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Abstract

Cloud computing promises high performance, cost-efficiency, and elasticity — three essential goals

when processing exponentially growing datasets. To meet these goals, cloud platforms must provide

each application with the right amount and balance of compute and fast storage resources (e.g.,

Flash storage). However, providing the right resources to applications is difficult for several reasons:

server machines have a fixed ratio of compute and storage resources, remote access to fast storage

leads to significant performance and cost overheads, and storage requirements vary significantly over

time and across applications.

This dissertation focuses on how to build high performance, cost-effective, and easy-to-use cloud

storage systems. We address two critical challenges. The first challenge is providing fast, predictable

access to remote data on modern storage devices, so that the balance of compute and storage alloca-

tion is not limited by the physical characteristics of server hardware. Our insight is to disaggregate

Flash storage from compute resources while maintaining high quality of service (QoS) with a novel

software stack for network and storage processing. The second challenge is intelligent allocation of

storage resources. We discuss how to automate storage resource management by rightsizing resource

allocations based on application characteristics, learned by user hints or by training a machine

learning model on past performance data

To address the first challenge of fast, predictable access to remote data, we present ReFlex, a cus-

tom network-storage operating system. ReFlex improves resource allocation flexibility by enabling

applications to access remote Flash over commodity cloud networks without sacrificing the perfor-

mance and predictability achieved with local Flash. By closely integrating networking and storage

processing, the software-based system serves up to 850,000 I/O operations per second per core over

TCP/IP networking, while adding only 21 µs latency over direct access to local Flash. Compared

to using traditional Linux I/O libraries (libevent and libaio) for remote access to Flash, ReFlex

achieves an 11× improvement in throughput per core and a 3× improvement in latency. The system

can also enforce tail latency and throughput service-level objectives for thousands of remote clients

sharing a remote Flash device using a novel, QoS-aware I/O scheduler.

Though ReFlex gives us the flexibility to customize the balance of compute and Flash storage
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resource allocations for each application, selecting the right resource allocations to optimize perfor-

mance and cost efficiency is challenging. We address the challenge of intelligent resource allocation

in a new storage service called Pocket, which builds on top of ReFlex. Pocket enables an emerging

class of applications called serverless analytics to run efficiently in the cloud by providing fast, elastic

storage for intermediate data sharing between tasks. The distributed data store dynamically right-

sizes resources across multiple dimensions (CPU cores, network bandwidth, and storage capacity)

and leverages multiple storage technologies to minimize cost while ensuring applications are not

bottlenecked on I/O. The system leverages optional hints, which can be provided by application

frameworks or users, to determine a job’s latency, throughput, and capacity requirements. Pocket

reduces the average time that serverless tasks in a video analytics application spend on ephemeral

data I/O by over 4× compared to Amazon S3, a popular object storage service. Pocket offers ap-

plications similar performance to a popular memory-based data store, Redis, while rightsizing and

autoscaling storage resources to save close to 60% in cost.

Finally, we discuss the potential of using machine learning to automate intelligent resource allo-

cation decisions and replace the hints and heuristics commonly used in today’s resource management

systems. We built a system called Selecta that recommends a near-optimal resource allocation for

a target application by predicting the applications execution time across a variety of virtual ma-

chine and storage configurations. The system learns by leveraging performance data collected for

applications that were previously run across a variety configurations. Using a collaborative filtering

technique to uncover latent similarities across jobs and resource configurations, Selecta makes fast,

accurate recommendations with sparse training data. For example, Selecta has a 94% probability

of recommending a configuration that performs within 10% of the true highest performance con-

figuration. Our evaluation of Selecta for data analytics jobs across various compute and storage

configurations also revealed several key insights to guide the design of future storage systems, such

as the need for fine-grain allocation of storage capacity and bandwidth.
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Chapter 1

Introduction

The amount of data that we are generating and analyzing is growing exponentially. A recent study

estimates that the amount of data being recorded is doubling every two to three years [129]. Fur-

thermore, our desire to extract knowledge from the data that we collect, with techniques such as

machine learning, means that an increasing amount of data is being actively processed. To store and

process these growing datasets, users are commonly turning to cloud computing platforms. This is

because cloud computing promises high elasticity, cost-efficiency, scalability, and performance [30].

However, these benefits of cloud computing are only achieved if each application receives the type

and amount of storage and compute resource it needs.

Provisioning cloud resources to achieve performance and cost efficiency is difficult for several

reasons. The compute and storage resource requirements of applications vary dramatically over

time and across jobs [121, 29]. Furthermore, compute and storage resource requirements are not

necessarily correlated [137, 194]. For example, a change to application code can substantially improve

CPU efficiency, thus decreasing compute requirements, while storage resource demands continue to

increase due to increasing application load. Application resource requirements are only becoming

more dynamic. For example, with the increasing popularity of elastic computing services such as

“serverless computing”, users can simultaneously launch thousands of short-lived tasks with fine-

grain resource scaling and billing.

While application requirements vary dynamically, the servers hosting applications in cloud facil-

ities have fixed ratios of compute and storage resources. For instance, the number of CPU cores and

storage device(s) on a node is fixed when a server is built and deployed. Cloud operators typically

limit variety of server configurations deployed in a datacenter as high heterogeneity would make

maintenance intractable at the scale of tens of thousands of servers [74]. The mismatch between

the dynamic nature of application resource requirements and the static set of resources available on

datacenter servers leads to a lack of flexibility for resource allocation. For example, a cloud applica-

tion may require 1 TB of Flash storage capacity and 50 CPU cores for request processing, but Flash

2



CHAPTER 1. INTRODUCTION 3

storage servers in the cloud facility may be deployed with a ratio of 1 TB of Flash storage to 8 CPU

cores. As a result, resources like Flash storage are commonly over-provisioned and underutilized.

Over-provisioning resources significantly increases cost, particularly since the server equipment is

the highest contributor to the total cost of ownership for warehouse-scale datacenters [97]. With

tens of thousands of servers per datacenter facility consuming tens of megawatts of power, resource

underutilization at this scale is extremely wasteful.

Fortunately, there are promising opportunities to improve datacenter resource utilization. For

example, by sharing storage resources over the network and enabling flexible allocation of storage

and compute resources, customized to the needs of individual applications. However, we must

improve resource utilization while maintaining high performance. Hence, the overarching goal is

to design resource-efficient cloud storage systems, meaning systems that satisfy application service

level objectives (SLOs) while provisioning the minimum required resources for each job.

To improve the resource efficiency of existing cloud storage systems, we have two main require-

ments. First, we need flexible resource allocation. Instead of allocating resources in units of physical

servers with fixed compute and storage capacities, we would like to allocate compute and storage

from independent resource pools so that each application can get exactly the right amount and type

of resources it needs. Second, we need intelligent controllers to make performance and cost effec-

tive resource allocation decisions at large scale. Automating storage resource allocation decisions is

necessary to keep up with the growing number of cloud applications and their increasingly dynamic

resource requirements, thanks to the elasticity of new serverless cloud computing platforms.

1.1 Contributions

The key question this dissertation explores is how should we build resource-efficient and high per-

formance storage systems for diverse, elastic applications in the cloud?. We address this question

using two main insights. The first insight is to decouple storage from compute resources to improve

resource allocation flexibility. A major challenge is enabling fast, predictable access to modern Flash

storage devices over commodity cloud networks. While networking hardware enables low latency and

high throughput access across servers in the whole datacenter, traditional operating system software

for network storage request processing is currently a bottleneck [38, 162]. The second insight is to

make intelligent resource allocation decisions at scale by learning application characteristics, either

from hints or machine learning models trained on prior performance data. We design a controller

that interprets hints provided through a novel storage API to allocate and autoscale resources effi-

ciently for each job. To eliminate the burden of providing hints, we explore how to autonomously

learn near-optimal resource allocations based on sparse data collected from prior application runs.

Using these two key insights, we design and implement three systems that collectively improve

cloud storage resource efficiency and performance. Below, we provide a brief overview of each system.
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ReFlex: Fast, Predictable Access to Remote Flash

Storage disaggregation addresses the challenge of imbalanced resource requirements and the re-

sulting overprovisioning of datacenter resources by physically decoupling compute and storage re-

sources, such that datacenter operators can more easily customize their infrastructure to maximize

the performance-per-dollar for target workloads. In a disaggregated cloud environment, applications

remotely access storage devices that have spare capacity and bandwidth, regardless of their physical

location in a cloud facility. This approach is already common for disk storage as network overheads

are small compared to a disk’s millisecond access latency and low hundreds of IOPS [25]. However,

disaggregating modern Flash storage devices presents several challenges. Traditional operating sys-

tems introduce high overhead as they were originally designed with the assumption of slow network

and storage devices. Furthermore, since write operations take significantly longer than read oper-

ations on Flash technology, performance isolation between read and write requests from different

tenants sharing a Flash device is important for quality of service.

ReFlex is a software system that enables applications to access remote Flash storage with nearly

identical performance to accessing local Flash. ReFlex runs on remote Flash storage servers and

bypasses traditional operating system software for network and storage processing. By efficiently

integrating network and storage processing, ReFlex serves up to 850,000 storage requests per second

per CPU core on an Intel Xeon server. This is an 11× improvement compared to a Linux server

implemented with standard I/O libraries. ReFlex provides throughput and tail latency performance

guarantees for up to thousands of clients sharing a Flash server with a novel I/O scheduler that

takes into account Flash device characteristics and client performance objectives. In contrast to

approaches that rely on specialized networking hardware to achieve high performance, ReFlex is a

purely software-based solution that works on commodity hardware in public clouds.

ReFlex is highly adoptable as it requires no changes to the host operating system. The system

is open-source and is already having impact. ReFlex serves as a fast Flash storage tier on public

clouds for the Apache Crail distributed data store, which enables efficient data sharing in widely used

data processing frameworks, such as Spark and TensorFlow [197, 4]. Broadcom is also integrating

the ReFlex I/O scheduler on a system on chip platform to provide quality of service guarantees to

tenants sharing a Flash device over the network.

Pocket: Fast, Elastic Storage for Ephemeral Data

While ReFlex provides a fast data plane for access to remote blocks of data, a complete cloud

storage solution also requires a metadata plane to manage how application objects are stored as

data blocks across storage nodes and an intelligent control plane to allocate storage resources in

a cluster. We introduce a new system, Pocket, which adds metadata management and intelligent

resource allocation on top of ReFlex’s fast data plane. We design Pocket to enable an emerging class

of cloud applications, called serverless analytics, to run efficiently in the cloud by providing fast,
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elastic storage for ephemeral data sharing between tasks.

Serverless computing is a fully managed compute service that is becoming increasingly popular,

enabling users to quickly launch thousands of light-weight tasks in the cloud, as opposed to entire

virtual machines. Though initially designed for simple applications that execute a single task in

response to an event, several emerging application frameworks are leveraging serverless computing

to exploit massive task parallelism and achieve near real-time performance for more complex jobs,

such as data analytics. A key challenge for serverless analytics is efficiently managing temporary

data that tasks generate and exchange between different stages of execution in an analytics job [124].

Since serverless computing tasks are short-lived and any data that a task stores locally is lost when

the task terminates, serverless analytics jobs share data using distributed storage solutions. However,

popular storage systems used to share data in serverless computing applications today (e.g., Amazon

S3 [22] and Redis [128]) either introduce significant performance overhead or they require users to

manually manage expensive storage clusters.

Pocket is a storage service for ephemeral data sharing, designed specifically for serverless an-

alytics and intended to be operating by cloud providers. More generally, Pocket is a distributed

temporary data store that a variety of cloud applications can use for fast, elastic ephemeral storage.

Pocket’s design spans three different planes, which can each be scaled independently: i) a data plane

that stores data objects across multiple nodes and storage technologies, ii) a metadata plane that

routes client read/write requests to the right storage nodes, and iii) a control plane that decides

which resources to allocate for each job and how to autoscale the storage cluster based on resource

utilization. The system leverages optional hints, which users of application frameworks can provide

through Pocket’s client API, to determine a job’s latency, throughput and capacity requirements.

When a job registers with the Pocket controller, Pocket uses heuristics to translate any provided

hints about the application’s characteristics to a cost-effective storage resource allocation that sat-

isfies the job’s performance requirements. Storage nodes consist of a variety of technologies (e.g.,

DRAM, Flash, and disk) with different performance-cost trade-offs and run optimized software for

network storage processing. For example, Pocket leverages ReFlex for fast access to Flash storage

from Pocket clients.

Pocket reduces the average time that serverless tasks in a video analytics application spend on

ephemeral I/O by over 4× compared to Amazon S3, a popular object storage service used by many

serverless cloud applications. Pocket offers applications similar performance to Redis, a popular

memory-based data store, while offering elastic resource provisioning and saving close to 60% in

cost. These cost savings come from intelligent data placement across storage technologies and

Pocket’s pay-what-you-use cost model as a cloud provider managed storage service.
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Selecta: Automatic Storage Resource Allocation

While Pocket rightsizes resources in response to load and relieves users from managing storage

resources, the system still relies on users or application frameworks to provide hints about application

characteristics to achieve cost-effective resource allocations. The third system we present automates

storage and compute resource allocation decisions for data analytics jobs without relying on user

hints.

Our system, Selecta, recommends a near-optimal resource allocation for a target application

by predicting the application’s execution time across a variety of cloud resource configurations.

The system learns by leveraging performance data collected for applications that were previously

run across a variety of compute and storage configurations. Using a technique called latent factor

collaborative filtering, Selecta makes fast, accurate recommendations with sparse training data.

Collaborative filtering works by uncovering latent similarities across jobs and resource configurations.

The advantage of collaborative filtering is that users do not need to engineer features to train an

accurate model and the approach is known to work well with sparse input data.

Selecta can find resource allocations that minimize the execution time of a job, minimize the

cost of running a job, or maximize the performance of a job within a budget. For minimizing job

execution time, Selecta has a 94% probability of recommending a configuration that performs within

10% of the true highest performance configuration. For minimizing job execution cost, where cost is a

function of resource pricing per unit time and the job execution time, Selecta has an 80% probability

of recommending a configuration that achieves within 10% of the true optimal cost configuration.

Though we present Selecta as a tool for cloud users who need to decide between a plethora of

virtual machine and storage configurations available in the cloud, the tool can also be used by

cloud providers to provision resources for services like serverless computing in which the provider

is responsible for resource allocation. As data-intensive workloads continue to grow in complexity

and cloud options for compute and storage increase, automating storage resource management will

become increasingly useful for end users and cloud providers.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides relevant background and moti-

vation. Chapter 3 describes ReFlex, a software system for fast, predictable remote access to Flash

storage over commodity cloud networks. In Chapter 4, we describe Pocket, a system that builds on

top of ReFlex’s fast dataplane to offer a fast, elastic ephemeral data store for an emerging class of

cloud applications known as serverless analytics. In Chapter 5, we present Selecta, a system that

automates compute and storage resource allocation by recommending near-optimal cloud resource

configurations based on sparse performance data collected across jobs. We conclude with a summary

of our main contributions and a discussion of future work directions in Chapter 6.



