization
signals [59]. tf.data service can also be deployed with other
orchestration systems, such as Kubernetes [43]. Kubernetes
supports horizontal scaling [35] vertical scaling [74]. Users

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Audibert A., Chen Y., Graur D., Klimovic A., Šimša J., and Thekkath C.

1 ds = make_dataset()
2 ds = ds.distribute(
3 processing_mode=ShardingPolicy.OFF,
4 service_address=...)
5 for batch in ds:
6 train_step(batch)

Figure 4: tf.data service API example.

and researchers can also implement custom autoscaling poli-
cies for tf.data service. For example, Cachew [30] autoscales
workers based on batch time processing monitoring.

3.2 API and Pipeline Optimizations
API. Figure 4 shows an example of a simple tf.data ser-
vice pipeline. Here, make_dataset() (line 1) is a user-defined
function that generates tf.data dataset object using the stan-
dard tf.data API. To indicate that a tf.data dataset should
use tf.data service, we apply the distribute transformation
to the dataset definition (lines 2-4). This serializes the up-
stream dataset definition and sends it to the dispatcher. The
dispatcher shares the definition with the pool of workers
and sends the worker IP addresses to the client. During in-
put pipeline execution – using the for loop (lines 5-6) – the
client sends RPCs to the workers to request data. This sim-
ple Python API abstracts communication between clients
and workers. User programs simply iterate over the Python
dataset object the same way they would for colocated pro-
cessing with tf.data.
Via the distribute transformation users specify several

deployment parameters, such as the compression method to
use (if any) when sending data over the network, whether
clients should fetch batches from local and/or remote work-
ers (by default, they read from both), and the communication
protocol between clients and workers (by default gRPC).
Pipeline Optimizations. tf.data service pipelines benefit
from all optimizations available in tf.data, such as static graph
optimization passes and dynamic autotuning [56]. Before
the client registers an input pipeline with the dispatcher, it
undergoes a number of optimization stages that, among oth-
ers, try to eliminate dead transformations, inject transparent
prefetching, and fuse operators (e.g. map-filter fusion) to
reduce software overhead. Besides the optimizations that act
on the input pipeline’s dataflow graph prior to execution,
input pipelines also transparently benefit from automatic
tuning of operator-specific parameters at runtime (e.g., the
number of software threads to use), through the AUTOTUNE
mechanism [56]. These optimizations transparently tune the
level of parallelism for each operator, as well as other pa-
rameters (e.g. size of a prefetch buffer) that explicitly use the
tf.data.AUTOTUNE token. These optimizations take place

at runtime since they are dependent on the target hardware
configuration and the underlying data distribution.

3.3 Source Data Sharding
When using tf.data service, users can specify a sharding pol-
icy for the distribute transformation (line 3 in Figure 4).
Sharding policies dictate how source data should be par-
titioned across workers. Source data is typically stored in
several files, hence, each file constitutes a source data shard.
It is also possible to change the granularity of sharding to
individual samples in the source data or to sets of files [25].
tf.data service offers several sharding policies, including: (1)
no sharding via the OFF policy (2) disjoint first-come-first-
served sharding via the DYNAMIC policy, and (3) several static
sharding policies that pre-allocate shards across workers.

With the OFF sharding policy the dispatcher does not shard
the dataset and each worker processes the entire dataset inde-
pendently. Each worker typically processes data in a different
random order. This sharding policy is suitable for models
that are robust to the most relaxed visitation guarantees,
zero-once-or-more. The benefit of this approach is that it does
not require dataset partitioning and coordination of partition
assignments across workers.
The DYNAMIC sharding policy targets jobs which require

some data visitation guarantees. With dynamic sharding, the
dispatcher partitions the source dataset into disjoint shards.
The workers request shards from the dispatcher whenever
they run out of data to process. Workers process one shard at
a time. Since the shards are completely disjoint, each source
data element contributes to at most one batch which is seen
by at most one client. By using a larger number of shards
than the number of workers, the dispatcher can load balance
across the workers. If workers are preempted or fail, dynamic
sharding provides at-most-once visitation guarantees, as dis-
tributed shards are not recovered until the following epoch
(see §3.4). In the absence of preemptions and failures, dy-
namic sharding provides exactly-once visitation guarantees.
tf.data service also supports static sharding strategies,

which assign source data partitions to the available work-
ers upfront at the beginning of a job. Users are also free to
implement their own custom sharding policies.

3.4 Fault tolerance
Disaggregation allows tf.data service to horizontally scale
data processing across multiple machines, which introduces
a new failure domain. The likelihood of a data worker failing
increases as we distribute data processing to more workers.
We use a simple recovery mechanism for workers, enabled
by relaxed visitation guarantees tolerated by production ML
jobs. We also discuss dispatcher fault tolerance.

tf.data service: A Case for Disaggregating ML Input Data Processing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Job1
Client1.1 Client1.m. . .

... ...

Jobk
Clientk.1 Clientk.r. . .

... ...
. . .

Worker1

B1B2

Workern

B3B4 B5

Dataset

. . .

<read Y><read X>

Sliding
Window
Caches

<evict> <enqueue B6><increment pointer>

Figure 5: Ephemeral data sharing workers serve re-
quests from different jobs via sliding window caches.

Worker fault tolerance. To simplify fault tolerance, tf.data
serviceworkers are designed to be stateless. Hence, a restarted
worker will register with the dispatcher and retrieve the
dataset definition it needs to process, like any new worker
would. Worker failure recovery depends on the sharding
policy. With no sharding, restarted workers re-process the
entire dataset in a newly randomized order. In the dynamic
sharding case, the restarted worker queries the dispatcher for
the next split to process. The dispatcher assigns each split to
exactly one worker. If the worker fails when it is processing
a split, the remaining data in that split is lost. Hence with dy-
namic sharding, tf.data service guarantees samples are seen
at-most-once. We opted for this design due to its simplicity
and performance. Exactly-once visitation guarantees can be
implemented if desired. This would require the dispatcher to
log the distribution of shards and the workers to persist how
much of the shard has been processed (at operator granular-
ity). The same or a new worker can then be restarted with
the same shards and the computation can be resumed with
the same state of the original worker.
Dispatcher fault tolerance. The dispatcher writes its state
changes to awrite-ahead journal, including registered datasets,
active workers, and active clients. On restart, the dispatcher
replays the journal to restore its previous state. When down,
the dispatcher cannot register new jobs, and, in case any
sharding is used, cannot distribute new shards to workers.
Workers will continue to produce batches for their active jobs
until their data shards are fully consumed, or if no sharding
is used, workers will process the entire dataset. Clients will
continue to train on any incoming batches. If the dispatcher
downtime is short, active jobs will remain unaffected.

3.5 Ephemeral Data Sharing
Disaggregating data preprocessing enables sharing interme-
diate preprocessing results between multiple training clients.
Sharing is useful as input data pipelines are frequently re-
executed across jobs, for example in hyperparameter tuning

or model search training workflows [41]. For example, a
previous study at Google found that 10% of unique input
data pipelines executed over a one month period in the fleet
accounted for 77% of input pipeline executions [56].
To capitalize on the opportunity of reusing preprocessed

data across jobs that execute the same input data pipeline,
we implement the ephemeral data sharing functionality that
allows concurrently executing jobs to use a shared tf.data
service deployment instead of reading and preprocessing the
same data in separate deployments. Figure 5 illustrates the
data sharing process. Each worker stores a sliding window
cache of batches it produces. The worker additionally stores
a pointer in this cache for each job that it supplies data to.
When a job requires a data batch from a worker, the worker
returns the batch in the cache at the location pointed to by
the job’s pointer, then increments the pointer. For example, in
Figure 5, when Job1’s client issues read X, it fetches batch
B1 from Worker1’s sliding window cache. After the read,
Worker1 increments Job1’s pointer, moving it to batch B2.