Chapter 2

Background and Motivation

2.1 Cloud Storage

Much of today’s economy relies on data, as companies capture, process, and capitalize on data in

every step of their supply chain. The volume of data that organizations are generating and analyzing

is growing exponentially. A recent study estimates that the amount of data being recorded worldwide

is increasing 30% to 40% per year [129]. A significant portion of the data stored is also being actively

processed. While consumers are using online services such as social media, video streaming, and

cloud storage on a regular basis, businesses are mining vast amounts of customer data to provide

greater levels of personalization. At this rate, it is predicted that in the year 2025, we will process

five zettabytes of data on a global scale [169].

To store and process growing volumes of data, organizations and individuals are increasingly

turning to the cloud. Cloud computing offers four key benefits for storing and processing data: high

performance, resource elasticity, cost efficiency, and high availability. Cloud users can scale their

resource usage up or down as the compute and storage demands of applications vary over time and

pay only for the resources consumed at each time interval. The cost of operating highly available

compute and storage infrastructure is amortized as cloud operators share their large-scale platforms

among multiple tenants.

However, users only reap performance and cost efficiency benefits from the cloud if the cloud

platform can provide each application with the right type and amount of compute and storage

resources. In particular, the choice of storage is critical for the performance and cost of data-intensive

cloud applications. For example, a Spark SQL equijoin query on two 128 GB tables completes 8.7×
faster and costs 8× less when using local NVMe Flash storage compared to remote disk volumes on

the Amazon EC2 public cloud [161, 123].

To address the diverse storage requirements of applications, today’s cloud providers offer a wide

variety of storage options. Object storage, distributed file storage, and block storage are common

7
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classes of storage systems. Object storage (e.g., Amazon S3 [22]) enables access to data via a REST

API for ease of use and access control. The flat namespace of object stores also makes them highly

scalable. Distributed file storage systems (e.g., Azure Files [144]) are designed for sharing data in

a hierarchical namespace between multiple tenants. Block storage (e.g., Google Compute Engine

Persistent Disks [85]) provides raw access to storage devices for optimal performance and is the most

common storage interface used by database systems. We can further classify storage systems based

on the underlying hardware they use to store data, which can consist of hard disks, SATA/SAS

solid-state drives, high performance NVMe Flash devices, or more recently non-volatile memory.

These devices may be local to the cloud instances running the applications or remote. These options

alone lead to storage configurations that can differ by orders of magnitude in terms of throughput,

latency, and cost per bit.

Hardware Trends in Storage and Networking

The cloud storage landscape is heavily influenced by advances in datacenter hardware. In partic-

ular, we consider the increasing popularity of Flash storage devices and the vast improvements in

networking hardware throughout and latency.

NAND Flash storage devices are replacing disks for an increasing number of applications in the

cloud. Transistor scaling, multi-level cell technology and 3D integration have delivered a continuous

increase in capacity, while new Flash controllers have leveraged high degrees of architectural par-

allelism and new software interfaces such as Non-Volatile Memory Express (NVMe) to significantly

increase performance [41, 154]. As a result, Flash devices now provide up to one million I/O opera-

tions per second (IOPS) and read latencies as low as 20 µs [175]. Flash storage is also more power

efficient than traditional rotating disk storage and its lack of moving parts improves reliability.

In addition to advances in NAND storage technology, improvements in datacenter networks are

stimulating new use cases for Flash storage in the cloud. Public cloud platforms have transitioned

from 1 Gigabit Ethernet to 10 Gigabit Ethernet interconnect in the past decade and are now un-

dertaking a similar transition towards 100 Gigabit Ethernet. Such improvements to networking

infrastructure are enabling low latency, high throughput access to remote Flash for large-scale dis-

tributed storage. For example, at Facebook, many applications that generate web-page content use

NVMe Flash to host large-scale persistent key-value storage services. Similarly, LinkedIn reports

using NVMe SSDs to scale its distributed key-value database, Project Voldemort [136], to process

over 120 billion relationships per day [102]. NVMe Flash is commonly deployed in datacenter servers

as direct-attached storage on the PCIe bus.

While the performance of Flash storage and datacenter networking hardware has dramatically

improved over the past decade, the software stacks for storage and network processing in contem-

porary operating systems have failed to keep pace with the hardware. Operating systems running

on today’s cloud servers were designed decades ago with the assumption that I/O is slow [38]. This
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assumption was correct when mechanical disk seeks and network propagation delays took orders

of magnitude longer than system calls, cache miss handling, and interrupt request delivery [36].

However, as we describe in Section 2.3, the recent improvements in storage and networking hard-

ware require us to reconsider the design of operating system software to satisfy the performance

requirements of today’s cloud applications. We begin by analyzing and summarizing the storage

requirements of current and emerging cloud applications.

2.2 Understanding Cloud Application Storage Requirements

Cloud applications such as search, social networking, and big data analytics are redefining the

requirements for operating systems software and storage systems. A single cloud application can

consist of hundreds of software services, deployed on thousands of servers. At a high level, the new

requirements for storage systems include microsecond-level responses to remote requests with tight

tail latency guarantees, high throughput to support millions of concurrent requests, and quality of

service for multiple tenants sharing storage resources [65, 31]. Elastic resource provisioning is also

important to adapt to dynamic variations in application resource requirements.

Cloud applications vary widely with respect to their compute and storage resource requirements.

We analyze three important classes of cloud applications to understand their needs and the implica-

tions for storage system design. First, we study large-scale, multi-tier web applications that rely on

distributed key-value stores to serve requests. Next, we characterize the heterogeneous data streams

in big data analytics applications. Finally, we outline the storage properties required to enable an

emerging class of applications, known as serverless analytics, to exchange ephemeral data efficiently

in the cloud.

2.2.1 Key-Value Storage for Multi-Tier Web Applications

Large-scale web applications, such as social networking and e-commerce services, are commonly

deployed with a three-tier architecture consisting of a web, application, and datastore tier. The

web tier is responsible for serving web page content to users. Personalized web content is generated

by the application tier, which reads, aggregates, and processes information from the datastore tier.

For our analysis of web application storage requirements, we focus on the datastore tier as this

tier hosts terabytes and even petabyte-scale persistent key-value store services. These key-value

stores are used to maintain a variety of user state such as viewing history. Examples of popular

persistent key-value stores embedded in cloud applications include RocksDB, LevelDB, and Project

Voldemort [83, 75, 136].

Table 2.1 summarizes the I/O characteristics of four real datastore tier workloads at Facebook,

as observed from 2014 to 2015, which use a Flash storage based RocksDB key-value store. These

applications typically issue 2,000 to 10,000 read operations to Flash storage per second per TB.
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Table 2.1: Facebook Flash workload characteristics

Workload Read Avg. read Write Avg. write

IOPS/TB size (kB) IOPS/TB size (KB)

A 2k - 10k 10 100 500

B 2k - 6k 50 1000 700

C 2k - 4k* 15 500 2000

D 2k - 4k 25 150 500

*Spikes of 75K read IOPS are also observed 1% of the time

Reads are random access and generally under 50 KB in size. Write operations occur when RocksDB

flushes an in-memory data structure or performs a database compaction. Writes are sequential and

significantly larger in size (up to 2 MB) but less frequent than reads. Datastore servers hosting these

applications with direct-attached NVMe Flash saturate CPU cores before saturating Flash IOPS due

to the computational intensity of datastore services. The CPU cycles consumed handling complex

queries, compactions, and serializing or deserializing data limit I/O rates on datastore servers to only

a fraction of the capabilities of today’s NVMe Flash devices. Despite these workloads underutilizing

NVMe Flash devices, their low latency requirements and ratio of storage throughput to capacity

still makes NVMe Flash the more suitable storage technology compared to disk for this important

class of cloud applications.

Figure 2.1 shows the Flash storage capacity, Flash read throughput, and CPU utilization over

time in a production cluster hosting a real Facebook application (Workload A in Table 2.1) using

the RocksDB key-value store. Each metric is normalized to its maximum value over the six month

period. The plot shows that Flash capacity, Flash throughput, and CPU utilization vary dramatically

over time and follow separate trends. For example, in mid-March, a change to the application

code dramatically improved CPU efficiency and hence decreased CPU utilization, however storage

capacity and throughput continued to increase due to higher application load. Resource utilization

studies of the Microsoft Azure cloud computing platform and a large private cloud at Google have

also shown that storage capacity, I/O rates, and CPU usage are not necessarily correlated [137, 194].

The unique and often dynamically varying compute and storage requirements of applications

makes designing server machines with the right balance of CPU and Flash storage difficult [121, 35].

The lack of balance leads to deploying machines with significantly overprovisioned resources, which

can increase the total cost of ownership [97]. For example, in Figure 2.1, Flash capacity and through-

put are under-utilized for long periods of time. Overprovisioning IOPS is particularly common when

deploying NVMe Flash in datacenters because software overheads for inter-tier communication and

query processing in storage services often saturate CPU cores before saturating NVMe Flash IOPS

on modern devices [117]. Baidu reported their storage system’s realized I/O bandwidth was only up

to 50% of their Flash hardware’s raw bandwidth [157]. Similarly, Flash capacity is often underuti-

lized as servers are deployed with enough Flash to satisfy projected future demands and amortize

the cost of the Flash controller on each device.
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Figure 2.1: Sample resource utilization on servers hosting a Flash-based key-value store service at
Facebook, normalized over a 6 month period. Flash and CPU utilization vary over time and scale
according to separate trends.

Implications for Storage System Design: Flash Storage Disaggregation

Resource disaggregation is a known way to address the challenge of imbalanced resource requirements

and the resulting overprovisioning of datacenter resources [98]. By physically decoupling compute

and Flash storage resources, datacenter operators can more easily customize their infrastructure to

maximize the performance-per-dollar for target workloads. We use the term “disaggregated Flash”

or “remote Flash” to refer to Flash that is accessed over a high-bandwidth network, as opposed to

Flash accessed locally over a PCIe link. Remote Flash accesses can be served by a high-capacity

Flash array on a machine dedicated to serving storage requests over the network. Alternatively, we

can enable remote access to Flash on a nearby server, which itself runs Flash-based applications,

but has spare Flash capacity and IOPS that can be shared over the network. With either approach,

disaggregation can span racks, rows, or the whole datacenter.

Section 2.3.1 outlines the challenges associated with disaggregating modern Flash storage devices

from compute resources. In Chapter 3, we present a software-based system for remote Flash access

that provides low latency, high throughput, and quality of service with low CPU requirements.

2.2.2 Heterogeneous Data Streams in Big Data Analytics

Data analytics are another important class of data-intensive workloads commonly run in the cloud.

In this section, we focus on large-scale data analytics applications deployed on popular cluster

computing frameworks, such as Spark, Hadoop, and Storm [217, 210, 1]. In Section 2.2.3, we will
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Figure 2.2: Performance of three applications on an 8-node cluster with different storage config-
urations. TPC-DS-q35 is I/O-bound, performing best with local NVMe Flash storage (l-NVMe).
BigBench-q3 is CPU-bound and performs equally well with all storage options, including remote SSD
(r-SSD). TPC-DS-q80 performs best with the hybrid storage option (r-SSD, l-NVMe), which stores
intermediate data on local NVMe and input/output data on remote SSD to minimize interference.

discuss data analytics applications deployed on serverless cloud computing platforms, which are

becoming increasingly popular. In both types of deployments, it is common for analytics jobs to be

run periodically as new data becomes available. For example, studies at Microsoft have shown that

40% of jobs in production data analytics clusters are recurring, as queries are executed repeatedly

on newly arriving data [12, 76].

Distributed data analytics applications typically access heterogeneous data streams such as orig-

inal input data for a job, final output data, intermediate data exchanged between tasks in a job, and

various logs. These data streams have distinct characteristics in terms of access frequency, access

patterns, and data lifetime. Hence, each data stream may be better served by different types of

storage devices. For example, input/output data is generally long-lived and sequentially accessed,

whereas intermediate data is short-lived and most accesses are random. Thus input/output files

for data analytics jobs are traditionally stored in a distributed filesystem (e.g., HDFS [187]) or ob-

ject storage systems (e.g., Amazon S3 [22]). Intermediate data is typically read/written to/from

a dedicated local Flash storage volume on each node, which is managed by a long-running cluster

computing framework agent. Intermediate data is spilled to remote disk if extra capacity is needed.

Determining the right cloud storage configuration for performance and cost efficiency is difficult,

particularly when considering the needs of heterogeneous data streams in a distributed data analytics

application and the many storage options available in the cloud. As an example, Figure 2.2 compares

the performance of three Spark applications using eight i3.xl AWS instances with local NVMe Flash

storage (l-NVMe), remote Flash storage (r-SSD), and a hybrid storage configuration that uses r-SSD

for input/output data and l-NVMe for intermediate data. The first application is I/O-bound and

benefits from the high throughput of NVMe Flash. The second application has a CPU bottleneck

and thus performs the same with all three storage options. The third application is I/O-bound
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and performs best with the hybrid storage option since it minimizes interference between read and

write I/Os, which have asymmetric performance on Flash [122]. While this result is not surprising

after careful consideration of the characteristics of input/output and intermediate data, selecting

the optimal storage configuration is far from trivial.

In addition to the storage configuration, cloud users must choose from a variety of virtual ma-

chine types in the cloud. This involves deciding the right number of CPU cores and memory, the

number of instances, and their network bandwidth. These choices often affect storage and must be

considered together. For example, network limits can constrain throughput when accessing remote

storage volumes. As new generations of processors and networking technology are deployed in data-

centers along with emerging storage technology such as non-volatile memory, the cloud configuration

landscape is only becoming more diverse and complex.

Implication for Storage System Design: Automate Storage Resource Allocation

As more and more users migrate their applications to the cloud and the compute and storage con-

figuration space continues to expand with new deployments of networking and storage technologies,

selecting the right configuration for each individual application is becoming increasingly challenging.

It is thus becoming increasingly desirable to automate storage resource allocation decisions.

The fact that users commonly run analytics jobs repeatedly in the cloud as new data arrives [137]

opens opportunities to build predictive models of application performance across configurations

based on prior data. For example, information about how a job performed on a few particular

resource configurations can help predict how the job will perform on other configurations, so that

we can make the optimal choice of configuration to maximize performance and/or cost objectives.

One of the major challenges is that we have sparse training data, as the goal is to minimize the

number of configurations across which an application needs to be profiled in the large configuration

space. In Chapter 5, we present a tool that recommends near-optimal configurations of compute

and storage resources in the cloud for data analytics workloads based on sparse data collected by

profiling training workloads.

2.2.3 Ephemeral Storage for Serverless Analytics

A new execution model, called serverless computing, is becoming increasingly popular in the cloud.