Jobs whose pointers are at the front of the cache dictate
the production of new data and eviction of old data. In this
case, the cache functions like a queue. When such jobs ask
for a batch, they implicitly cause the worker to compute a
new batch that is added to the front of the cache after the
read is complete. To limit the RAM used for the cache, the
batch at the back of the cache is evicted. Slower jobs pointing
to the back of the cache will not be able to see the discarded
batch. After the eviction, their pointers remain unchanged
and implicitly point to the end of the queue, while all other
pointers are decremented in order to continue pointing to
the correct batches. For instance, in Figure 5, when Job𝑘 ’s
read Y operations fetches batch B5, this causes Worker𝑛 to
compute and enqueue a new batch B6, and push every other
batch back. Due to the limited cache space, B3 is evicted and
B4 is pushed to the end of Worker𝑛’s sliding window cache.
Job1 will not get to train on B3, as it is permanently evicted,
and will implicitly point to B4.

In extreme cases, one job can severely lag behind another,
thus facing high eviction rates. This could degrade accuracy
for models trained on very small datasets, due to overfitting.
In practice, we have not seen this issue as datasets are rarely
that small; many production datasets are even too large to
fully visit during training, thus comfortably accommodating
evictions. Moreover, random augmentations and shuffling,
which are frequently present in input pipelines, artificially
increase the diversity and size of the dataset, making such
scenarios even more rare [19, 46].

To analyze the benefits of data sharing, let us assume that
the data processing cost for each job in a hyperparameter
tuning experiment using the same input data pipeline is𝐶 . If
all jobs run at the same speed, then the data processing cost
with sharing is 𝐶 . Without sharing, the data processing cost

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Audibert A., Chen Y., Graur D., Klimovic A., Šimša J., and Thekkath C.

would be 𝑘×𝐶 . If the jobs run at different speeds, slower jobs
may miss some preprocessed batches due to cache evictions
needed to accommodate faster jobs. In theworst case, the jobs
run sequentially and each job only shares the final window
populated by the previous job (the preprocessing for the rest
of the batches needs to be re-executed since it is no longer
available in the buffer). In this case, the processing cost with
sharing is 𝑘 ×𝐶 − (𝑘 − 1) × cache size

dataset size ×𝐶 (assuming constant
processing cost per element).
Ephemeral data sharing differs from related work on ML

data caching in several ways. First, as we relax data visitation
guarantees, a large number of concurrently running jobs can
share a single service deployment without stalling for slower
jobs. In contrast, with exactly-once visitation guarantees, the
fastest jobs would need to wait for the slowest jobs. Second,
our data sharing algorithm supports partially-concurrent,
asynchronous jobs with different ML models attached (i.e.,
ephemeral data sharing supports jobs whose execution over-
laps only partially and no synchronization is required be-
tween jobs). This contrasts with the caching approach pro-
posed in CoorDL [55], which is designed for fully-concurrent,
synchronous, hyperparameter tuning jobs with exactly-once
visitation guarantees. Third, unlike Cachew [30], which caches
source datasets and preprocessed datasets on SSD storage,
tf.data service caches data in memory with a shorter time to
live. This improves cache performance, but requires that job
execution overlaps at least partially.

3.6 Coordinated Reads
Distributing ML model training across multiple clients is
increasingly common as model and dataset sizes continue
to scale [47, 72]. Clients in a distributed ML training job
usually synchronize model parameter updates, to ensure
convergence [37]. Synchronization between training clients
introduces another type of potential bottleneck that can leave
expensive ML accelerators idle: waiting for stragglers. While
stragglers can occur for a variety of reasons in distributed
ML jobs, here we focus on stragglers that occur due to un-
even input data sizes across clients. We show how we can
leverage disaggregated data preprocessing in tf.data service
to coordinate reads in a way that evens out input data sizes
across clients to avoid stragglers in distributed ML training.
Some ML models (particularly in NLP), train on variable-

sized source data and produce variable-sized preprocessed
samples. A common approach is to pad the variable-sized
samples to a fixed size, thus producing homogeneously shaped
batches that fit the expected input shapes of the ML model.
tf.data and TensorFlow offer a more efficient approach than
padding: (1) tf.data can produce variable sized batches by
padding to the longest sample in each batch (as opposed

X X X X

Worker1 Worker2

Step 1

Step 2

X
Step 3

X
Step 4

Client1

X

X

X X X

X

X

X

X

X

Step 1Step 2Step 3Step 4
Client2

(a) No coordinated reads

X X X X

Worker1 Worker2

St
ep

 1

X

X

St
ep

 3

St
ep

 2
St

ep
 4

Step 1Step 2Step 3Step 4

X

X

X X X

X

X

X
X
X

XX

X
X

X
X

X
X

Client1

Client2

(b) With coordinated reads

Figure 6: Batch distribution to two clients with and
without coordinated reads. The deployment has two
workers generating batches. In (a) the batches used in
a step are generated by two workers every time while
in (b) workers take turns to supply batches for each
step. Each batch consists of two samples. Each rep-
resents a scalar value in a sample. Batch samples are
padded (X blocks) to have a length equal to the max-
imum length sample in the batch. In (b), samples are
grouped into buckets based on their unpadded length.
In each step, the designated worker sends batches
from the same bucket to the clients.

to a batch-agnostic static size) and (2) TensorFlow can dy-
namically kernelize its ML operations for the variable input
tensor shapes it sees during training. This feature improves
training time by not relying on fixed-size padding, however
it is susceptible to synchronization overheads in distributed
synchronous training when, within the same training step,
different clients receive batches of different sizes and hence
take different times to train on the batches.

In such settings, synchronous training requires careful co-
ordination of input data batches to avoid stragglers. Our goal
is to ensure that batches in each training step are roughly
the same size and thus incur similar training times. Con-
sider the example of training an NLP model on two clients
(Client1 and Client2) in Figure 6 with two preprocessing
workers, (Worker1 and Worker2). As there are two clients,
each training step requires two batches. Without coordi-
nating reads, each training step, clients receive differently
sized batches in the same training step. In contrast, with
coordinated reads, each worker is tasked with generating𝑚
similarly sized batches (where𝑚 is the number of clients;
𝑚 = 2 in Figure 6b). In the example, we configure coordi-
nated reads to group samples of length (0, 3] into one bucket,
and of length (3, 6] into another. Workers generate batches
for each bucket, padding samples to the length of the longest
sample in each batch. At each training step, only one of the
workers supplies batches to all clients, from the same bucket.

tf.data service: A Case for Disaggregating ML Input Data Processing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

1 ds = ds.bucket_by_sequence_length(
2 bucket_boundaries=[128, 256])
3 ds = ds.group_by_window(window_size=

num_consumers)
4 ds = ds.flat_map(lambda x: x)
5 ds = ds.distribute(
6 job_name="coordinated_reads_job",
7 num_consumers=num_consumers,
8 consumer_index=i, ...)

Figure 7: Dynamic-sequence-length training with
tf.data service and coordinated read.

Workers take turns in round-robin fashion to supply batches
for a training step. Hence, each worker supplies𝑚 batches
every 𝑛 steps (where 𝑛 is the number of workers). This scales
well as each worker has 𝑛 − 1 steps to prepare𝑚 batches. To
avoid encountering network bottlenecks, workers can send
batches to clients ahead of time in predetermined round-
robin client-side buffer slots. Overall, the coordinated reads
feature ensures that clients get similarly sized batches with
minimal padding, thus spending similar amounts of time on
ML computation. As we show in §4.4, this reduces synchro-
nization overheads and improves training time and cost.

Disaggregation is essential for enabling coordinated reads
as it allows clients to communicate with and selectively read
from a different worker each training step. Disaggregation
also enables the service to scale out when workers are not
able to keep up with the data ingestion rate of clients. To
ensure high scalability to a large number of workers and
maintain simple fault tolerance mechanisms, we design the
service such that coordination only takes place within work-
ers, not across them. This avoids additional dependencies
and communication between workers.

Figure 7 shows how users can configure coordinated reads
in the tf.data service API. Users define the desired bucket
boundaries and call bucket_by_sequence_length (lines 1-2)
to bucketize the training data by sequence length. Here the
bucket boundaries are (0, 128], (128, 256], and (256,∞). The
group_by_window call (line 3) will group batches from the
same bucket into windows of num_consumers length. Clients
will receive data from the same window, hence with batches
of similar sequence length. The tf.data service documentation
provides more details on the API [25].

4 EVALUATION
In this section we quantify the performance and cost benefits
that tf.data service achieves for input-bound ML jobs by
horizontally scaling out workers to eliminate data stalls. We
also evaluate ephemeral data sharing and coordinated reads,
which bring benefits even for model-bound ML jobs.

4.1 Methodology
Workloads. We evaluate tf.data service service on eight
production models, which we refer to as𝑀1, 𝑀2, ..., 𝑀8. Mod-
els𝑀1 to𝑀4 are heavy users of tf.data service internally from
the computer vision domain, models𝑀5 to𝑀8 are from the
NLP domain. While these models are not publicly available,
the logic of the input pipelines uses standard preprocess-
ing operations for vision and NLP domains [62, 63], similar
to the open-source input pipelines available in TF Model
Garden [69]. Models 𝑀1, 𝑀2 and 𝑀3 are input-bound with
colocated data preprocessing on our machines (and hence
can benefit from horizontal scale-out), whereas the other
models are not input-bound. We also include a canonical
open-source model in our evaluation: ResNet50 [33] trained
on the ImageNet [18] dataset with its default input pipeline
augmented with AutoAugment [15]. We use the open-source
implementations offered in TFModel Garden for bothmodels
and input pipelines [69].

We use𝑀1, 𝑀2,𝑀3, and the open-source ResNet50 model
to evaluate benefits of horizontal scale-out, as these are ex-
amples of models that are input-bound with colocated data
processing on our hardware and can benefit from this feature
of tf.data service. We use𝑀4 to evaluate ephemeral data shar-
ing, as it is a model often trained internally with the same
input data pipeline for hyperparameter tuning and hence
benefits from the ephemeral data sharing feature. We evalu-
ate coordinated reads on the NLP models (𝑀5 to𝑀8) as they
are not input-bound, but suffer from stalls in distributed
training due to variations in input data sizes that lead to
stragglers, which is what the coordinated reads feature is
designed to alleviate. While we demonstrate the benefits of
tf.data service features on particular categories of models,
benefits can extend beyond the types of models we sample
in this study.
Hardware. For experiments with production models, each
client machine is equipped with TPU v4 accelerators [38],
two 240 core AMD EPYC 7B12 processors, 32GB of accel-
erator memory, 400 GB of DRAM memory and 2TB of SSD
storage [53], same as for Google’s MLPerf v2 benchmark
submissions [53]. The hardware configuration of workers
and the dispatcher can vary for each model, as they are de-
ployed on multi-tenant machines in the fleet, however they
resemble general-purpose virtual machines available in pub-
lic cloud-providers [5, 23]. Source data is stored in and read
from Colossus, Google’s internal distributed file system [26].

For externally reproducible experiments with open-source
workloads, we use TPU v2-8 VMs fromGoogle Cloud, equipped
with 96 vCPUs and 335 GB or RAM [24]. Source data is stored
in and read from GCS [27]. The dispatcher and workers run
on n2-standard-8 VMs. Unless specified otherwise, stor-
age, preprocessing and ML compute are all colocated in the

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Audibert A., Chen Y., Graur D., Klimovic A., Šimša J., and Thekkath C.

same geographical region. Additionally, unless specified oth-
erwise, neither the storage layer nor the network bandwidth
are a bottleneck.
Software Frameworks. We use Tensorflow [3] to define
and execute ML training computations, though tf.data ser-
vice can also be used with other frameworks like JAX [9]
and PyTorch [58]. We deploy experiments with production
workloads using Borg [70, 73], Google’s internal cluster man-
agement system, which autoscales resources with Autopi-
lot [59]. For open-source experiments, we orchestrate the
tf.data service deployment with Kubernetes [43] instead of
Borg and manually tune the number of workers. We disable
compression between workers and clients as it would require
unnecessary CPU cycles and bandwidth is not a bottleneck.
Baselines. For the colocated baseline, we measure training
throughput (in batches per second) using tf.data (without
service) for input data preprocessing. tf.data provides state-
of-the-art colocated data preprocessing performance [67].
We also show an ideal training throughput baseline for

input-bound jobs. We obtain the ideal throughput by training
the model with a take(1).cache().repeat() operation at
the end of the input pipeline. This command retrieves the first
element produced by the input pipeline, caches it, and returns
it without any recomputation whenever the model requires
a new batch. Hence, this baseline represents training time
with an infinitely fast input pipeline. To avoid any potential
network overheads, we measure ideal training time using
tf.data without service.

We cannot compare to Meta’s disaggregated data prepro-
cessing service, DPP [77], as it is a closed-source proprietary
system. To the best of our knowledge, while DPP does dis-
aggregate and scale out data preprocessing, it does not offer
features such as ephemeral data sharing or coordinated reads.
Metrics. We measure training throughput in batches per
second as a sum across all accelerators and report speedups
for each workload with versus without tf.data service. We
quantify tf.data service’s impact on cost using the cost model
described below. To ensure disaggregation does not affect
model quality, despite relaxed visitation guarantees, we com-
pared the loss and accuracy of the trainedmodels.We verified
that the models achieved approximately the same loss and
accuracy with and without tf.data service.
Cost Model. We compute the cost C of an ML job using
the following formula:

C = 𝑡 (C𝐶𝑃𝑈 (𝑛𝑊 ·𝐶𝑃𝑈𝑊

𝑢 + 𝑛𝑇 ·𝐶𝑃𝑈𝑇
𝑎)

+ C𝑀𝐸𝑀 (𝑛𝑊 ·𝑀𝐸𝑀
𝑊

𝑢 + 𝑛𝑇 ·𝑀𝐸𝑀𝑇
𝑎)

+ C𝐴𝐶𝐶 · 𝑛𝑇 · 𝑛𝐴𝐶𝐶/𝑇)

(1)

where 𝑡 represents the job execution time,𝑛𝑊 ,𝑛𝑇 and𝑛𝐴𝐶𝐶/𝑇
represent the number of tf.data service workers, clients and

accelerators per client respectively. C𝐶𝑃𝑈 , C𝑀𝐸𝑀 and C𝐴𝐶𝐶
represent the normalized cost of one “unit” of CPU, mem-
ory and accelerator per unit of time respectively.𝐶𝑃𝑈

𝑊

𝑢 and
𝑀𝐸𝑀

𝑊

𝑢 represent the average CPU and memory utilization
across all tf.data service workers per unit of time. Finally,
𝐶𝑃𝑈𝑇

𝑎 and𝑀𝐸𝑀𝑇
𝑎 represent the available CPU and memory

for a client. We use CPU and memory utilization (as opposed
to reservation) for tf.data service workers, as reserved but
unused CPU and memory resources are released back to the
global resource pool. In contrast, the CPU and memory of
ML hosts are non-fungible, regardless of their true utiliza-
tion, and are thus charged altogether. For experiments in the
production cluster, we do not disclose the absolute or rela-
tive values of C𝐶𝑃𝑈 , C𝑀𝐸𝑀 , and C𝐴𝐶𝐶 but they are consistent
with the pricing of cloud VMs [4, 23]. For open-source exper-
iments, we use the prices of Google Cloud VMs in the month
of June 2023 for the region us-central1: 4.5$/h for a TPU
v2-8 VM, and 0.08$/h for a n2-standard-8VM. The formula
allows us compare the cost of different data preprocessing
setups in our experiments.