With services such as AWS Lambda, Google Cloud Functions, and Azure Functions, cloud users can

now write applications as collections of stateless functions which they deploy directly to a serverless

framework instead of running tasks on traditional virtual machines with pre-allocated resources [23,

87, 145, 5]. In this execution model, the cloud provider schedules user tasks onto physical resources

with the promise of automatically scaling resources according to application demands and charging

users only for the fine-grain resources their tasks consume. These frameworks conveniently abstract

away the complexities of server infrastructure management for cloud users.
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Figure 2.3: Ephemeral storage throughput requirements vary dynamically over time for serverless
analytics applications. Solid lines show read throughput while dotted lines plot write throughput.

While already popular for web microservices and IoT applications, the elasticity and fine-grain

billing advantages of serverless computing are also appealing for a broader range of applications, in-

cluding interactive data analytics. Several frameworks are being developed which leverage serverless

computing to exploit high degrees of parallelism in analytics workloads and achieve near real-time

performance [78, 116, 64].

We study three different serverless analytics applications and characterize their storage through-

put and capacity requirements [124]. We use AWS Lambda as our serverless platform and configure

serverless tasks with the maximum supported memory (3 GB) [23]. We refer to serverless tasks as

“lambdas”. Figure 2.3a plots each job’s total storage bandwidth usage over time, summed over all

lambdas, while Figure 2.3b shows the average per-lambda throughput over time. The solid lines

show the read throughput while the dotted lines plot write throughput. The plots show that appli-

cation storage throughput demands vary dynamically over time, requiring high resource elasticity

to achieve high performance while minimizing cost. We describe each job below.

Parallel software build: We use a framework called gg to automatically synthesize the dependency

tree of a software build system and coordinate lambda invocations for distributed compilation [77, 6].

Each lambda fetches its dependencies from ephemeral storage, computes (i.e., compiles, archives or

links depending on the stage), and writes an output file. Compilation stage lambdas read source files

which are generally up to 10s of KBs. While 55% of files are read only once (by a single lambda),

others are read hundreds of times (by many lambdas in parallel), such as glibc library files. Lambdas

which archive or link read objects up to 10s of MBs in size. We use gg to compile cmake which has

850 MB of ephemeral data.

MapReduce Sort: We implement a MapReduce style sort application on AWS Lambda, similar

to PyWren [116]. Map lambdas fetch input files from long-term storage (S3) and write intermediate

files to ephemeral storage. Reduce lambdas merge and sort intermediate data read from ephemeral
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storage and write output files to S3. Sorting is I/O-intensive. For example, we measure up to 7.5

cumulative GB/s when sorting 100 GB with 500 lambdas. Each intermediate file is written and read

only once and its size is directly proportional to the dataset size and inversely related to the number

of workers.

Video analytics: We use Thousand Island Scanner (THIS) to run distributed video processing on

lambdas [167]. The input is an encoded video that is divided into batches and uploaded to ephemeral

storage. First stage lambdas read a batch of encoded video frames from ephemeral storage and write

back decoded video frames. Each lambda then launches a second stage lambda which reads a set of

decoded frames from ephemeral storage, computes a MXNET deep learning classification algorithm

and outputs a classification result. We use a video consisting of 6.2K 1080p frames and tune the

batch size to optimize runtime (62 lambdas in the decode stage and 310 lambdas for classification).

The total ephemeral storage capacity is 6 GB.

Implications for Storage System Design: Elastic Ephemeral Storage

The newfound elasticity and fine grain resource usage billing that serverless platforms provide for

computation motivates equally elastic storage solutions, particularly for intermediate data sharing

between tasks. We outline several storage requirements for the design of distributed ephemeral

storage based on our analysis of serverless analytics applications. As applications can consist of

thousands of lambdas in one execution stage and only a few lambdas in another, the storage system

should have high elasticity to adjust to application load. Since the granularity of data access varies

widely, storing both small and large objects should be cost and performance efficient. Low latency

and high IOPS are important for accesses to small objects, while high throughput is critical for

accesses to large objects. To relieve users from the difficulty of managing storage clusters, the

storage service should autoscale resources based on load and charge users based on the bandwidth and

capacity their applications consume. This extends the serverless abstraction to storage. Finally, the

storage system can leverage the unique characteristics of ephemeral data. Namely, ephemeral data is

short-lived and can easily be re-generated by re-running a job’s tasks. Thus, unlike traditional long-

term storage, an ephemeral storage system can provide low data durability guarantees. Furthermore,

since the majority of ephemeral data is written and read only once (e.g., a mapper writes intermediate

results for a particular reducer), the storage system can optimize capacity usage with an API that

allows users to hint when data should be deleted right after it is read.

In Chapter 4, we present Pocket, an elastic distributed data store that allocates and autoscales

storage cluster resources to enable fast, elastic ephemeral data exchange between serverless tasks.
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2.3 Challenges for High Performance, Resource-Efficient

Cloud Storage

To satisfy the requirements of applications, cloud storage systems need to balance providing high,

predictable performance with minimizing cost. While achieving high performance with infinite

resources is straightforward, optimizing for cost efficiency requires provisioning just enough resources

to each application to satisfy its performance requirements. As outlined in Section 2.2, for the cloud

applications we study, high performance entails both high throughput, to handle many concurrent

requests, and low tail latency, to optimize per-request response times. Since the cost of buying

server equipment dominates the total cost of ownership in datacenters, a promising way to reduce

the cost of cloud storage is to optimize resource efficiency [97]. We refer to a resource-efficient

cloud storage system as a storage system that is able to satisfy the storage capacity, throughput,

and latency requirements of applications with as few resources as possible. Upon optimizing the

resource allocations of individual applications, we can further improve cluster resource efficiency by

bin-packing applications on shared cloud infrastructure. This amortizes resource costs and enables

serving a greater number of users from a single cloud facility. Cloud storage must still provide quality

of service when shared across multiple tenants.

Next, we summarize the challenges associated with the two major requirements for high per-

formance, resource-efficient cloud storage: fast, predictable access to remote data and intelligent

control of storage resource allocation. We describe why existing cloud storage solutions fall short.

2.3.1 Fast, Predictable Access to Remote Data

Remote access to hard disks is already common in datacenters [34, 84], since their high latency and

low throughput easily hide network overheads [35, 25]. A variety of software systems can make remote

disks available as block devices (e.g., iSCSI [178]), network file systems (e.g., NFS [176]), distributed

file systems (e.g., Google File System [84]), or distributed data stores (e.g., Bigtable [50]). There

are also proposals for hardware-accelerated, remote access to Flash using Remote Direct Memory

Access (RDMA) (e.g., NVMe over Fabrics [52]) or PCIe interconnects [32, 201, 107].

Unfortunately, existing approaches face two main challenges for efficient access to remote Flash.

First, network and storage request processing in traditional operating system software is too slow

compared to the low latency and high throughput of modern Flash storage devices. Second, existing

solutions do not manage read/write interference between multiple tenants sharing a Flash storage

device, leading to unpredictable performance due to the asymmetry of read and write performance

on Flash storage.

Existing software is too slow: Conventional remote server access over 10 Gigabit Ethernet and the

TCP/IP network protocol adds at least 50 µs round-trip latency for a request before any software-

based storage protocol processing even begins [38]. This latency overhead is significant as a local
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Figure 2.4: Remote versus local access to Flash storage with traditional systems software.

access to NVMe Flash takes 20-100 µs [56]. Block I/O protocols such as iSCSI, commonly used in

storage attached network (SAN) architectures, introduce additional latency for protocol processing

and copying data between kernel and user buffers [121, 115]. Network and storage protocol processing

consumes significant compute resources to saturate the high throughput of an NVMe Flash storage

device. For example, Figure 2.4 compares local versus remote access to Flash, using a single CPU

core on the Flash storage server. Remote access with iSCSI or traditional Linux libraries libevent

and libaio results in over 4× lower throughput and 2× higher latency than local access to Flash

storage due to network/storage processing saturating the CPU cores on the remote Flash storage

server. Higher throughput with iSCSI and libevent-libaio is attainable by using more CPU

cores on the remote storage server, however these extra compute resources increase the cost of

disaggregating Flash storage. Finally, using distributed file systems such as GFS and HDFS to

access remote storage has high latency for kilobyte-sized requests as these systems are optimized

for multi-megabyte data transfers on remote disk [84, 187]. On the other hand, network file sharing

protocols used in network attached storage (NAS) architectures have limited scalability.

Read/write interference: Remote Flash is useful if storage devices can be shared between multiple

tenants while still providing performance guarantees. Achieving predictable performance on shared

NVMe Flash devices is difficult because Flash read performance is sensitive to interference from

concurrent write requests. Due to the physical properties of NAND Flash storage technology, write

operations take an order of magnitude longer than read operations to complete and they are typically

not preemptible [43]. Requests attempting to read any page that is on a Flash chip service a write

operation are blocked until the write completes, resulting in high tail latency for read operations.

While applications using local Flash can be designed to cope with interference, this becomes a

challenge for remote Flash systems in which multiple tenants sharing the same device are unaware

of each other. Unfortunately, interference management is not addressed by hardware-accelerated

schemes like NVMe over Fabrics [52], QuickSAN [48] or iSCSI extensions for RDMA (iSER) [49].
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The current isolation features of NVMe devices, namely hardware queues and namespaces, are not

sufficient to manage interference between multiple remote clients without additional software.

In Chapter 3, we introduce ReFlex, a system that enables disaggregating Flash storage to achieve

resource efficiency benefits without sacrificing application performance compared to accessing local

Flash storage.

2.3.2 Intelligent Control of Storage Resource Allocation

While a fast data plane for low latency, high throughput access to remote data provides the flexibility

to customize resource allocations to application requirements, we also need an intelligent control

plane to make these resource allocation decisions. There are several challenges for the design and

implementation of such a control plane. First, making resource-efficient resource allocation decisions

requires knowledge of application resource requirements, which can be difficult to determine in the

first place [68, 195]. Even if the requirements are known, traditional storage interfaces make it

difficult to pass this information to the storage layer [198, 11]. Second, as discussed in Section 2.2,

application requirements vary dynamically. To maximize resource efficiency, provisioned resources

must be autoscaled to accommodate these variations. Resource allocation decisions also need to

be made quickly at a large scale, with potentially millions of decisions per second [69]. It is thus

necessary to automate storage resource allocation and elastic scaling decisions.

Learning application storage requirements: The first step in automating storage resource man-

agement is learning application requirements. A storage system can learn application requirements

by interpreting hints provided by users or application frameworks. Alternatively, the system can

collect performance data across application runs and build a model to predict how an application

will perform across various storage configurations. Both approaches have their challenges. For the

former, accepting hints from users or application frameworks requires designing a storage API that is

expressive enough to provide useful information to the system while being easy for users to use. Prior

work has shown that users are not good at estimating the resource requirements of their applications

and will often ask for more resources than required, resulting in over-provisioning [68]. Instead of

explicitly specifying resource requirements for applications, it is more intuitive for users to specify

high-level performance requirements. For resource-efficient storage allocation, it is particularly im-

portant for the system to learn the application’s capacity, latency, and throughput requirements.

We can relieve users from providing hints about their workloads by designing the storage control

plane to learn from past performance data. The challenge then becomes getting accurate predic-

tions from a model trained with very sparse input data. The training data is sparse because we

would like our system to select the (near) optimal resource allocation after profiling each job on as

few configurations as possible. In Chapter 5, we address this challenge by applying collaborative

filtering, a machine learning approach known to work well on sparse training sets.

Resource elasticity: After the storage system learns application characteristics and translates
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these into a resource allocation, the system still needs to continue monitoring application behaviour

and respond with high resource elasticity. We define elasticity as the degree to which a system is able

to adapt to workload changes by scale resources up and down in an automatic manner, such that

at each point in time the available resources match the current demand as closely as possible [99].

Various reactive [81], predictive [57, 127, 171, 72, 152, 202, 208] and hybrid [53, 182, 103, 80, 150]

approaches have been proposed to automatically scale resources based on demand at both the cluster

and single-node level [168, 151]. Reactive approaches are difficult to implement correctly due to the

delay between observing changes in application behaviour and taking action. Predictive approaches,

on the other hand, typically require large and representative datasets to train accurate models.

Much prior work focuses on one to two resource dimensions (e.g., CPU cores and memory) to make

autoscaling decisions. However, resource allocation and/or scaling is a high-dimensional problem

involving compute, memory, storage, and network resources. While some systems take the approach

of rightsizing applications at the granularity of virtual machines [100], finer grain resource elasticity

can further improve resource efficiency.

Data placement: Once we have intelligent, dynamic allocation of resources, the question of

where to store what data remains. Data placement should take into account heterogeneous data

streams in applications, as discussed in Section 2.2.2, and hardware capabilities, particularly if the

storage allocation consists of heterogeneous resources such as DRAM, Flash, and disk which each

offer different performance-cost trade-offs. Common data placement approaches based on hashing

object names, such as consistent hashing [118], are not effective for ephemeral data in elastic storage

clusters. Consistent hashing still requires some data to be migrated and redistributed across nodes

when the cluster size changes [193]. For short-lived data (e.g., data that lives for less than a minute),

migration has high overhead and should be avoided. Existing storage control planes that manage

data placement, such as Mirador [211] and Extent-Based Dynamic Tiering [90], focus on long-term

as opposed to ephemeral data storage. In cluster computing, ephemeral data is canonically stored

on local storage devices rather than distributed storage services, due to the low latency and high

throughput required when accessing ephemeral data in applications. However, with advances in

networking technology and software stacks for optimized network/storage processing, we can now

design distributed storage services that are fast enough to satisfy the performance requirements of

ephemeral data and have the benefit of being elastically scalable across nodes. In Chapter 4, we

present Pocket, a fast and elastic ephemeral data store that places data across multiple storage tiers

across cluster nodes to enable efficient data shuffling for serverless analytics applications.



Chapter 3

ReFlex:

Remote Flash ≈ Local Flash

3.1 Introduction

NVMe Flash devices deliver up to 1 million I/O operations per second (IOPS) at sub 100µs latencies,

making them the preferred storage medium for many data-intensive, online services. However, as

discussed in Section 2.2, the Flash devices deployed in datacenters are often underutilized in terms

of capacity and throughput due to the imbalanced requirements across applications and over time.

In general, it is difficult to design machines with the perfect balance between CPU, memory, and

Flash resources for all workloads, which leads to over-provisioning and higher total cost of ownership

(TCO). Remote access to Flash over the network can greatly improve utilization by allowing access

to Flash on any machine that has spare capacity and bandwidth.

Implementing remote access to Flash is challenging for the reasons we discussed in Section 2.3.1.

First, existing operating system software is too slow in processing remote storage requests com-

pared to the latency and throughput capabilities of modern network and storage hardware. Sec-

ond, the interference of read and write requests between multiple tenants sharing a Flash device

leads to unpredictable performance. Finally, it is useful to have flexibility in the degree of sharing,

the deployment scale, and the network protocol used for remote connections. Recently proposed,

hardware-accelerated options, such as NVMe over RDMA fabrics [52], lack performance isolation

and provide limited deployment flexibility.