We do not explicitly account for network bandwidth usage
in the cost model. tf.data service is strongly recommended
to run in the same datacenter as the ML accelerator clients,
since intra-datacenter network bandwidth is cheap and abun-
dant. For example, on Google Cloud, intra-zone network
bandwidth is free, meaning it is already included in VM
pricing [29]. Other cloud providers have similar policies.

4.2 Horizontal Scale-Out
To demonstrate the benefits of tf.data service for input-bound
ML jobs, we compare training throughput and cost for mod-
els𝑀1,𝑀2,𝑀3, and ResNet50with andwithout tf.data service.
We use 32, 8, 16, and 1 accelerators to train the models, re-
spectively. When trained without tf.data service, models𝑀1
and𝑀2 and ResNet50 fully utilize locally available CPU re-
sources for data ingestion and processing, while𝑀3 makes
partial use of the locally available CPU resources. We present
this mix of models to demonstrate that tf.data service can
address both hardware and software input bottlenecks.
Speedup. Figure 8a shows training throughput speedup
with horizontal scale-out enabled by disaggregation in tf.data
service. We observe speedups of 11.7× (from 0.55 batches/s
to 6.47 batches/s) for𝑀1, 110.3× (from 4.7 batches/s to 518.4
batches/s) for𝑀2, 2.9× (from 22.2 batches/s to 63.8 batches/s)
for𝑀3, and 2.57× (from 1.75 batches/s to 4.5 batches/s) for
ResNet50. The average speedup across these jobs is 31.7×.
The service was scaled to 442, 421, 128, and 16 workers for
the𝑀1,𝑀2,𝑀3, and ResNet50 experiments, respectively. For
models𝑀1𝑀3, and ResNet50, tf.data servicewas able to reach
the ideal speedup, while for𝑀2 it fell 8% short. Upon closer
inspection into model 𝑀2’s disaggregated performance, we

tf.data service: A Case for Disaggregating ML Input Data Processing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

(a) Job speedups (b) Job cost savings

Figure 8: End-to-end job time speedups and cost reductions with disaggregated tf.data service.

found that the model receives data from tf.data service with-
out delay upon request, suggesting that the penalty in per-
formance stems from hardware limitations on the side of
the trainer nodes. The remarkably high ingestion rate re-
quirements of this model (up to 580 batches per second) in
concert with the need to deserialize and copy all batches
received from tf.data service introduce resource contention
on the trainer nodes, causing the model to slow down. This
contrasts with the ideal speedup where no deserialization
and additional data copies are required.
Cost Savings. tf.data service achieved the aforementioned
throughput benefits by using additional resources for data
preprocessing. To better understand the end-to-end cost ef-
fectiveness of horizontal-scale out, we compare the cost of
model training with and without tf.data service in Figure 8b.
Notably, the cost savings are notmuch less than the speedups:
10.8×, 89.3×, 2.8×, and 1.97× for models 𝑀1, 𝑀2, 𝑀3, and
ResNet50, respectively. The average cost saving across these
jobs is 26.2×. The cost savings are a result of jobs completing
faster and hence using expensive ML accelerator resources
for less time. In the case of ResNet50, the total training cost
for colocated training (i.e. only TPU VM) over 112320 steps at
a batch size of 1024 is 80.2$, while for disaggregated training
with 16 workers and 1 dispatcher, the cost drops to 40.6$
(9.4$ for the service and 31.2$ for the TPU VM).

Note that our cost equation does not capture possibly the
most important cost – the opportunity cost. By allowing ML
workloads to finish faster, the valuable and scarce ML hard-
ware is released back into the general pool sooner and can
be used by other ML computations. In other words, the cost
savings estimated using Equation 1 are likely an underesti-
mate of the actual economical impact of using disaggregated
tf.data service to remove input bottlenecks of ML workloads.

Cross-region Scenario. To further illustrate the benefits of
disaggregated tf.data service, we evaluate a scenario where
the source dataset is stored in a different georgraphical region
than data preprocessing and training. This situation occurs
in practice, for example due to per-region resource quota
availability or data regulations. Such situations can incur
large performance penalties on the job time due to increased
latency caused by extra network hops between storage and
compute. For this experiment, we choose 𝑀3 and store its
data in a different continent than the region where data
preprocessing and training take place. We measure that with
“out-of-region” data, training with local tf.data preprocessing
is 13.3× slower than ideal (compared to only 2.9× slower
than ideal with the “in-region” scenario in Figure 8a). This
is due input data fetching bottlenecks. We verify that with
horizontal scaling, tf.data service is able to reach the ideal
speedup even in the “out-of-region” case (not plotted in the
figure), by using extra workers to hide data fetching latency.
Sweeping Worker Count. We train 𝑀1 using a varying
data preprocessing worker pool size of 8, 16, 32, 64, 128, 256,
512, and 640 workers. We choose the smallest worker pool
size (8 workers) such that it has a comparable amount of
CPU/RAM resources to the CPU/RAM resources available
on training client nodes for colocated data preprocessing (re-
mote workers have less resources than training clients hosts
in our setup). We choose the largest worker pool size (640
workers) such that it easily eliminates the input bottleneck.

Figures 9a and 9b plot the training time speedup and job
cost savings for each configuration respectively. We normal-
ize to the training time and cost of the colocated case. The
dotted horizontal line indicates the ideal job time speedup.

With 8 workers, training time and cost is 83% higher than
with colocated processing time (0.3 batches/s versus 0.55

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Audibert A., Chen Y., Graur D., Klimovic A., Šimša J., and Thekkath C.

(a) Job time speedup (b) Job cost savings

Figure 9: Job time speedup and cost savings for model𝑀1 across several tf.data service worker counts.

batches/s). This is because CPU/RAM resources are not only
used for data preprocessing computations, but also for RPC
processing to send and receive data over the network and aux-
iliary tasks such as serialization and deserialization. When
we add 8 more workers, bringing the total to 16 workers,
training throughput with tf.data service increases to 0.64
batches/s, which is 1.14× higher than the colocated baseline.
At 64 workers, we reach a speedup of 4.1× (2.3 batches/s)
and at 128 workers, we see a 8.6× speedup (4.77 batches/s)
compared to the colocated case. With 512 workers, tf.data
service reaches the ideal training time, achieving a training
time speedup of 12.3× and corresponding cost savings of
11.4× compared to the colocated baseline. The job cost in-
creases marginally with 640 workers, due to the superfluous
128 tf.data service workers, however the job time remains
unaffected. Over-provisioning data preprocessing resources
increases cost but has minimal impact on job time. Our ob-
servations are consistent for the other models (not plotted).
Network Impact. In our experiments, we deploy workers
in the same region as client nodes. In such deployments,
the available bandwidth is never below the client ingestion
rates, hence we can achieve model-bound training time. In
situations where the available network bandwidth bewteen
workers and client is below the clients’ ingestion rate require-
ments, disaggregating data preprocessing increases training
time. In extreme scenarios, where the available bandwidth
is below the colocated preprocessing throughput, disaggre-
gation is strongly discouraged, as the colocated deployment
would achieve better performance at lower costs.

We find that network latency is less of a concern for dis-
aggregated data preprocessing, as we can hide high network
latency by using more workers. For example, we observe in

our "out-of-region" experiment that the higher the network
latency between workers and clients, the higher the number
of workers required to hide it. This means that higher net-
work latency results in higher overall cost, as each remote
worker contributes to cost. However, the dominant cost com-
ponent in most deployments is still the TPU hardware. In
extreme cases, where latency is exceptionally high, remote
worker costs can outweigh the benefits of removing the in-
put bottleneck. In these situations, the practitioner will need
to decide if they care more about optimizing for training
time or total cost.

Takeaway. tf.data service enables horizontally scaling out
data processing to remote CPU servers, which effectively
eliminates input data stalls for jobs that are input-bound
with colocated data preprocessing. Even when accounting
for the cost of the extra remote CPU servers in the service
deployment, we observe significant overall cost savings for
training jobs (26.2× on average) with disaggregated data
preprocessing due to substantial speedups (31.7× on average)
that come from ensuringML accelerators do not stall for data.
The speedups translate into proportional cost savings as jobs
consume expensive ML accelerators for less time.

4.3 Ephemeral Data Sharing
We evaluate the performance of ephemeral data sharing on
a set of hyperparameter tuning jobs across three different
scenarios: (A) all hyperparameter tuning jobs share a sin-
gle tf.data service deployment with data sharing enabled,
(B) all hyperparameter tuning jobs share a single tf.data
service deployment with no data sharing enabled, (C) each
hyperparameter tuning job uses a dedicated tf.data service

tf.data service: A Case for Disaggregating ML Input Data Processing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Figure 10: Preprocessing costs in various deployment
modes for hyperparameter tuning jobs.

deployment. We evaluate data sharing using a hyperparame-
ter tuning job, as these types of workloads most frequently
employ this feature.

For modes (A) and (B), we deploy tf.data service with 128
workers, whereas for mode (C) each individual tf.data ser-
vice deployment has 128 workers. We vary the number of𝑀4
model hyperparameter tuning jobs over the set {1, 2, 4, 8, 16}.
A single tuning job for this model makes use of 16 accelera-
tors. The model is not input-bound when there are at least
128 tf.data service workers: at this point, it reaches its ideal
training throughput of 1.92 batches/s.
Our results show that mode (A) of employing a shared

tf.data service incurs no performance overhead on the job
time regardless of the number of tuning jobs. We test that
this holds up to 64 tuning jobs (we did not test beyond this,
since it is sufficient for our use case). With mode (B), which
employs a single tf.data service with no data sharing, the
preprocessing resources are sufficient to support up to four
tuning jobs. For more concurrent jobs, the job time gradually
increases by 1.75× for 8 tuning jobs (from 1.92 batches/s to
1.09 batches/s) and to 3× for 16 tuning jobs (0.64 batches/s).
The longer job timemaps directly to increased cost. For mode
(C), which uses several dedicated tf.data service deployments,
the job time is not affected, however the processing cost
grows linearly with the number of tuning jobs. Figure 10
presents the normalized preprocessing cost of each of the
presented modes. We normalize relative to a training run of
the model without any hyperparameter tuning and with a
dedicated tf.data service deployment.

Besides the job time and cost benefits, tf.data service with
data sharing helps reduce storage and network bandwidth
usage by keeping the number of connections to and the num-
ber of bytes read from storage layer constant with respect to
the number of tuning jobs. This contrasts with the other two
modes, in which the number of connections and bytes read

Figure 11: Job time speedup inNLP productionmodels
with dynamic sequence length support.

scales linearly in the number of tuning jobs. This feature also
helps free up significant CPU and memory resources that
can be used immediately by other jobs being scheduled. This
reduces scheduling times and increases cluster efficiency.

Takeaway. Ephemeral data sharing in the context of con-
current jobs with identical input data pipelines (e.g. hyper-
parameter tuning or model search training workflows) can
linearly save preprocessing resources (tested up to 64 𝑀4
jobs) without affecting the average end-to-end time of the
jobs. This feature helps reduce network and storage band-
width usage by avoiding redundant data transfers, and saves
CPU/MEM resources, improving cluster efficiency.

4.4 Coordinated Reads
To quantify the benefits of the coordinated reads feature,
we evaluate the performance of models𝑀5,𝑀6,𝑀7, and𝑀8.
Since none of these models are input-bound with colocated
data preprocessing, all observed performance benefits stem
from the ability of the coordinated reads feature to reduce
imbalance of input data batch sizes fed to clients each train-
ing step. We deploy the models on 64, 8, 64 and 4 accelerators,
respectively. The maximum sequence length for each of the
models is 512. We use tf.data with no service for the base-
line training time. We deploy tf.data service with a similar
amount of preprocessing resources as colocated data pre-
processing to measure the coordinated reads training time.
The service deployment has 4, 1, 4, and 1 worker for mod-
els𝑀5 through𝑀8, respectively. The bucket boundaries are
defined at every multiple of 64 (i.e. (0, 64], (64, 128], etc.)
for 𝑀5 and 𝑀7 and 128 for 𝑀6 and 𝑀8, up to the maximal
sequence length.

Figure 11 shows the training time speedups. With tf.data
service coordinated reads, we observe speedups ranging from
1.5× to 3.5×, with an average of 2.2× across the four jobs.
More specifically the jobs performance improves by: (𝑀5)

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Audibert A., Chen Y., Graur D., Klimovic A., Šimša J., and Thekkath C.

1.62× (3.18 batches/s to 5.15 batches/s) (𝑀6) 1.53× (11.9 batch-
es/s to 18.3 batches/s) (𝑀7) 3.5× (2 batches/s to 7 batches/s)
(𝑀8) 2.15× (5.9 batches/s to 12.7 batches/s). These speedups
correspond to equivalent job cost savings.

Takeaway.Coordinated reads helps ensure that all batches,
at every training step, have similar size and employ mini-
mal padding, leading to uniform processing time across the
training clients at every step. Coordinated reads help syn-
chronization overheads due to stragglers, realizing speedups
of 2.2× on average for the four NLP jobs in our evaluation
and equivalent cost savings.

4.5 Fleetwide Usage
We conclude our evaluation with some more general insights
of tf.data service usage across the Google fleet. We launched
tf.data service internally in Q2 2020 and open-sourced it in Q3
2020 [66]. Its adoption has since been growing steadily both
internally and externally (e.g. for Cloud TPU workloads).
Deployment sizes. Figure 12a shows the distribution of
tf.data service deployment sizes (i.e. the number of data pro-
cessing workers) for internal ML workloads over the last
year. While most training jobs deploy between 2 and 32
workers, the largest model uses more than 5K workers. In
our fleet, tf.data service workers are heterogeneous (i.e., they
have different amounts of CPU and RAM resources) as Borg
schedules workers on multi-tenant machines with fungible
resources. The optimal number of data processing workers
and their size depends on the model, as shown by the wide
distribution in Figure 12a.
Scale-out CPU usage. We compare the total CPU usage
with versus without tf.data service for the top 10 most CPU-
intensive tf.data service jobs in the fleet. Figure 12b shows the
CPU usage for jobs with disaggregated data preprocessing,
normalized to their CPU usage with colocated data prepro-
cessing. The tf.data service workers use up to 25×more CPU
cores than available locally on ML hosts with colocated pre-
processing. Without tf.data service, data processing would
incur large input bottlenecks, slowing down the ML compu-
tation and limiting utilization of valuable ML hardware.