We present ReFlex1, a software-based Flash storage server that implements remote Flash access

at a performance comparable with local Flash accesses. ReFlex achieves high performance with

limited compute requirements using a novel dataplane kernel that tightly integrates networking

1ReFlex is open-source software, available at: https://github.com/stanford-mast/reflex.
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and storage. The dataplane design avoids the overhead of interrupts and data copying, optimizes

for locality, and strikes a balance between high throughput (IOPS) and low tail latency. ReFlex

includes a QoS scheduler that implements priorities and rate limiting in order to enforce service

level objectives (SLOs) for latency and throughput for multiple tenants sharing a device. ReFlex

provides both a user-level library and a remote block device driver to support client applications.

The ReFlex server achieves 850K IOPS per core over commodity 10GbE networking with TCP/IP.

Hence, it can serve several NVMe devices and meet networking line rates at low cost. Its unloaded

latency is only 21µs higher than direct access to local Flash through NVMe queues. The ReFlex

server can support thousands of remote tenants. Its QoS scheduler can enforce the tail latency and

throughput requirements of tenants with SLOs, while allowing best-effort tenants to consume all

remaining throughput of the NVMe device. Finally, using legacy applications, we show that even

with heavy-weight clients, ReFlex allows for performance levels nearly identical to those with local

Flash.

3.2 ReFlex Design

ReFlex provides low latency and high throughput access to remote Flash using a dataplane architec-

ture that tightly integrates the networking and storage layers. It serves remote read/write requests

for logical blocks of any size over general networking protocols like TCP and UDP. While predomi-

nately a software system, ReFlex leverages hardware virtualization capabilities in NICs and NVMe

Flash devices to operate directly on hardware queues and efficiently forward requests and data be-

tween NICs and Flash devices without copying. Its polling-based execution model (§3.2.1) allows

requests to be processed without interruptions, improving locality and reducing unpredictability.

ReFlex uses a novel I/O scheduler (§3.2.2) to guarantee latency and throughput SLOs for tenants

with varying ratios of read/write requests. ReFlex can serve thousands of tenants and network

connections, using as many cores as needed to saturate Flash device IOPS.

3.2.1 Dataplane Execution Model

Each ReFlex server thread uses a dedicated core with direct and exclusive access to a network queue

pair for packet reception/transmission and an NVMe queue pair for Flash command submission/-

completion.

Figure 3.1 reviews the execution model for a ReFlex server thread processing an incoming Flash

read (or write) request. First, the NIC receives a network packet and delivers it via DMA to a pre-

allocated memory buffer provided by the software networking stack ¬. The ReFlex thread polls the

receive descriptor ring and processes the packet through the Ethernet driver and networking stack

(e.g., TCP/IP), generating event conditions indicating the availability of a new message ­. The

same thread uses libix [38], a library similar to Linux libevent [165], to process the event. This
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Figure 3.1: ReFlex per-thread execution model for processing requests on remote Flash server.
Requests arrive on the NIC RX queue and replies are sent from the NIC TX queue after processing.

involves switching to the server code that parses the message, extracts the I/O request, performs

access control checks and any other storage protocol processing required before submitting a Flash

read (write) system call ®. The thread then switches to system call processing and performs I/O

scheduling to enforce SLOs across all tenants sharing the ReFlex server (§3.2.2). Once scheduled,

the request is submitted to the Flash device through an NVMe submission queue ¯. The Flash

device performs the read (write) I/O and delivers (retrieves) the data via DMA to (from) a pre-

allocated user-space buffer ². The thread polls the completion queue ° and delivers a completion

event ±. The event callback executes through libix and emits a send system call ². Finally, the

thread processes the send system call to deliver the requested data back to the originator through

the network stack ³. The execution model supports multiple I/O requests per network message and

large I/Os that span across multiple network messages.

This execution model achieves low latency for remote Flash requests. It runs to completion the

two steps of request processing, the first between network packet reception and Flash command

submission (¬ - ¯) and the second between Flash completion and network packet transmission (°

- ³), without any additional interruptions or thread scheduling. Running to completion eliminates

latency variability and improves data cache locality for request processing. ReFlex’s two-step run to

completion model avoids blocking on Flash requests. ReFlex avoids interrupt overhead by polling for

network packet arrivals and Flash completions. Moreover, ReFlex implements zero-copy by passing

pointers to the buffers used to DMA data from the NIC or Flash device.

In addition to the benefit from lower latency, ReFlex improves the throughput of remote Flash

requests using two methods. First, it uses asynchronous I/O to overlap Flash device latency (50µs or

more) with network processing for other requests. Once a command is submitted to the Flash device

¯, the thread polls the NVMe completion queue for previously issued requests that require outgoing
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Figure 3.2: Read/write performance interference on Flash. Tail read latency depends on total IOPS
and the read/write ratio.

network processing and polls the NIC receive queue for incoming packets that require incoming

network processing. As long as there is work to do, the thread does not idle. Second, ReFlex employs

adaptive batching of requests in order to amortize overheads and improve prefetching and instruction

cache efficiency [38]. Under low load, incoming packets or completed NVMe commands are processed

immediately without any delay. As load rises, the NIC receive and NVMe completion queues fill up

and provide the opportunity to process multiple incoming packets or multiple completed accesses

in a batch. The batch size increases with load but it is capped to 64 to avoid excessive latencies.

Unlike conventional batching, which trades off latency for bandwidth, adaptive batching achieves a

good balance between high throughput and low latency [38].

ReFlex scales to multiple threads, each using a dedicated core and separate hardware queue

pairs. Threads need to coordinate only when issuing accesses to the NVMe command queue so that

they collectively respect the tail latency and throughput SLOs of the various tenants that share

the ReFlex server (see §3.2.2). A local control plane periodically monitors the load of all ReFlex

threads and their ability to achieve the requested SLOs in order to increase or decrease the number

of ReFlex threads. When the number of threads changes, remote tenants and network connections

are rebalanced across threads as explained in [164]. Rebalancing takes a few milliseconds and does

not lead to packet dropping or reordering.

3.2.2 QoS Scheduling and Isolation

The QoS scheduler allows ReFlex to provide performance guarantees for tenants sharing the Flash

device(s) in a server. A tenant is a logical abstraction for accounting for and enforcing service-level
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objectives (SLOs). An SLO specifies a tail read latency limit at a certain throughput and read-write

ratio. For example, a tenant may register an SLO of 50K IOPS with 200µs read tail latency (95th

percentile) at an 80% read ratio. In addition to such latency-critical (LC) tenants, which have

guaranteed allocations in terms of tail latency and throughput, ReFlex also serves best-effort (BE)

tenants, which can opportunistically use any unallocated or unused Flash bandwidth and tolerate

higher latency. A tenant definition can be shared by thousands of network connections, originating

from different client machines running any number of applications. An application can use multiple

tenants to request separate SLOs for different data streams.

Figure 3.2 plots the tail read latency (95th percentile) on Flash as a function of throughput

(IOPS) for workloads with various read-write ratios. As shown in Figure 3.2, enforcing an SLO on

Flash device accesses is complicated by two factors. First, the maximum bandwidth (IOPS) the

device can support depends on the overall read/write ratio of requests it sees across all tenants.

Second, the tail latency for read requests depends on both the overall read/write ratio and the

current bandwidth load. This behavior is typical for all NVMe Flash devices we have tested because

write operations are slower and trigger activities for wear leveling and garbage collection that cannot

always be hidden. Hence, the QoS scheduler requires global visibility and control over the total load

on Flash and the type of outstanding I/O operations. We use a request cost model to account

for each Flash I/O’s impact on read tail latency (§3.2.2) and a novel scheduling algorithm that

guarantees SLOs across all tenants and all dataplane threads (§3.2.2). ReFlex does not assume a

priori knowledge of workloads.

Request Cost Model

The model estimates read tail latency as a function of weighted IOPS, where the cost (weight) of a

request depends on the I/O size, type (read vs. write), and the current read/write request ratio r

on the device:

I/O cost =
⌈ I/O size

4KB

⌉
× C(I/O type, r)

Cost is a function of r because some Flash devices provide substantially higher IOPS for read-

only loads (r=100%) compared to 99% or lower read loads, as seen in Figure 3.2. Hence, the model

adjusts the cost of read requests when the device load is read-only. Costs are expressed in multiples

of tokens, where one token represents the cost of a 4KB random read request. In all Flash devices

we have used, cost scales linearly with request size for sizes larger than 4KB (e.g., a 32KB request

costs as much as 8 back-to-back 4KB requests). Cost is constant for requests 4KB and smaller, as

these Flash devices seem to operate at 4KB granularity.

We calibrate the cost model for each type of Flash device deployed in the ReFlex server. First, we

measure tail latency versus throughput with local Flash for workloads with various read/write ratios

and request sizes (see 4KB example in Figure 3.2). Since the cost of write requests depends on the

frequency of garbage collection and page erasure events, we conservatively use random write patterns
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(a) Device A Request Cost Model
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(b) Device B Request Cost Model
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(c) Device C Request Cost Model

Figure 3.3: Request cost models for various workloads on 3 different NVMe Flash devices. We model
read tail latency as a function of weighted IOPS, which is the total number of I/O operations per
second with each I/O operation assigned a weight based on the type of the request (read vs. write),
the I/O size, and the current read/write ratio on the device.

to trigger the worst case. Next, we use curve fitting to derive C(I/O type, r). The model can be

re-calibrated after deployment to account for performance degradation due to Flash wear-out [44].

Figure 3.3 shows latency versus weighted IOPS (tokens) plots for three different NVMe devices

from multiple vendors and representing multiple generations and capacities of Flash devices. Device

A is the one characterized in Figure 3.2. The value of C(write, r < 100%) is 10, 20, and 16 tokens

for devices A, B, and C respectively. This means that write operations are 10 to 20 times more

expensive than read operations, depending on the device. For device A, when the load from all

tenants is read-only, the cost of a 4KB read request is half a token (i.e., C(read, r = 100%) = 1
2

token). For all three devices, our linear cost model leads to similar behavior for tail latency versus

load across all read-write load distributions and request sizes. Although non-linear curve-fitting

models can achieve better fit, the accuracy of the linear model has been sufficient for our QoS

schedule and we prefer it because of simplicity.

Scheduling Mechanism

The QoS scheduler builds upon the cost model to maintain tail latency and throughput SLOs for

LC tenants, while allowing BE tenants to utilize any spare throughput in a fair manner.

Token management: The ReFlex scheduler generates tokens at a rate equal to the maximum

weighted IOPS the Flash device can support at a given tail latency SLO. ReFlex enforces the

strictest (lowest) latency SLO among all LC tenants that share a Flash device. For example, to

serve two tenants with tail read latency SLOs of 500µs and 1ms, respectively, on a Flash device

with the cost model shown in Figure 3.3a, the scheduler generates 420K tokens/sec to enforce the

500µs SLO. LC tenants are guaranteed a token supply that satisfies their IOPS SLO, weighted by

the read-write ratio indicated in their SLO. For example, assuming 4KB requests and a write cost

of 10 tokens, a tenant registering an SLO of 100K IOPS with an 80% read ratio is guaranteed to

receive tokens at a rate of 0.8(100K IOPS)(1 token
I/O ) + 0.2(100K IOPS)(10 tokens

I/O ) = 280K tokens/sec.
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Algorithm 1 QoS Scheduling Algorithm

1: procedure schedule
2: time delta = current time() − prev sched time

3: prev sched time = current time()
4: for each latency-critical tenant t do
5: t.tokens += generate tokens LC(t.SLO, time delta)
6: if t.tokens < NEG LIMIT then
7: notify control plane()

8: while t.demand > 0 and t.tokens > NEG LIMIT do
9: t.tokens −= submit next req(t.queue)

10: if t.tokens > POS LIMIT then
11: atomic incr global bucket(t.tokens× FRACTION)
12: t.tokens −= t.tokens× FRACTION

13: for each best-effort tenant t in round-robin order do
14: t.tokens += generate tokens BE(time delta)
15: d = t.demand− t.tokens
16: if d > 0 then
17: t.tokens += atomic decr global bucket(d)

18: t.tokens−=submit admissible reqs(t.queue, t.tokens)
19: if t.tokens > 0 and t.demand == 0 then
20: atomic incr global bucket(t.tokens)
21: t.tokens = 0

22: if all threads scheduled() then
23: atomic reset global bucket()

Tokens generated by the scheduler but not allocated to LC tenants are distributed fairly among BE

tenants. The scheduler spends a tenant’s tokens based on per-request costs as it submits the tenant’s

requests to the Flash device.

Scheduling Algorithm: Each ReFlex thread enqueues Flash requests in per-tenant, software

queues. When the thread reaches the QoS scheduling step in the dataplane execution model (§3.2.1),

the thread uses Algorithm 1 to calculate the weighted cost of enqueued requests and submit all ad-

missible requests to the Flash device, gradually spending each tenant’s tokens. Depending on the

thread load and the batching factor, the execution model enters a scheduling round every 0.5µs to

100µs. The control plane and the batch size limit ensure that the time between scheduler invocations

does not exceed 5% of the strictest SLO. Frequent scheduling is necessary to avoid excessive queuing

delays and to maintain high utilization of the NVMe device.

Latency-critical tenants: The scheduling algorithm starts by serving LC tenants. First, the

scheduler generates tokens for each LC tenant based on their IOPS SLO and the elapsed time since

the previous scheduler invocation. Since the control plane has determined each LC tenant’s weighted

IOPS reservation is admissible, the scheduler can typically submit all queued requests of LC tenants

to the NVMe device.

However, since traffic is seldom uniform and tenants may issue more or less IOPS than the

average IOPS reserved in their SLO, the scheduler keeps track of each tenant’s token usage. We

allow LC tenants to temporarily burst above their token allocation to avoid short term queueing.

However, we limit the burst size by rate-limiting LC tenants once they reach the token deficit limit
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(NEG LIMIT). This parameter is empirically set to −50 tokens to limit the number of expensive write

requests in a burst. We also notify the control plane when this limit is reached to detect tenants

with incorrect SLOs that need renegotiation.

LC tenants that consume less than their available tokens are allowed to accumulate tokens for

future bursts. Accumulation is limited by the POS LIMIT parameter. When reached, the scheduler

donates a big fraction of accumulated tokens (empirically 90%) to the global token bucket for use

by BE tenants. POS LIMIT is empirically set to the number of tokens the LC tenant received in the

last three scheduling rounds to accommodate short bursts without going into deficit.

Best-effort tenants: The scheduler generates tokens for BE tenants by giving each BE tenant a

fair share of unallocated throughput on the device. Unallocated device throughput corresponds to

the token rate the device can support while enforcing the strictest LC latency SLO minus the sum of

LC tenant token rates (based on LC tenant IOPS SLOs). Assuming N BE tenants, every scheduling

round, each BE tenant receives 1
N th of the unallocated token rate times the time elapsed since the

previous scheduling round. If a BE tenant does not have enough tokens to submit all of its enqueued

requests, the tenant can claim tokens from the global token bucket, which are supplied by LC tenants

with spare tokens (if any). BE tenants are scheduled in a round robin order across scheduling rounds

to provide fair access to the global token bucket. The scheduler submits a request only if the tenant

has sufficient tokens for the request. Rate limiting BE traffic is essential for achieving LC SLOs.