5 DISCUSSION
We discuss insights from the internal adoption of tf.data
service and the implications ML disaggregation has on future
research and preprocessing dynamics.
Target workloads. ML jobs can benefit from our work on
disaggregation in three different ways: (1) eliminating input
bottlenecks via horizontal-scale out (2) avoiding recomputa-
tion via ephemeral data sharing and (3) avoiding stragglers
in distributed training via coordinated reads. We expect ML
jobs in the image, video and audio domains to benefit the

most from (1) as their input pipelines often employ com-
plex transformations that manipulate large volumes of data,
making them more likely to be input-bound. NLP jobs often
have less compute intensive input pipelines and are thus
less likely to benefit from (1). All types of ML workloads can
benefit from (2) when their execution overlaps in time and
they have the same input pipeline. For instance, this scenario
often occurs for hyperparameter tuning jobs. Finally, NLP
models frequently benefit from (3), as their input data has
irregular sequence length, which can lead to straggler trainer
nodes in synchronous distributed training. We are exploring
how coordinated reads may also benefit other ML domains
with variable input sizes (e.g. different image or audio reso-
lutions). We note that jobs can benefit from a combination
of the features brought forward by our work, and are not
bound to one. For instance, a set of hyperparameter tuning
NLP jobs could benefit from tf.data service to reduce redun-
dant computation via ephemeral data sharing and eliminate
straggler clients via coordinated reads.
Implications for ML accelerator host design. The cur-
rent generation of Cloud TPU hosts provide 96 CPU cores
and 335 GB of RAM per TPU accelerator, which provides
significant local resources for data processing. In production,
we find that approximately 20% of accelerator usage benefits
from distributed data processing since it needs even more
CPU and/or memory resources than what is available on
TPU hosts to avoid input data processing bottlenecks. Why
not build even beefier accelerator hosts to satisfy the needs
of the most data processing intensive jobs and colocate other
workloads on any spare CPU/memory of hosts with less data
processing intensive ML jobs? As shown in Figure 2, sharing
the host resources of ML accelerator nodes is challenging
because CPU usage tends to be extremely bursty. CPU utiliza-
tion oscillates from high when preprocessing a batch of data
to low while the accelerator computes the model training
step on this batch, making ML data processing a challenging
workload to colocate with other jobs. Thus, to avoid per-
formance interference, TPU hosts are dedicated machines
– they are not shared between users like other machines in
Google’s cluster [73].
With the support for disaggregated data processing pro-

vided by tf.data service, it is worth exploring the design of
ML accelerator nodes with wimpier resources to reduce costs.
For example, the job in Figure 2 under-utilizes host memory.
However, other jobs that will use the same server configura-
tion may need more CPU and/or memory. Disaggregation
has the potential to ensure all ML jobs are provisioned with
the right CPU/MEM to accelerator ratio. Just as disaggre-
gating data storage from computation in cloud applications
has led to new hardware trends such as SmartNIC-attached

tf.data service: A Case for Disaggregating ML Input Data Processing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

(a) CDF of worker counts in production jobs. (b) Client node CPU limit and tf.data worker CPU usage.

Figure 12: tf.data service fleetwide usage.

storage device arrays [10, 52], it is interesting to explore hard-
ware deployments that completely separate ML accelerators
from the CPU and RAM resources used for traditional data
processing. How to design SmartNIC-attached ML accelera-
tor arrays and to what extent can such hardware improve
the performance and cost of ML jobs remain open questions.
ML data processing as a multi-tenant service. While
tf.data service is currently deployed per job or set of jobs
submitted by a user, we are exploring how to run tf.data ser-
vice as a long-lived, multi-tenant service that is shared across
an organization. Such a deployment would provide a global
view of all jobs executed within an organization, which
can help optimize job performance and cluster resources
efficiency. This setup goes hand in hand with novel policy
development which exploits global information to remove
cumbersome decisions from practitioners, helping both pre-
processing performance and model quality. The advantage
of features that exploit the organization’s view is that they
can help make globally optimal decisions, in contrast to prac-
titioners which have a limited view of only their jobs. For ex-
ample, Cachew [30] is a system built on top of tf.data service
that caches common input data pipelines across jobs from
different tenants to optimize training throughput. Cachew
also autoscales the number of remote workers for each job
to maximize throughput-per-dollar. We see further opportu-
nities to leverage global knowledge across jobs: for dataset
discovery [11, 75] and automatic input pipeline augmenta-
tions [15, 16]. Sharing preprocessing at a finer granularity
within the input pipeline (similar to shared query execu-
tion [20, 32, 50]) and combining this with semantic trans-
formations of the input pipeline (similar to semantic query
optimization [12, 34, 61]) are other promising directions. Dis-
aggregation enables a rich design space for resource and data

management policies, to optimize preprocessing throughput
and hardware utilization in concert with training dynamics.

6 CONCLUSION
We presented tf.data service and showed that disaggregat-
ing ML input data preprocessing from ML training allows
us to eliminate input data stalls with horizontal scale-out,
achieving up to 31.7× speedups and 26.2× cost savings, on
average. We also showed that disaggregation is useful be-
yond horizontal scaling, as it enables other features in tf.data
service, such as ephemeral data sharing, which improves
resource efficiency by avoiding redundant computations in
concurrent jobs with no performance loss, and coordinated
reads, which helps eliminate straggler clients in synchro-
nous distributed training (2.2× average speedup for NLP
jobs). Our work motivates future research in ML hardware
and data processing service design to further improve cluster
efficiency and model quality.

ACKNOWLEDGMENTS
This work represents a combined effort of a large group of
people. First, we would like to acknowledge Battulga Bayar-
saikhan, Emanuel Taropa, Rohan Anil, and Ryan Doherty
for their work on DataGuzzler [6], a precursor to tf.data ser-
vice. Next, we would like to thank everyone who contributed
to the development of tf.data service, most notably Derek
Murray and Rohan Jain, and everyone who provided feed-
back to help us improve tf.data service, including Aleksandr
Zaks, Aniruddh Nath, Deping Xie, Hao Wu, Huan Gui, Josh
Cai, Lin Yuan, Mahesh Sathiamoorthy, Ruoxin Sang, Yingpei
Wang, and Zhaoqi Leng. Last but not least, we would like to
thank Abhishek Gupta, Carrie Grimes Bostock, and Steven
Hand for reviewing the paper and helping us improve it.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Audibert A., Chen Y., Graur D., Klimovic A., Šimša J., and Thekkath C.

REFERENCES
[1] 2022. Apache Beam: An advanced unified programming model. https:

//beam.apache.org/.
[2] 2022. Apache Flume. https://flume.apache.org/.
[3] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A system for large-scale machine learning. In Proc. of
OSDI. https://www.usenix.org/system/files/conference/osdi16/osdi16-
abadi.pdf

[4] Amazon. 2022. Amazon EC2 Pricing. https://aws.amazon.com/ec2/
pricing/.

[5] Amazon. 2022. Amazon EC2 Pricing. https://aws.amazon.com/ec2/
instance-types/.