Since scheduling rounds occur at high frequency, a typical round may generate only a fraction of

a token. BE tenants accumulate tokens over multiple scheduling rounds when their request queues

are not empty. When a BE tenant’s software queue is empty, we disallow token accumulation to

prevent bursting after idle periods. This aspect of the scheduler is inspired by Deficit Round Robin

(DRR) scheduling [184]. Tokens left unused by a BE tenant are donated to the global token bucket

for use by other BE tenants. To avoid large accumulation allowing BE tenants to issue uncontrolled

bursts, we periodically reset the bucket.

If a ReFlex server manages more than one NVMe device, we run an independent instance of the

scheduling algorithm for each device with separate token counts and limits. We assume the server

machine has sufficient PCIe bandwidth, a condition easily met by PCIe Gen3 systems.

3.3 ReFlex Implementation

ReFlex consists of three components: the server, clients, and control plane. Their implementation

leverages open-source code bases.

3.3.1 ReFlex Server

The remote Flash server is the main component of ReFlex. We implemented it as an extension

to the open-source, ix dataplane operating system [2, 38]. ix uses hardware support for processor
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virtualization (through the Dune module [37]) and multi-queue support in NICs (through the Intel

DPDK driver [108]) to gain direct and exclusive access to multiple cores and network queues in

a Linux system. These resources are used to run a dataplane kernel and any applications on top

of it. The original ix dataplane was developed for network-intensive workloads like in-memory,

key-value stores. ix uses run to completion of incoming requests and bounded, adaptive batching

to optimize both tail latency and throughput. ix also splits connections between threads, using

separate cores and queues to scale without requiring synchronization or significant coherence traffic.

These optimizations make ix a great starting point for the ReFlex server.

ReFlex extends ix in the following ways. First, we developed an NVMe driver leveraging Intel’s

Storage Performance Development Kit (SPDK) [109] to interface to Flash devices and gain exclusive

access to NVMe queue pairs. Second, we implemented the dataplane model shown in Figure 3.1.

In ix, the run to completion model includes all work for a key-value store request, from packet

reception to reply transmission. Directly applying this monolithic run to completion model in

ReFlex would require blocking for every Flash access. Instead, we introduce a two step model that

retains the efficiency of run to completion but allows for asynchronous access to Flash. The first

run to completion step is from packet reception to Flash command submission and the second is

from Flash command completion to reply transmission. We maintained adaptive batching with

a maximum batch size of 64. Third, we implemented the QoS scheduler as part of the first run

to completion step. Fourth, we introduced the system calls and events needed for remote Flash

accesses shown in Table 3.1. The original ix defines system calls and events for opening and closing

connections, receiving and sending network messages, and managing network errors. We introduced

system calls and events to register and unregister tenants, submit and complete NVMe read and

write commands, and manage NVMe errors. Finally, we developed the ReFlex user-level server code

that consumes events delivered by the dataplane and issues system calls back to it. The cookie

parameter allows the user-space server code to track requests and retrieve their context upon an

event notification. Note that all event and system calls are communicated over shared memory

arrays without the need for blocking, interrupts, or thread scheduling. This also enables batching of

systems calls under high load in order to reduce overheads. The dataplane implements zero-copy;

buffers for read and write data are initialized in the ReFlex user-space code and provided as a

parameter for read and write system calls. They are released after the user-space code is notified of

a send completion.

The ReFlex server is written in C and consists of the following source lines of code (SLOC): 490

SLOC for the user-level server, 954 SLOC for the ix NVMe driver and 628 SLOC for the dataplane

including the QoS scheduler. We leverage code from Intel’s DPDK and SPDK and the ix dataplane,

including the lwIP TCP stack [73].

Multi-threading operation: ReFlex scales to multiple threads, each using a separate core and

separate network and NVMe queues. We parallelize the load by dividing tenants across threads. All
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System Calls (batched)

Type Parameters Description
register id, latency, IOPS, Registers a tenant with

rw ratio, cookie SLO
unregister handle Unregisters a tenant
read handle, buf, addr, Read data from Flash

len, cookie into user buf
write handle, buf, addr, Write data from user

len, cookie buf into flash

Event Conditions

Type Parameters Description
registered handle, cookie, Registered tenant, or

status out of resources error
unregistered handle Unregistered tenant
response cookie, status NVMe read completed
written cookie, status NVMe write completed

Table 3.1: Systems calls and event conditions that the ReFlex dataplane adds to IX.

operations across threads are independent and can occur without synchronization, excluding some

QoS scheduling actions described in §3.2.2. Specifically, threads need to occasionally synchronize in

order to exchange any spare tokens from their LC tenants so that any BE tenant on any thread can

benefit from unused Flash bandwidth. Threads use atomic read-modify-write operations to access

the global token bucket. The bucket is reset periodically by having each thread asynchronously

mark that it has completed at least one scheduling round. The last thread resets the global bucket.

This approach avoids locking overheads and decouples QoS scheduling across threads. In particular,

it allows threads to perform scheduling at different frequencies, while still maintaining fairness and

guaranteeing system-wide SLOs.

Security model: The ReFlex server enforces access control list (ACL) policies at the granularity

of tenants and network connections. It checks if a client has the right to open a connection to a

specific tenant and if a tenant has read or write permission for an NVMe namespace (range of logical

blocks). These checks can be extended to use certificate mechanisms.

Following ix, ReFlex runs its dataplane in protected kernel mode (guest ring 0), while the high-

level server code runs in user space (ring 3) as shown in Figure 3.1. Any exploitable bug in parsing

remote requests or other high-level server functions cannot lead to loss of hardware control and

cannot affect the operation of the dataplane or any ordinary Linux application running on the same

machine. This approach allows ReFlex to share Flash devices with other Linux applications. Access

to Flash by Linux workloads (kernel or user) is mediated through the protected part of ReFlex that

includes the QoS scheduler. From a QoS perspective, Linux requests are treated as latency-critical

with specific throughput and latency guarantees. We achieve virtually indistinguishable performance

compared to running ReFlex all in user mode. The inherit cost of the kernel to user-mode transition

is similar to that of a main memory access [38] and it is compensated for by the improved locality
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that ReFlex achieves using run to completion and zero-copy.

Limitations: The current server implementation has some non-fundamental limitations that we

will remove in future versions. First, we limit each tenant to using a single ReFlex thread. Since

ReFlex can serve up to 850K remote IOPS per thread (§3.4.3) and an application can use multiple

tenants to access the same data, this is not a significant bottleneck for any application. In the future,

we will load balance connections for individual tenants across threads if their overall demands exceed

a single thread’s throughput. Second, we have implemented a single networking protocol in the

ReFlex dataplane, the ubiquitous TCP/IP [73]. Since TCP/IP is the most heavy-weight protocol

used in datacenters, this is a conservative choice that defines a lower bound on ReFlex performance.

Both tail latency and throughput will improve when we implement UDP or other, lighter-weight

transport protocols. Finally, ReFlex currently serves remote read and write requests without any

ordering guarantees, beyond ordering forced by the networking protocol (e.g., order within a TCP

connection). In the future, we will support barrier operations that can be used to force ordering and

build high-level abstractions like atomic transactions.

3.3.2 ReFlex Clients

Applications can access ReFlex servers over the network using a variety of client approaches. We

have implemented two alternatives that represent extreme points in terms of performance.

The first implementation is a user-level library (536 SLOC), similar to the client library for the

binary protocol of the memcached key-value store [153]. The library allows applications to open TCP

connections to ReFlex and transmit read and write requests to logical blocks. This client approach

avoids the performance overheads of the file-system and block layers of the operating system in the

client machine. Nevertheless, the client is still subject to any latency or throughput inefficiencies of

the networking layer in its operating system (see §3.4).

To support legacy client applications, we also implemented a remote block device driver that

exposes a ReFlex server as a Linux block device (845 SLOC). The driver translates conventional

Linux block I/O (bio) requests to ReFlex accesses issued with the user-level library discussed above.

The driver implements the multi-queue (blk-mq) kernel API [42] and supports one hardware context

per core to enable linear scaling with cores. For each hardware context, the driver opens a socket

to the ReFlex server and spawns a kernel thread for receiving and completing incoming responses.

To minimize latency, the driver directly issues each block to the server without coalescing as the

overhead of ReFlex requests is small (38 bytes per 4KB request) and the bandwidth of NVMe

devices does not change significantly if we use requests larger than 4KB. At 4KB, the Linux TCP

stack supports up to 70K messages per thread and hence the driver needs to execute at least 4

threads (or 6 for improved latency) to fully utilize a 10GbE interface, as we will show in §3.4.6.
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3.3.3 ReFlex Control Plane

The ReFlex control plane consists of two components, a local component that runs on every ReFlex

server and a global one. We have currently implemented the former.

The local control plane is responsible for the following actions. First, when a new LC tenant

is registered, the control plane determines if the tenant is admissible and which server thread it

should be bound to. It uses the strictest latency SLO from all LC tenants and the throughput-

latency characteristics of each device to check if the new tenant’s SLO can be met without violating

SLOs of existing tenants. When a tenant registers or terminates, the control plane re-calculates

the rate of token generation for LC and BE tenants. The control plane intervenes if an LC tenant

consistently bursts above its SLO allocation by notifying the tenant to renegotiate its SLO. Second,

the local control plane monitors the request latency and the thread load. If latency and load are

high, it allocates resources for additional threads and rebalances tenants. If load is low, it deallocates

threads and their resources, returning them to Linux for general use. This last function is a derivative

of the ix control plane that can dynamically rightsize the number and clock frequency of threads used

by the ix dataplane without packet loss or reordering [164]. Finally, the control plane periodically

calibrates the request cost model and determines the throughput-latency characteristics of each

Flash device (see §3.2.2).

In future work, we will develop a global control plane that manages remote Flash resources

across a datacenter cluster and optimizes the allocation of Flash capacity and IOPS. For example,

the global control plane should try to co-locate tenants with similar tail latency requirements such

that strict requirements of one tenant do not limit the IOPS available to other tenants. The global

control plane should also maintain global latency and throughput SLOs for applications that span

across multiple ReFlex servers [198, 192, 26, 95].

3.4 Evaluation

3.4.1 Experimental Methodology

Hardware setup: Our experimental setup consists of identical server and client machines with Intel

Xeon CPU E5-2630 processors (Sandy Bridge EP) with 12 physical cores across two sockets running

at 2.3 GHz and 64GB DRAM. The machines use Intel 82599ES 10GbE NICs connected via an Arista

7050S-64 switch. They run Ubuntu LTS 16.04 with a 4.4 Linux kernel. Server machines house PCIe-

attached Flash devices, preconditioned with sequential writes to the whole address space followed by

a series of random writes to reach steady state performance. We tested ReFlex with three different

Flash devices whose request cost models are shown in Figure 3.3. We show results for ReFlex

using device A as it achieves the highest raw IOPS (up to 1M IOPS for read-only workloads, see

Figure 3.2). For all experiments, we disable power management and operate CPU cores at their
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maximum frequency to ensure result fidelity. NICs are configured with jumbo frames enabled and

large receive offload (LRO) and generic receive offload (GRO) disabled. LRO and GRO distort

unloaded latency as received packets are sometimes buffered instead of being directly delivered to

the kernel. We enable interrupt coalescing with a 20µs interval.

Clients: We use Linux-based clients in most experiments. We extend the mutilate load gen-

erator [133] to use our user-level client library and issue read/write requests to ReFlex. mutilate

coordinates a large number of client threads across multiple machines to generate a desired through-

put while a separate, unloaded client measures latency by issuing one request at a time. To reduce

client-side performance overheads, we also evaluate unloaded latency and peak IOPS per core for

ReFlex with clients running a similar load generator on top of the ix dataplane, which achieves

significantly lower latency and higher throughput than the Linux networking stack.

I/O size: We issue 4KB read and write requests in most experiments. Since we use a 10GbE

network infrastructure, clients issuing 4KB IOPS can saturate the NIC of the ReFlex server before

they saturate the NVMe Flash device (1M IOPS peak). Hence, we use 1KB requests in some

experiments to stress IOPS of the ReFlex server. Modern datacenters include 40GbE networking

infrastructure and future datacenters will likely deploy 100GbE. Both technologies will remove this

bottleneck.

Baseline: We compare the performance of remote accesses over ReFlex to that of issuing local

accesses to the Flash device using SPDK [109]. SPDK offers the best local performance we can

expect as it gives software direct access to NVMe queues without the need to go through the

Linux filesystem or block device layers. We also compare ReFlex to two software-based schemes for

remote Flash access: 1) the Linux iSCSI system [155] and 2) a lightweight remote storage server

that maximizes performance on Linux by efficiently handling multiple connections per thread using

libevent and overlapping communication and computation using libaio. We do not have access

to a hardware-accelerated remote Flash environment, but we compare to results quoted in a public

presentation on NVMe over RDMA Fabrics [143]. In §3.4.4, we evaluate the performance problems

that arise when NVMe devices are shared without a software-based QoS scheduler like the one in

ReFlex.

3.4.2 Unloaded latency

We first measure unloaded latency for Flash accesses. Table 3.2 shows the average and 95th per-

centile latency of 4KB random read and write requests issued with queue depth 1. Remote accesses

include the round-trip networking overheads in both client and server. Remote access over iSCSI

increases latency by 2.8× for read requests due to heavy-weight protocol processing on both the

client and server side, involving data copying between socket, SCSI and application buffers. The

libaio-libevent remote Flash server is significantly faster than iSCSI, but the Linux network and

storage stacks still add over 100µs to average and tail latency. The dataplane execution model



CHAPTER 3. REFLEX: REMOTE FLASH ≈ LOCAL FLASH 33

Reads (µs) Writes (µs)
Avg p95 Avg p95

Local (SPDK) 78 90 11 17
iSCSI 211 251 155 215
Libaio (Linux Client) 183 205 180 205
Libaio (IX Client) 121 139 117 144
ReFlex (Linux Client) 117 135 58 64
ReFlex (IX Client) 99 113 31 34

Table 3.2: Unloaded Flash read and write latency for 4KB random I/Os, comparing local access
latency and remote access using baseline systems (iSCSI and liabio) and ReFlex. Remote access
latency includes round-trip network latency for client and server.
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Figure 3.4: Tail read latency vs. throughput for 1KB read-only requests, comparing local and remote
access with ReFlex and Libaio baseline. 1T and 2T refer to the use of 1 and 2 cores on the remote
Flash storage server, respectively.
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of ReFlex adds 21µs to local Flash latency (ix client). At 113µs of tail read latency, a ReFlex

server is close to the performance of many (local) NVMe devices. Unloaded write latency is lower

than read latency due to DRAM buffering on the Flash device. Thus, the overhead of iSCSI and

libaio-libevent is even more significant for write I/Os. ReFlex outperforms both iSCSI and

libaio-libevent, adding 20µs to local write latency (ix client). Comparing ReFlex latency results

with Linux and ix clients shows that for low latency remote Flash access, it is also important to

optimize the client.