[6] Rohan Anil, Battulga Bayarsaikhan, Ryan Doherty, and Emanuel
Taropa. 2021. Distributed computing pipeline processing.
https://patents.google.com/patent/WO2021177976A1.

[7] Leon Bottou. 2009. Curiously Fast Convergence of some Stochastic
Gradient Descent Algorithms. In Proc. of the Symposium on Learning
and Data Science.

[8] Léon Bottou. 2010. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT’2010: 19th International
Conference on Computational StatisticsParis France, August 22-27, 2010
Keynote, Invited and Contributed Papers. Springer, 177–186.

[9] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, and Skye Wanderman-Milne. 2018.
JAX: composable transformations of Python+NumPy programs. http:
//github.com/google/jax

[10] Broadcom. 2019. Broadcom Stingray PS250 SmartNIC. https://docs.
broadcom.com/doc/PS250-PB

[11] Tianshi Cao, Sasha (Alexandre) Doubov, David Acuna, and Sanja Fidler.
2021. Scalable Neural Data Server: A Data Recommender for Trans-
fer Learning. In Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (Eds.).

[12] Upen S. Chakravarthy, John Grant, and Jack Minker. 1990. Logic-Based
Approach to Semantic Query Optimization. ACM Trans. Database Syst.
15, 2 (jun 1990), 162–207. https://doi.org/10.1145/78922.78924

[13] Dami Choi, Alexandre Passos, Christopher J. Shallue, and George E.
Dahl. 2019. Faster Neural Network Training with Data Echoing.
arXiv:1907.05550 [cs.LG]

[14] Torch Contributors. 2022. PyTorch Docs: torch.utils.data. https://
pytorch.org/docs/stable/data.html.

[15] Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and
Quoc V. Le. 2019. AutoAugment: Learning Augmentation Strategies
From Data. In IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR.

[16] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. 2020. Ran-
dAugment: Practical Automated Data Augmentation with a Reduced
Search Space. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.).
18613–18624.

[17] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov,
Artin Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Mar-
tin Hentschel, Jiansheng Huang, Allison W. Lee, Ashish Motivala,
Abdul Q. Munir, Steven Pelley, Peter Povinec, Greg Rahn, Spyridon
Triantafyllis, and Philipp Unterbrunner. 2016. The Snowflake Elastic
Data Warehouse. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD ’16).

[18] Jia Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. Ima-
geNet: A Large-Scale Hierarchical Image Database. In Proc. of CVPR.

[19] Jonas Geiping, Micah Goldblum, Gowthami Somepalli, Ravid Shwartz-
Ziv, Tom Goldstein, and Andrew Gordon Wilson. 2023. How Much
Data Are Augmentations Worth? An Investigation into Scaling Laws,
Invariance, and Implicit Regularization. arXiv:2210.06441 [cs.LG]

[20] Georgios Giannikis, DarkoMakreshanski, Gustavo Alonso, and Donald
Kossmann. 2014. Shared workload optimization. Proceedings of the
VLDB Endowment 7, 6, 429–440.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.

[22] Google. 2022. Better performance with the tf.data API. https://www.
tensorflow.org/guide/data_performance

[23] Google. 2022. Google Cloud: All Pricing. https://cloud.google.com/
compute/all-pricing.

[24] Google. 2022. Google Cloud: TPU regions and zones. https://cloud.
google.com/tpu/docs/regions-zones.

[25] Google. 2022. tf.data service API documentation. https://www.
tensorflow.org/api_docs/python/tf/data/experimental/service

[26] Google. 2023. Colossus under the hood: a peek into Google’s scalable
storage system.

[27] Google. 2023. Google Storage. https://cloud.google.com/storage.
[28] Google. 2023. gRPC Documentation.
[29] Google. 2023. Network Pricing. https://cloud.google.com/vpc/network-

pricing#vpc-pricing.
[30] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramo-

han A Thekkath, and Ana Klimovic. 2022. Cachew: Machine Learning
Input Data Processing as a Service. In Proc. of USENIX ATC.

[31] Joaquin Anton Guirao, Krzysztof Łęcki, Janusz Lisiecki, Serge Panev,
Michał Szołucha, Albert Wolant, and Michał Zientkiewicz. 2019. Fast
AI Data Preprocessing with NVIDIA DALI. https://devblogs.nvidia.
com/fast-ai-data-preprocessing-with-nvidia-dali.

[32] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki.
2005. Qpipe: A simultaneously pipelined relational query engine.
In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. 383–394.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In Proc. of CVPR. IEEE Com-
puter Society. https://doi.org/10.1109/CVPR.2016.90

[34] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert
Grimm. 2014. A catalog of stream processing optimizations. ACM
Computing Surveys (CSUR) 46, 4 (2014), 1–34.

[35] Kubernetes HPA. 2023. Kubernetes Horizontal Pod Autoscaler Documen-
tation. https://kubernetes.io/docs/tasks/run-application/horizontal-
pod-autoscale/

[36] Chip Huyen. 2022. Designing Machine Learning Systems. O’Reilly
Media, USA.

[37] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. 2020. A Unified Architecture for Accelerating Distributed
DNN Training in Heterogeneous GPU/CPU Clusters. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20).

[38] Norman P Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan,
Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian
Towles, et al. 2023. Tpu v4: An optically reconfigurable supercomputer
for machine learning with hardware support for embeddings. arXiv
preprint arXiv:2304.01433 (2023).

[39] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant
Patil, James Laudon, Cliff Young, and David Patterson. 2020. A Domain-
Specific Supercomputer for Training Deep Neural Networks. Commun.
ACM 63, 7 (2020).

https://beam.apache.org/
https://beam.apache.org/
https://flume.apache.org/
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://github.com/google/jax
http://github.com/google/jax
https://docs.broadcom.com/doc/PS250-PB
https://docs.broadcom.com/doc/PS250-PB
https://doi.org/10.1145/78922.78924
https://arxiv.org/abs/1907.05550
https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html
https://arxiv.org/abs/2210.06441
http://www.deeplearningbook.org
https://www.tensorflow.org/guide/data_performance
https://www.tensorflow.org/guide/data_performance
https://cloud.google.com/compute/all-pricing
https://cloud.google.com/compute/all-pricing
https://cloud.google.com/tpu/docs/regions-zones
https://cloud.google.com/tpu/docs/regions-zones
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://cloud.google.com/storage
https://cloud.google.com/vpc/network-pricing##vpc-pricing
https://cloud.google.com/vpc/network-pricing##vpc-pricing
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali
https://doi.org/10.1109/CVPR.2016.90
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

tf.data service: A Case for Disaggregating ML Input Data Processing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

[40] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snel-
ham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-
Datacenter Performance Analysis of a Tensor Processing Unit. In Proc.
of ISCA (Toronto, ON, Canada) (ISCA ’17). Association for Comput-
ing Machinery, New York, NY, USA. https://doi.org/10.1145/3079856.
3080246

[41] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shiv-
aram Venkataraman. 2019. The Case for Unifying Data Loading in
Machine Learning Clusters. In 11th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 19).

[42] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and San-
jeev Kumar. 2016. Flash Storage Disaggregation. In Proc. EuroSys
(EuroSys ’16). Article 29.

[43] Kubernetes. 2023. kubernetes Documentation. https://kubernetes.io/
docs/home/

[44] Michael Kuchnik, Ana Klimovic, Jiri Simsa, Virginia Smith, and George
Amvrosiadis. 2022. Plumber: Diagnosing and Removing Performance
Bottlenecks in Machine Learning Data Pipelines. In Proc. of Machine
Learning and Systems, Vol. 4. 33–51.