NVMe over Fabrics provides marginally less latency overhead (8µs), measured with a higher

throughput 40GbE Chelsio NIC (lower transmit latency for 4KB) and a 3.6GHz Haswell CPU

(versus a 2.3GHz Sandy Bridge CPU) [143]. Remote Flash latency with ReFlex includes a full

TCP/IP stack and a QoS scheduler that allows multiple clients to connect to the Flash server.

ReFlex would likely benefit from TCP offloading in Chelsio NICs.

3.4.3 Throughput and CPU Resource Cost

Figure 3.4 plots tail latency (95th percentile) as a function of throughput (IOPS) for 1KB read-only

requests. Even for local accesses to Flash with SPDK, it takes two cores to saturate the 1M IOPS

of the Flash device. A single core can support up to 870K IOPS on local Flash. ReFlex achieves

up to 850K IOPS with a single core for network and storage processing. With two cores, ReFlex

saturates 1M IOPS on Flash, introducing negligible latency overhead compared to local access. In

contrast, the libaio-libevent server achieves only 75K IOPS/core and at higher latency due to

higher compute intensity for request processing. This server requires over 10× more CPU cores to

achieve the throughput of ReFlex. The hardware-accelerated NVMe over Fabrics can reportedly

achieve 460K IOPS at 20% utilization of a 3.6GHz Haswell core [143].

At high load, a ReFlex thread spends about 20% of execution time on TCP/IP processing. This

indicates that, coupled with a lighter network protocol, ReFlex can deliver even higher throughput.

The time spent on QoS scheduling varies between 2% and 8%, depending on the number of tenants

served.

ReFlex’s ability to serve millions of IOPS with a small number of cores without impacting tail

latency is important for making remote Flash practical and cost effective in datacenters. To put

IOPS per core into perspective, assume we deploy ReFlex on the latest Broadwell or Skylake class

CPUs by Intel. The improved core performance will likely allow ReFlex to reach 1M IOPS/core.

Assuming 20 cores per CPU socket, ReFlex will be able to share a 1M IOPS Flash device using 2.5%

of the compute capacity of a 2-socket server. Alternatively, using 4 Flash devices, ReFlex will need

8% of the server’s compute capacity to saturate a 100GbE link with 4KB I/Os.
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Figure 3.5: Tail latency and IOPS for 4 tenants sharing a ReFlex server, comparing performance
with and without the QoS scheduler enabled. Tenants A and B are LC, while tenants C and D are
BE. Tenants issue 4kB I/Os with read ratios of 100%, 80%, 95%, and 25%, respectively. In Scenario
1, tenants A and B attempt to use all the IOPS in their SLO. In Scenario 2, tenant B uses less than
its reservation.
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3.4.4 Performance QoS and Isolation

We now evaluate the QoS scheduler using multiple tenants with different SLOs. The following

experiments use a single ReFlex thread. We evaluate multi-core scalability in §3.4.5.

We first consider Scenario 1 (Figure 3.5a - 3.5b), where two latency-critical (A, B) and two best-

effort (C, D) tenants share a ReFlex server. Both A and B require 95th percentile read latency of

500µs. Tenant A requires 120K IOPS at 100% read, while B requires 70K IOPS at 80% read. C

and D are best effort tenants with 95% and 25% read loads, respectively. To guarantee read tail

latency below the 500µs SLO, our Flash device can support up to 420K weighted IOPS. Thus, the

QoS scheduler generates 420K tokens/sec. LC tenant A receives 120K tokens/sec while tenant B

receives 196K tokens/sec = 0.8(70K IOPS)(1 token
I/O ) + 0.2(70K IOPS)(10 tokens

I/O ). Thus, the two LC

tenants collectively reserve 75% of the device throughput, leaving 25% of tokens for BE tenants.

Figure 3.5 shows the tail latency and IOPS for each tenant with the QoS scheduler disabled and

enabled. Without QoS scheduling, tail read latency is above 2ms for all tenants due to read/write

interference. Tenant B also operates below its SLO throughput. With QoS scheduling enabled,

latency and throughput SLOs are met for both LC tenants (Figure 3.5a) at the expense of BE

throughput (Figure 3.5b). BE tenants C and D receive a fair share of unallocated tokens (52K

tokens/sec each), but D achieves lower IOPS than C due to its higher percentage of write I/Os

(writes cost 10 times more tokens than reads).

Scenario 2 uses the same tenants as Scenario 1 with identical SLOs. However, latency-critical

tenant B issues only 45K IOPS instead of the 70K reserved in its SLO. BE tenants can now reach

higher throughput (Figure 3.5c - 3.5d), as they acquire the unused tokens of tenant B, in addition

to tokens not allocated to LC tenants. The round-robin serving of BE tenants ensures fair access to

unused tokens.

While these scenarios involve just 4 tenants, they are sufficient to show the need for QoS schedul-

ing for remote Flash accesses, beyond what hardware provides. Our QoS scheduler can guarantee

SLOs while being work-conserving and fair for best-effort tenants.

3.4.5 Scalability

We now evaluate how ReFlex scales in the dimensions of cores, tenants, and connections.

Cores: We run ReFlex with up to 12 cores (6 cores per socket) to test the scheduler’s multi-core

scalability. Each thread manages a single LC tenant with an SLO of 20K IOPS (90% read, 4KB

requests) at up to 2ms tail read latency (95th percentile). The 2ms latency SLO allows our Flash

device to serve up to 12 such tenants before the SLO is no longer admissible due to too much write

interference. Two ReFlex threads also each serve a BE tenant (80% read, 4KB). Figure 3.6a shows

a linear increase in the aggregate IOPS for LC tenants as we scale the number of cores (tenants)

without any scaling bottleneck in the scheduler. Meanwhile, aggregate BE IOPS decrease due to

rate-limiting with less spare bandwidth on the device. Although not shown in Figure 3.6, the tail
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Figure 3.6: Scalability experiments. In Fig 3.6a, ReFlex scales to 12 cores, enforcing a 2ms latency
SLO for 90% read (LC) and 80% read (BE) tenants while maintaining high Flash utilization (570K
tokens/s). Fig 3.6b shows a single ReFlex core can support up to 2,500 tenants. Fig 3.6c shows a
single ReFlex core can serve thousands of TCP connections.

read latency of all LC tenants stays below the 2ms SLO. The total token usage rate (green line with

values marked on the secondary y-axis) is high when no LC tenants are registered since the two BE

tenants are allowed to issue as many requests as the device can handle. As soon as the first LC

tenant registers, the scheduler caps the token rate to 570K tokens/s to enforce the 2ms SLO. Token

usage remains at this level as we scale the number of cores, as ReFlex saturates the Flash device at

all points without violating SLOs.

Tenants: We evaluate the number of tenants each ReFlex thread can serve before tenant man-

agement becomes a performance bottleneck. Each tenant uses a single connection to issue 100 1KB

read IOPS. In this experiment, low IOPS per connection are necessary to avoid saturating the Flash

device before reaching a tenant scaling limit. Figure 3.6b shows that a single ReFlex core can serve

up to 2,500 tenants, while 2 ReFlex cores serve 5,000 tenants, and a 4-core ReFlex server comes

close to supporting 10K tenants, at which point we approach the 1M read-only IOPS limit of the

Flash device. As we scale the number of tenants per thread, tail latency may increase as the QoS

scheduling frequency decreases. This case is detected by the ReFlex control plane which allocates

more cores and rebalances tenants as needed (see §3.3.3).

TCP Connections: A tenant may be used to track the QoS requirement of an application that uses

multiple client machines and threads. Hence, it is important to know how many TCP connections

the ReFlex server can handle. Figure 3.6c plots the throughput of a single ReFlex thread when

scaling the number of TCP connections associated with a tenant. At 100 IOPS per connection, a

single ReFlex thread can support up to 5K connections. Performance degrades beyond this point as

the TCP connection state no longer fits in the last-level cache and TCP/IP processing slows down

due to main memory accesses. This is similar to the connection scaling behavior of IX [38], which

saturates at 10K connections in experiments with smaller messages (64B vs. 1KB) which trigger

fewer misses. With 1K IOPS/connection, the ReFlex core approaches its peak bandwidth, achieving
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780K IOPS with 850 connections. The peak bandwidth is lower than the 850K IOPS in §3.4.3 due

to higher cache pressure.

3.4.6 Linux Application Performance

We now use the remote block device driver for ReFlex to evaluate performance with legacy Linux

applications. We compare to performance with the local NVMe device driver and Linux iSCSI

remote block I/O. We show results for the following applications: the flexible I/O tester (FIO) [111],

the FlashX graph analytics framework [221], and Facebook’s RocksDB key-value store [75].

FIO: Figure 3.7a shows the latency-throughput curves for FIO issuing 4KB random reads with

queue depth up to 64. We need multiple FIO threads to reach maximum throughput; 5 threads with

the local NVMe driver, 3 threads with iSCSI, and 6 with the ReFlex block driver. As expected,

ReFlex stops scaling when it saturates the 10GbE network interfaces at both the client and the

server. However, since FIO on top of ReFlex scales linearly up to 6 threads, we expect it will be

able to match local throughput given higher bandwidth network links. The higher latency of ReFlex

in this experiment is due to the client-side overheads of the Linux block and networking layers.

Still, ReFlex provides 4× higher throughput than iSCSI and 2× lower tail and average latency. We

evaluated ReFlex with optimized clients in §3.4.3.

FlashX: We use FlashX, a graph processing framework that uses the SAFS user-space filesystem

to efficiently store and retrieve vertex and edge data from Flash. We execute four graph benchmarks

including weakly connected components (WCC), pagerank (PR), breadth-first search (BFS) and

strongly connected components (SCC) on the SOC-LiveJournal1 social network graph from the

SNAP dataset [131]. The graph contains 4.8M vertices and 68.9M edges, which we store on a local

block device or on a remote block device through iSCSI or ReFlex. Figure 3.7b shows the impact

of accessing remote Flash on the end-to-end application execution time. Compared to performance

on local Flash, ReFlex introduces only a small slowdown, between 1% for WCC and 3.8% for BFS.

In contrast, iSCSI reduces performance by 15% for PR and up to 40% for BFS and SCC.

RocksDB: Finally, we use RocksDB to evaluate key-value store performance on Flash with

ReFlex. We install an ext4 filesystem on the NVMe block device and mount it as either local

or remote via ReFlex or iSCSI. We place both RocksDB’s database and its write-ahead-log on

Flash. We generate a workload using db bench, a benchmarking tool provided with RocksDB. We

use cgroups [141] to limit memory and reduce the effect of Linux’s page cache, thus exercising

Flash storage with a short experiment on a 43GB database. We first populate the database with

the bulkload (BL) routine and then execute the randomread (RR) and readwhilewriting (RwW)

benchmarks. Figure 3.7c shows the end-to-end execution time slowdown of RocksDB over iSCSI

and ReFlex compared to local Flash. For the write-heavy BL test, performance is almost equal

between local and remote as the Flash itself limits IOPS. For RR and RwW, iSCSI shows a slow

down of 1.32× and 1.27×, respectively, while ReFlex slows down performance by less than 4%.
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Figure 3.7: Application performance with Linux block device driver for ReFlex vs. iSCSI baseline.

3.5 Discussion

There are two limitations of current Flash hardware that are particularly relevant to ReFlex.

Read/write interference: Write operations have a big impact on the tail latency of concurrent read

requests. Our scheduler uses a request cost model to avoid pushing beyond the latency-throughput

capabilities of the Flash device for the current read/write ratio. However, we are still limited

to enforcing tail read latency SLOs at the 95th percentile. Stricter SLOs, such as 99th or 99.9th

percentile are difficult to enforce on existing Flash devices without dramatically reducing IOPS as

reads frequently stall behind writes, garbage collection, or wear leveling tasks. Future Flash devices

should limit read/write interference, targeting tail behavior in addition to average. For example,

the Flash Translation Layer (FTL) could always read out and buffer Flash pages before writing in

them [219, 13].

Hardware support for request scheduling: Existing Flash devices schedule requests from different

NVMe hardware queues using simplistic round-robin arbitration. To guarantee SLOs, ReFlex has

to use a software scheduler that implements rate limiting and priorities. The NVMe specification

defines a weighted round-robin arbiter [154], but it is not implemented by any Flash device we

are aware of. This arbiter would allow ReFlex threads to submit requests to hardware queues

with properly weighted priorities, thus eliminating the need to enforce priorities between tenants

in software. ReFlex would still implement rate limiting in software as it must manage the device

latency-throughput characteristics under varying read/write ratios, defend against SLO violations

(long bursts by LC tenants), and support a number of tenants that may exceed the number of

hardware queues.
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3.6 Related Work

We discuss related work on storage QoS and high performance network stacks. Alternative ap-

proaches for remote access to Flash were discussed in Section 2.3.1.

Storage QoS: Prior work has extensively studied quality of service and fairness for shared

storage [27, 91, 142, 94, 186, 218, 92]. Timeslice-based I/O schedulers like Argon, CFQ, and FIOS

offer tenants exclusive device access for regulated time quanta to achieve fairness [207, 33, 159].

This approach can lead to poor responsiveness and timeslices may not always be fair on Flash as

background tasks (i.e., garbage collection) impact device performance.

In contrast, fair-queuing-based solutions interleave requests from all tenants. The original

weighted fair queuing schedulers [70, 158] have successfully been adapted from network to stor-

age I/O with support for reordering, throttling, and/or batching requests to leverage device paral-

lelism [183, 46, 114, 181, 203, 93]. Our I/O scheduler resembles Deficit Round Robin in that tenants

accumulate tokens each round, so long as they have demand [184]. Zygaria and AQuA also apply

a token bucket approach to serve real-time tenants while offering spare device bandwidth to best-

effort traffic, but they only provide throughput guarantees while ReFlex also enforces tail latency

SLOs [212, 213].

Tail latency SLOs: PriorityMeister provides tail latency guarantees even at the 99.99th per-

centile by mediating access to shared network and storage resources using a token-bucket mechanism

similar to ReFlex [223]. Unlike ReFlex, the scheduler profiles workloads to assign different priorities

to latency-critical tenants. Cake uses a feedback controller to enforce tail latency SLOs, but only

supports a single latency-critical tenant [209]. Avatar relies on feedback instead of device-specific

performance models to control tail latency on disk [218].

Flash-specific challenges: Many I/O schedulers specifically designed for Flash use a request

cost model to account for read/write interference. FIOS was one of the first schedulers to ad-

dress Flash write interference and provide fairness using timeslices [159]. FlashFQ, a virtual-time

based scheduler, improves fairness and responsiveness through throttled dispatch and I/O anticipa-

tion [181]. Libra is an I/O scheduling framework that allocates per-tenant throughput reservations

and uses a virtual IOPS metric to capture the non-linearity between raw IOPS and bandwidth [185].

While FIOS, FlashFQ and Libra all assign I/O costs, their cost models do not necessarily capture

a request’s impact on the tail latency of concurrent I/Os, since these schedulers are designed for

fairness and throughput guarantees rather than latency QoS.