[45] Abhishek Vijaya Kumar and Muthian Sivathanu. 2020. Quiver: An
Informed Storage Cache for Deep Learning. In Proc. of FAST.

[46] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyunggeun Lee, Hwarim Hyun,
Ahnjae Shin, and Byung-Gon Chun. 2021. Refurbish Your Training
Data: Reusing Partially Augmented Samples for Faster Deep Neural
Network Training. In Proc. of USENIX ATC.

[47] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing
Su. 2014. Scaling Distributed Machine Learning with the Parameter
Server. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14).

[48] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
2017. Focal loss for dense object detection. In Proceedings of the IEEE
international conference on computer vision. 2980–2988.

[49] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Mi-
crosoft COCO: Common Objects in Context. In Proc. of ECCV (2014-
01-01). Zürich. /se3/wp-content/uploads/2014/09/coco_eccv.pdf,http:
//mscoco.org Oral.

[50] Renato Marroquin, Ingo Müller, Darko Makreshanski, and Gustavo
Alonso. 2018. Pay one, get hundreds for free: Reducing cloud costs
through shared query execution. In Proceedings of the ACM Symposium
on Cloud Computing. 439–450.

[51] Meta. 2022. Scaling data ingestion for machine learning training at
Meta. https://engineering.fb.com/2022/09/19/ml-applications/data-
ingestion-machine-learning-training-meta/.

[52] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, AndrewWei,
In Hwan Doh, and Arvind Krishnamurthy. 2021. Gimbal: Enabling

Multi-Tenant Storage Disaggregation on SmartNIC JBOFs. In Proc. of
ACM SIGCOMM (SIGCOMM ’21). 106–122.

[53] MLCommons. 2022. ML Perf v2 Google Hardware Configura-
tions. https://github.com/mlcommons/training_results_v2.0/tree/
main/Google/systems

[54] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021.
{CheckFreq}: Frequent,{Fine-Grained}{DNN} Checkpointing. In
19th USENIX Conference on File and Storage Technologies (FAST 21).
203–216.

[55] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay
Chidambaram. 2021. Analyzing and Mitigating Data Stalls in DNN
Training. arXiv:2007.06775 [cs.DC]

[56] DerekG.Murray, Jiří Šimša, Ana Klimovic, and Ihor Indyk. 2021. tf.data:
A Machine Learning Data Processing Framework. Proc. VLDB Endow.
14, 12 (2021).

[57] MXNET. 2018. Designing Efficient Data Loaders for Deep Learning.
https://mxnet.apache.org/api/architecture/note_data_loading.

[58] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[59] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych,
Przemyslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack,
Piotr Witusowski, Steven Hand, et al. 2020. Autopilot: workload au-
toscaling at google. In Proc. of the Fifteenth European Conference on
Computer Systems.

[60] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-
aggregation. In Proc. of OSDI.

[61] Sreekumar T. Shenoy and Z. Meral Ozsoyoglu. 1987. A System for
Semantic Query Optimization. In Proceedings of the 1987 ACM SIG-
MOD International Conference on Management of Data (San Francisco,
California, USA) (SIGMOD ’87). Association for Computing Machinery,
New York, NY, USA, 181–195. https://doi.org/10.1145/38713.38736

[62] Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image
data augmentation for deep learning. Journal of big data 6, 1 (2019),
1–48.

[63] Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. 2021. Text
data augmentation for deep learning. Journal of big Data 8 (2021),
1–34.

[64] Patrice Y. Simard, Dave Steinkraus, and John C. Platt. 2003. Best Prac-
tices for Convolutional Neural Networks Applied to Visual Document
Analysis. In Proc. of ICDAR (ICDAR ’03). IEEE Computer Society, USA,
1 pages.

[65] Apache Spark. 2023. Spark Streaming Programming Guide. https:
//spark.apache.org/docs/latest/streaming-programming-guide.html.

[66] TensorFlow. 2022. Module: tf.data.experimental.service. https://www.
tensorflow.org/api_docs/python/tf/data/experimental/service.

[67] TensorFlow. 2022. tf.data: Build TensorFlow input pipelines. https:
//www.tensorflow.org/guide/data.

[68] TensorFlow. 2023. Tensorflow. https://github.com/tensorflow/
tensorflow.

[69] TensorFlow. 2023. TensorFlow Model Garden. https://github.com/
tensorflow/models.

[70] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E Haque, Zhi-
jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
2020. Borg: the next generation. In Proceedings of the fifteenth European

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
/se3/wp-content/uploads/2014/09/coco_eccv.pdf, http://mscoco.org
/se3/wp-content/uploads/2014/09/coco_eccv.pdf, http://mscoco.org
https://engineering.fb.com/2022/09/19/ml-applications/data-ingestion-machine-learning-training-meta/
https://engineering.fb.com/2022/09/19/ml-applications/data-ingestion-machine-learning-training-meta/
https://github.com/mlcommons/training_results_v2.0/tree/main/Google/systems
https://github.com/mlcommons/training_results_v2.0/tree/main/Google/systems
https://arxiv.org/abs/2007.06775
https://mxnet.apache.org/api/architecture/note_data_loading
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/38713.38736
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.tensorflow.org/guide/data
https://www.tensorflow.org/guide/data
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/models
https://github.com/tensorflow/models

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Audibert A., Chen Y., Graur D., Klimovic A., Šimša J., and Thekkath C.

conference on computer systems. 1–14.
[71] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun,

Goeun Kim, and Woo-Yeon Lee. 2023. FastFlow: Accelerating Deep
Learning Model Training with Smart Offloading of Input Data Pipeline.
Proceedings of the VLDB Endowment 16, 5 (2023), 1086–1099.

[72] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppen-
burg, Tim Verbelen, and Jan S. Rellermeyer. 2020. A Survey on Dis-
tributed Machine Learning. ACM Comput. Surv. 53, 2, Article 30 (mar
2020).

[73] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster manage-
ment at Google with Borg. In Proc. of EuroSys.

[74] Kubernetes VPA. 2023. Kubernetes Vertical Pod Autoscaler Documen-
tation. https://cloud.google.com/kubernetes-engine/docs/concepts/
verticalpodautoscaler

[75] Xi Yan, David Acuna, and Sanja Fidler. 2020. Neural Data Server:
A Large-Scale Search Engine for Transfer Learning Data. In Proc. of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

[76] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-
ing Sets. In Proc. of HotCloud (Boston, MA) (HotCloud’10). USENIX
Association, USA, 10.

[77] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan,
Mustafa Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei
Lu, Sundaram Narayanan, Jack Langman, Kevin Wilfong, Harsha Ras-
togi, Carole-Jean Wu, Christos Kozyrakis, and Parik Pol. 2022. Un-
derstanding Data Storage and Ingestion for Large-Scale Deep Recom-
mendation Model Training: Industrial Product. In Proc. of ISCA (ISCA
’22).

https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler

	Abstract
	1 Introduction
	2 Background and Related Work
	3 tf.data service Design
	3.1 System Architecture
	3.2 API and Pipeline Optimizations
	3.3 Source Data Sharding
	3.4 Fault tolerance
	3.5 Ephemeral Data Sharing
	3.6 Coordinated Reads

	4 Evaluation
	4.1 Methodology
	4.2 Horizontal Scale-Out
	4.3 Ephemeral Data Sharing
	4.4 Coordinated Reads
	4.5 Fleetwide Usage

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