High Performance Networking: ReFlex leverages the ix dataplane for high performance

networking [38]. Alternative network stacks, such as mTCP [113], Sandstorm [139] and OpenOn-

load [188], apply similar techniques in user space to achieve high throughput and/or low latency

networking.
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3.7 Conclusion

We described ReFlex, a software system for remote Flash access over commodity networking. ReFlex

uses a dataplane design to closely integrate and reduce the overheads of networking and storage

processing. This allows the system to serve up to 850K IOPS per core while adding only 21µs over

direct access to local Flash. The QoS scheduler in ReFlex enforces latency and throughput SLOs

across thousands of tenants sharing a device. ReFlex allows applications to flexibly allocate Flash

across any machine in the datacenter and still achieve nearly identical performance to using local

Flash.



Chapter 4

Pocket: Elastic Ephemeral Storage

for Serverless Analytics

4.1 Introduction

Serverless computing is becoming an increasingly popular cloud service due to its high elasticity

and fine-grain billing. Serverless platforms like AWS Lambda, Google Cloud Functions, and Azure

Functions enable users to quickly launch thousands of light-weight tasks, as opposed to entire virtual

machines. The number of serverless tasks scales automatically based on application demands and

users are charged only for the resources their tasks consume, at millisecond granularity [23, 87, 145].

While serverless platforms were originally developed for web microservices and IoT applications,

their elasticity and billing advantages make them appealing for data intensive applications such as

interactive analytics. As discussed in Section 2.2.3, several recent frameworks launch large numbers

of fine-grain tasks on serverless platforms to exploit all available parallelism in an analytics job and

achieve near real-time performance [78, 116, 64]. In contrast to traditional serverless applications

that consist of a single function executed when a new request arrives, analytics jobs typically consist

of multiple stages and require sharing of state and data across stages of tasks (e.g., data shuffling).

Most analytics frameworks (e.g., Spark) implement data sharing with a long-running framework

agent on each node buffering intermediate data in local storage [217]. This enables tasks from differ-

ent execution stages to directly exchange intermediate data over the network. However, in serverless

deployments, there is no long-running application framework agent to manage local storage. Fur-

thermore, serverless applications have no control over task scheduling or placement, making direct

communication among tasks difficult. As a result of these limitations, the natural approach for

data sharing in serverless applications is to use a remote storage service. For instance, early frame-

works for serverless analytics either use object stores (e.g., S3 [22]), databases (e.g., CouchDB [3])

or distributed caches (e.g., Redis [128]).

42
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Figure 4.1: Performance-cost trade-off for a video analytics job with various ephemeral storage
cluster configurations.

Unfortunately, existing storage services are not a good fit for sharing short-lived intermediate

data in serverless applications. We refer to the intermediate data as ephemeral data to distinguish

it from input and output data which requires long-term storage. File systems, object stores and

NoSQL databases prioritize providing durable, long-term, and highly-available storage rather than

optimizing for performance and cost. Distributed key-value stores offer good performance, but

burden users with managing the storage cluster scale and configuration, which includes selecting the

appropriate compute, storage and network resources to provision.

The availability of different storage technologies (e.g., DRAM, NVM, Flash, and HDD) increases

the complexity of finding the best cluster configuration for performance and cost. However, the

choice of storage technology is critical since jobs may exhibit different storage latency, bandwidth

and capacity requirements while different storage technologies vary significantly in terms of their

performance characteristics and cost [123]. As an example, Figure 4.1 plots the performance-cost

trade-off for a serverless video analytics application using a distributed ephemeral data store config-

ured with different storage technologies, number of nodes, compute resources per node, and network

bandwidth (see §4.6.1 for our AWS experiment setup). Each resource configuration leads to different

performance and cost. Finding Pareto efficient storage allocations for a job is non-trivial and gets

more complicated with multiple jobs.

We present Pocket,1 a distributed data store designed for efficient data sharing in serverless

analytics. Pocket offers high throughput and low latency for arbitrary size data sets, automatic

resource scaling, and intelligent data placement across multiple storage tiers such as DRAM, Flash,

and disk. The unique properties of Pocket result from a strict separation of responsibilities across

three planes: a control plane which allocates storage resources for jobs, a metadata plane which

manages distributed data placement, and a ‘dumb’ (i.e., metadata-oblivious) data plane responsible

1Pocket is open-source software. The code is available at: https://github.com/stanford-mast/pocket.

https://github.com/stanford-mast/pocket


CHAPTER 4. POCKET: ELASTIC EPHEMERAL STORAGE 44

101 102 103 104 105 106 107 108

Ephemeral Object Size (bytes)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

λ-cc cmake
video analytics
sort100GB

Figure 4.2: Ephemeral object size CDF. Objects are 100s of bytes to 100s of MBs.

for storing data. Pocket scales all three planes independently at fine resource and time granularity

based on the current load. Pocket uses heuristics, which take into account job characteristics, to

allocate the right storage media, capacity, bandwidth and CPU resources for cost and performance

efficiency. The storage API exposes deliberately simple I/O operations for sub-millisecond access

latency. We intend for Pocket to be managed by cloud providers and offered to users with a pay-

what-you-use cost model.

We deploy Pocket on Amazon EC2 and evaluate the system using using three serverless analytics

workloads: video analytics, MapReduce sort, and distributed source code compilation. We show

that Pocket is capable of rightsizing the type and number of resources such that jobs achieve similar

performance compared to using ElastiCache Redis, a DRAM-based key-value store, while saving

almost 60% in cost.

4.2 Storage for Serverless Analytics

Early work in serverless analytics has identified the challenge of storing and exchanging data between

hundreds of fine-grain, short-lived tasks [116, 78]. We build on the study of ephemeral storage

requirements for serverless analytics applications in Section 2.2.3 to synthesize essential properties

for an ephemeral data storage solution. We also discuss why current systems are not able to meet

the ephemeral I/O demands of serverless analytics applications.

Our focus is on ephemeral data as the original input and final output data of analytics jobs

typically has long-term availability and durability requirements that are well served by the variety

of file systems, object stores, and databases available in the cloud.
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Figure 4.3: Ephemeral object lifetime CDF. Objects have short lifetime.

4.2.1 Ephemeral Storage Requirements

High performance for a wide range of object sizes: Serverless analytics applications vary

considerably in the way they store, distribute, and process data. This diversity is reflected in the

granularity of ephemeral data that is generated during a job. Figure 4.2 shows the ephemeral object

size distribution for a distributed lambda compilation of the cmake program, a serverless video

analytics job using the Thousand Island (THIS) video scanner [167], and a 100 GB MapReduce

sort job on lambdas. The key observation is that ephemeral data access granularity varies greatly

in size, ranging from hundreds of bytes to hundreds of megabytes. We observe a straight line for

sorting as its ephemeral data size is equal to the partition size. However, with a different dataset

size and/or number of workers, the location of the line changes. Applications that read/write large

objects demand high throughput (e.g., we find that sorting 100 GB with 500 lambdas requires up to

7.5 GB/s of ephemeral storage throughput) while low latency is important for small object accesses.

Thus, an ephemeral data store must deliver high bandwidth, low latency, and high IOPS for the

entire range of object sizes.

Automatic and fine-grain scaling: One of the key promises of serverless computing is agility

to dynamically meet application demands. Serverless frameworks can launch thousands of short-

lived tasks instantaneously. Thus, an ephemeral data store for serverless applications can observe

a storm of I/O requests within a fraction of a second. Once the load dissipates, the storage (just

like the compute) resources should be scaled down for cost efficiency. Scaling up or down to meet

elastic application demands requires a storage solution capable of growing and shrinking in multiple

resource dimensions (e.g., adding/removing storage capacity and bandwidth, network bandwidth,

and CPU cores) at a fine time granularity on the order of seconds. In addition, users of serverless

platforms desire a storage service that automatically manages resources and charges users only for the

fine-grain resources their jobs actually consume, to match the abstraction that serverless computing

already provides for compute and memory resources. Automatic resource management is important

since navigating cluster configuration performance-cost trade-offs is a burden for users. For example,
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finding the Pareto optimal point outlined in Figure 4.1 is non-trivial; it is the point beyond which

adding resources only increases cost without improving execution time while using any lower-cost

resource allocation results in sub-optimal execution time. In summary, an ephemeral data store must

automatically rightsize resources to satisfy application I/O requirements while minimizing cost.

Storage technology awareness: In addition to rightsizing cluster resources, the storage system

also needs to decide which storage technology to use for which data. The variety of storage media

available in the cloud allow for different performance-cost trade-offs, as shown in Figure 4.1. Each

storage technology differs in terms of I/O latency, throughput and IOPS per GB of capacity, and

the cost per GB. The optimal choice of storage media for a job depends on its characteristics.

Hence, the ephemeral data store must place application data on the right storage technology tier(s)

for performance and cost efficiency.

Fault-(in)tolerance: Typically a data store must deal with failures while keeping the service

up and running. Hence, it is common for storage systems to use fault-tolerance techniques such as

replication and erasure codes [104, 177, 120]. For data that needs to be stored long-term, such as the

original input and final output data for analytics workloads, the cost of data unavailability typically

outweighs the cost of fault-tolerance mechanisms. However, as shown in Figure 4.3, ephemeral data

has a short lifetime of 10-100s of seconds. Unlike the original input and final output data, ephemeral

data is only valuable during the execution of a job and can easily be regenerated.

Furthermore, fault tolerance is typically baked into compute frameworks, such that storing the

data and computing it become interchangeable [96]. For example, Spark uses a data abstraction

called resilient distributed datasets (RDDs) to mitigate stragglers and track lineage information for

fast data recovery [217]. Hence, we argue that an ephemeral storage solution does not have to provide

high fault-tolerance as expected of traditional storage systems.

4.2.2 Existing Systems

Existing storage systems do not satisfy the combination of requirements outlined in § 4.2.1. We

describe different categories of systems and summarize why they fall short for elastic ephemeral

storage in Table 4.1.

Serverless applications commonly use fully-managed cloud storage services, such as Amazon S3,

Google Cloud Storage, and DynamoDB. These systems extend the ‘serverless’ abstraction to storage,

charging users only for the capacity and bandwidth they use [22, 66]. While such services automat-

ically scale resources based on usage, they are optimized for high durability hence their agility is

limited and they do not meet the performance requirements of serverless analytics applications. For

example, DynamoDB only supports up to 400KB sized objects while S3 has high latency overhead

(e.g., a 1 KB read takes ∼12 ms) and insufficient throughput for highly parallel applications. For

example, sorting 100 GB with 500 or more workers results in request rate limit errors when S3 is

used for intermediate data. Furthermore, although users pay only $0.005 per access for S3, storing
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Elastic
scaling

Latency Throughput Max object
size

Cost

S3 Auto,
coarse-grain

High Medium 5 TB $

DynamoDB Auto,
fine-grain, pay

per hour

Medium Low 400 KB $$

Elasticache
Redis

Manual Low High 512 MB $$$

Aerospike Manual Low High 1 MB $$
Apache Crail Manual Low High any size $$
Desired for λs Auto,

fine-grain, pay
per second

Low High any size $

Table 4.1: Comparison of existing storage systems and desired properties for ephemeral storage in
serverless analytics.

ephemeral data in S3 can become prohibitively expensive as we scale the job input data size and

number of workers, due to the large number of shuffle data file that need to be written and read [166].

In-memory key-value stores, such as Redis and Memcached, provide another option for storing

ephemeral data [128, 10]. These systems offer low latency and high throughput but at the higher

cost of DRAM. They also require users to manage their own storage instances and manually scale

resources. Although Amazon and Azure offer managed Redis clusters through their ElastiCache and

Redis Cache services respectively, they do not automate storage management as desired by serverless

applications [19, 146]. Users must still select instance types with the appropriate memory, compute

and network resources to match their application requirements. In addition, changing instance

types or adding/removing nodes can require tearing down and restarting clusters, with nodes taking

minutes to start up while the service is billed for hourly usage.

Another category of systems use Flash storage to decrease cost, while still offering good perfor-

mance. For example, Aerospike is a popular Flash-based NoSQL database [191]. Alluxio/Tachyon

is designed to enable fast and fault-tolerant data sharing between multiple jobs [134]. Apache Crail

is a distributed storage system that uses multiple media tiers to balance performance and cost [4].

Unfortunately, users must manually configure and scale their storage cluster resources to adapt to

elastic job I/O requirements. Finding Pareto optimal deployments for performance and cost effi-

ciency is non-trivial, as illustrated for a single job in Figure 4.1. Cluster configuration becomes even

more complex when taking into account the requirements of multiple overlapping jobs.
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4.3 Pocket Design

We introduce Pocket, an elastic distributed storage service for ephemeral data that automatically

and dynamically rightsizes storage cluster resource allocations to provide high I/O performance while

minimizing cost. Pocket addresses the requirements outlined in §4.2.1 by applying the following key

design principles:

1. Separation of responsibilities: Pocket divides responsibilities across three different planes:

the control plane, the metadata plane, and the data plane. The control plane manages cluster

sizing and data placement. The metadata plane tracks the data stored across nodes in the data

plane. The three planes can be scaled independently based on variations in load, as described

in §4.4.2.

2. Sub-second response time: All I/O operations are deliberately simple, targeting sub-

millisecond latencies. Pocket’s storage servers are optimized for fast I/O and are only re-

sponsible for storing data (not metadata), making them simple to scale up or down. The

controller scales resources at second granularity and balances load by intelligently steering

incoming job data. This makes Pocket elastic.

3. Multi-tier storage: Pocket leverages different storage media (DRAM, Flash, disk) to store

a job’s data in the tier(s) that satisfy the I/O demands of the application while minimizing

cost (see §4.4.1).

4.3.1 System Architecture

Figure 4.4 shows Pocket’s system architecture. The system consists of a logically centralized con-

troller, one or more metadata servers, and multiple data plane storage servers.

The controller, which we describe in §4.4, allocates storage resources for jobs and dynamically

scales Pocket metadata and storage nodes up and down as the number of jobs and their requirements

vary over time. The controller also makes data placement decisions for jobs (i.e., which nodes and

storage media to use for a job’s data).

Metadata servers enforce coarse-grain data placement policies generated by the controller by

steering client requests to appropriate storage servers. Pocket’s metadata plane manages data at

the granularity of blocks, whose size is configurable. We use a 64 KB block size in our deployment.

Objects larger than the block size are divided into blocks and distributed across storage servers,

enabling Pocket to support arbitrary object sizes. Clients access data blocks on metadata-oblivious,

performance-optimized storage servers equipped with different storage media, such as DRAM, Flash,

and/or HDD.



CHAPTER 4. POCKET: ELASTIC EPHEMERAL STORAGE 49

Storage server

Namenode(s)
route requests

Controller
app-driven resource 
allocation & scaling

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ 
λ λ λ λ 

Job C
λ λ λ λ λ λ λ λ λ λ 
λ λ λ λ λ λ λ λ λ λ λ 

CPU
Net

HDD

Storage server
CPU
Net

Flash

Storage server
CPU
Net

DRAM 

Storage server
CPU
Net

DRAM 

Metadata server(s)
request routing

1. 2. 3.

PUT ‘x’
i. Register job

ii. Allocate & assign 
resources for job

iii. De-register job
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4.3.2 Application Interface

Table 4.2 outlines Pocket’s application interface. Pocket exposes an object store API with additional

functions tailored to the ephemeral storage use-case. We describe these functions and how they map

to Pocket’s separate control, metadata and data planes.

Control functions: Applications use two API calls, register job and deregister job, to

interact with the Pocket controller. The register job call accepts hints about a job’s characteristics

(e.g., degree of parallelism, latency-sensitivity) and requirements (e.g., capacity, throughput). These

optional hints help the controller rightsize resource allocations to optimize performance and cost

(see §4.4.1). The register job call returns a job identifier and the metadata server(s) assigned for

managing the job’s data. The deregister job call notifies the controller that a serverless job has

completed.

Metadata functions: While control API calls are issued once per job, serverless tasks in a

job can interact with Pocket metadata servers multiple times during their lifetime to write and

read ephemeral data. Serverless clients use the connect call to establish a connection with Pocket’s

metadata service. Data in Pocket is stored in objects which are organized in buckets. Objects and

buckets are identified using names (strings). Clients can create and delete buckets and enumerate

objects in buckets by passing their job identifier and the bucket name. Clients can also lookup and

delete existing objects. These metadata operations are similar to those supported by other object

stores like Amazon S3.

In our current design, Pocket stores all of a job’s data in a top-level bucket identified by the

job’s ID, which is created during job registration by the controller. This implies each job is assigned



CHAPTER 4. POCKET: ELASTIC EPHEMERAL STORAGE 50

Client API Function Description

register job(jobname, hints=None) register job with controller and provide optional
hints, returns a job ID and metadata server IP
address

deregister job(jobid) notify controller job has finished, delete job’s
non-PERSIST data

connect(metadata server address) open connection to metadata server

close() close connection to metadata server

create bucket(jobid, bucketname) create a bucket

delete bucket(jobid, bucketname) delete a bucket

enumerate(jobid, bucketname) enumerate objects in a bucket

lookup(jobid, obj name) return true if obj name data exists, else false

delete(jobid, obj name) delete data

put(jobid, src filename, obj name,
PERSIST=false)

write data, set PERSIST flag if want data to
remain after job finishes

get(jobid, dst filename, obj name,
DELETE=false)

read data, set DELETE true if data is only read
once

Table 4.2: Main control, metadata, and storage functions exposed by Pocket’s client API.

to a single metadata server, since a bucket is only managed by one metadata server, to simplify

consistency management. However, a job is not fundamentally limited to one metadata server. In

general, jobs can create multiple top-level buckets which hash to different metadata servers. In

§4.6.2 we show that a single metadata server in our deployment supports 175K requests per second,

which for the applications we study is sufficient to support jobs with thousands of lambdas.

Storage functions: Clients put and get data to/from objects at a byte granularity. Clients

provide their job identifier for all operations. Put and get operations first involve a metadata lookup.

Pocket enhances the basic put and get object store API calls by accepting an optional data lifetime

management hint. Since ephemeral data is usually only valuable during the execution of a job,

Pockets default coarse-grained behavior is to delete a job’s data when the job deregisters. However,

applications can set flags to override the default deletion policy for particular objects.

If a client issues a put with the PERSIST flag set to true, the object will persist after the job

completes. The object is stored on long-running Pocket storage nodes (see §4.4.2) and will remain

in Pocket until it is explicitly deleted or a (configurable) timeout period has elapsed. The ability to

persist objects beyond the duration of a job is useful for piping data between jobs. If a client issues

a get with the DELETE flag set to true, the object will be deleted as soon as it is read, allowing

for more efficient garbage collection. Our analysis of ephemeral I/O characteristics for serverless

analytics applications reveals that ephemeral data is often written and read only once. For example,

a mapper writes an intermediate object destined to a particular reducer. Such data can be deleted

as soon as it is consumed instead of waiting for the job to complete and deregister.
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4.3.3 Life of a Pocket Application

We now walk through the life of a serverless analytics application using Pocket. Before launching

lambdas, the application first registers with the controller and optionally provides hints about the

job’s characteristics (step i in Figure 4.4). The controller determines the storage tier to use (DRAM,

Flash, disk) and the number of storage servers across which to distribute the job’s data to meet its

throughput and capacity requirements. The controller generates a weight map, described in §4.4.1,

to specify the job’s data placement policy and sends this information to the metadata server which it

assigned for managing the job’s metadata and steering client I/O requests (step ii). If the controller

needs to launch new storage servers to satisfy a job’s resource allocation, the job registration call

stalls until these nodes are available.

When registration is complete, the job launches lambdas. Lambdas first connect to their assigned

metadata server, whose IP address is provided by the controller upon job registration. Lambda

clients write data by first contacting the metadata server to get the IP address and block address of

the storage server to write data to. For writes to large objects which span multiple blocks, the client

requests capacity allocation from the metadata server in a streaming fashion; when the capacity of a

single block is exhausted, the client issues a new capacity allocation request to the metadata server.

Pocket’s client library internally overlaps metadata RPCs for the next block while writing data for

the current block to avoid stalls. Similarly, lambdas read data by first contacting the metadata

server in a similar fashion. Clients cache metadata in case they need to read an object multiple

times.

When the last lambda in a job finishes, the job deregisters the job to free up Pocket resources

(step iii). Meanwhile, as jobs execute, the controller continuously monitors resource utilization in

storage and metadata servers (the horizontal bars on storage servers in Figure 4.4) to add/remove

servers as needed to minimize cost while providing high performance (see §4.4.2).

4.3.4 Handling Node Failures

Though Pocket is not designed to provide high data durability, the system has mechanisms in place

to deal with node failures. Storage servers send heartbeats to the controller and metadata servers.

When a storage server fails to send heartbeats, metadata servers automatically mark its blocks as

invalid. As a result, client read operations to data that was stored on the faulty storage server will

return a ‘data unavailable’ error. Pocket currently expects the application framework to re-launch

serverless tasks to regenerate lost ephemeral data. A common approach is for application frameworks

to track data lineage, which is the sequence of tasks that produces each object [217, 96]. For metadata

fault tolerance, Pocket supports logging of all metadata RPC operations on shared storage. When

a metadata server fails, its state can be reconstructed by replaying the shared log. Controller fault

tolerance can be achieved through master-slave replication, though we do not evaluate this in our

study.
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Hint Impact on
throughput T

Impact on capacity
C

Impact on storage
media

No hint (default policy) T = Tdefault

(T= 50 × 8 Gb/s)
C = Cdefault

(C= 50 × 1960 GB)
Fill storage tiers in
order of high to low
performance (DRAM
first, then Flash)

Latency sensitivity - - If latency sensitive, use
default policy above.
Otherwise, choose the
storage tier with the
lowest cost for the
estimated throughput
T and capacity C
required for the job.

Maximum number of
concurrent lambdas N

T = N× per-λ
network limit
(T = N × 0.6 Gb/s)

C ∝ N× per-λ
network limit
(C = N×0.6

8 Gb/s
× 1960GB)

Total ephemeral
data capacity D

T ∝ D
(T = D

1960GB
× 8 Gb/s)

C = D

Peak aggregate
bandwidth B

T = B C ∝ B
(C = B

8 Gb/s
× 1960GB)

Table 4.3: The impact that hints provided about the application have on Pocket’s resource alloca-
tion decisions for throughput, capacity and the choice of storage media (with specific examples in
parentheses for our AWS deployment with i3.2xl instances, each with 8 cores, 60 GB DRAM, 1.9
TB Flash and ∼8 Gb/s network bandwidth).

4.4 Rightsizing Resource Allocations

Pocket’s control plane elastically and automatically rightsizes cluster resources. When a job registers,

Pocket’s controller leverages optional hints passed through the API to conservatively estimate the

job’s latency, throughput and capacity requirements and find a cost-effective resource assignment,

as described in §4.4.1.

In addition to rightsizing resource allocations for jobs upfront, Pocket continuously monitors the

cluster’s overall utilization and decides when and how to scale storage and metadata nodes based

on load. §4.4.2 describes Pocket’s resource scaling mechanisms and data steering policy.

4.4.1 Rightsizing Application Allocation

When a job registers, the controller first determines its resource allocation across three dimensions:

throughput, capacity, and the choice of storage media. The controller then uses an online bin-packing

algorithm to translate the resource allocation into a resource assignment on nodes.

Determining job I/O requirements: Pocket uses heuristics that adapt to optional hints

passed through the register job API. Table 4.3 lists the hints that Pocket supports and their

impact on the throughput, capacity, and choice of storage media allocated for a job, with examples

(in parentheses) for our deployment on AWS.

Given no hints about a job, Pocket uses a default resource allocation that conservatively over-

provisions resources to achieve high performance, at high cost. In our AWS deployment, this consists

of 50 i3.2xl nodes, providing DRAM and NVMe Flash storage with 50 GB/s aggregate throughput.
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By default, Pocket conservatively assumes that a job is latency sensitive. Hence, Pocket fills the

job’s DRAM resources before spilling to other storage tiers, in order of increasing storage latency.

If a job hints that it is not sensitive to latency, the controller does not allocate DRAM for the job

and instead uses the most cost-effective storage technology for the throughput and capacity the

controller estimates the job needs.

Knowing a job’s maximum number of concurrent lambdas, N , allows Pocket to compute a less

conservative estimate of the job’s throughput requirement. If this hint is provided, Pocket allocates

throughput equal to N times the peak network bandwidth limit per lambda (e.g., ∼600 Mb/s per

lambda on AWS). N can be limited by the job’s inherent parallelism or the cloud provider’s task

invocation limit (e.g., 1000 default on AWS).

Pocket’s API also accepts hints for the aggregate throughput and capacity requirements of a job,

which override Pocket’s heuristic estimates. This information can come from profiling. When Pocket

receives a throughput hint with no capacity hint, the controller allocates capacity proportional to

the job’s throughput allocation. The proportion is set by the storage throughput to capacity ratio

on the VMs used (e.g., i3.2xl instances in AWS provide 1.9 TB of capacity per ∼ 8 Gb/s of network

bandwidth). Vice versa, if only a capacity hint is provided, Pocket allocates throughput based on

the VM capacity:throughput ratio. In the future, we plan to allow jobs to specify their average

per-lambda throughput and capacity requirements, as these can be more meaningful than aggregate

throughput and capacity hints for a job when the number of lambdas used is subject to change.

The hints in Table 4.3 can be specified by application developers or provided by the application

framework. For example, the framework we use to run lambda-distributed software compilation

automatically infers and synthesizes a job’s dependency graph [77]. Hence, this framework can

provide Pocket with hints about the job’s maximum degree of parallelism, for instance.

Assigning resources: Pocket translates a job’s resource allocation into a resource assignment

on specific storage servers by generating a weight map for the job. The weight map is an associative

array mapping each storage server (identified by its IP address and port) to a weight from 0 to 1,

which represents the fraction of a job’s dataset to place on that storage server. If a storage server

is assigned a weight of 1 in a job’s weight map, it will store all of the job’s data. The controller

sends the weight map to metadata servers, which enforce the data placement policy by routing

client requests to storage servers using weighted random selection based on the weights in the job’s

weight map. The weight map depends on the job’s resource requirements and the available cluster

resources. Pocket uses an online bin-packing algorithm which first tries to fit a job’s throughput,

capacity and storage media allocation on active storage servers and only launches new servers if the

job’s requirements cannot be satisfied by sharing resources with other jobs [180]. If a job requires

more resources than are currently available, the controller launches the necessary storage nodes

while the application waits for its job registration command to return. Nodes take a few seconds or

minutes to launch, depending on whether a new VM is required (§4.6.2).
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4.4.2 Rightsizing the Storage Cluster

In addition to rightsizing the storage allocation for each job, Pocket dynamically scales cluster

resources to accommodate elastic application load for multiple jobs over time. At its core, the

Pocket cluster consists of a few long-running nodes used to run the controller, the minimum number

of metadata servers (one in our deployment), and the minimum number of storage servers (two in our

deployment). In particular, data written with the PERSIST flag described in §4.3.2, which has longer

lifetime, is always stored on long-running storage servers in the cluster. Beyond these persistent

resources, Pocket scales resources on demand based on load. We first describe the mechanism for

horizontal and vertical scaling and then discuss the policy Pocket uses to balance cluster load by

carefully steering requests across servers.

Mechanisms: The controller monitors cluster resource utilization by processing heartbeats from

storage and metadata servers containing their CPU, network, and storage media capacity usage.

Nodes send statistics to the controller every second. The interval is configurable.

When launching a new storage server, the controller provides the IP addresses of all metadata

servers that the storage server must establish connections with to join the cluster. The new storage

server registers a portion of its capacity with each of these metadata servers. Metadata servers

independently manage their assigned capacity and do not communicate with each other. Storage

servers periodically sends heartbeats to metadata servers.

To remove a storage server, the controller blacklists the storage server by assigning it a zero

weight in the weight maps of incoming jobs. This ensures that metadata servers do not steer data

from new jobs to this node. The controller instructs a randomly selected metadata server to set a

‘kill’ flag in the heartbeat responses of the blacklisted storage server. The blacklisted storage server

waits until its capacity is entirely freed, as jobs terminate and their ephemeral data are garbage

collected. The storage server then terminates and releases its resources.

When the controller launches a new metadata server, the metadata server waits for new storage

servers to also be launched and register their capacity. To remove a metadata server, the controller

sends a ‘kill’ RPC to the node. The metadata server waits for all the capacity it manages to be freed,

then notifies all connected storage servers to close their connections. When all connections close,

the metadata server terminates. Storage servers then register their capacity that was managed by

the old metadata server across new metadata servers.

In addition to horizontal scaling, the controller manages vertical scaling. When the controller

observes that CPU utilization is high and additional cores are available on a node, the controller

instructs the node via a heartbeat response to use additional CPU cores.

Cluster sizing policy: Pocket elastically scales the cluster using a policy that aims to maintain

overall utilization for each resource type (CPU, network bandwidth, and the capacity of each storage

tier) within a target range. The target utilization range can be configured separately for each resource

type and managed separately for metadata servers, long-running storage servers (which store data
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written with the PERSIST flag set) and regular storage servers. For our deployment, we use a lower

utilization threshold of 60% and a upper utilization threshold of 80% for all resource dimensions,

for both the metadata and storage nodes. The range is empirically tuned and depends on the time

it takes to add/remove nodes. Pocket’s controller scales down the cluster by removing a storage

server if overall CPU, network bandwidth and capacity utilization is below the lower limit of the

target range. In this case, Pocket removes a storage server belonging to the tier with lowest capacity

utilization. Pocket adds a storage server if overall CPU, network bandwidth or capacity utilization

is above the upper limit of the target range. To respond to CPU load spikes or lulls, Pocket first

tries to vertically scale CPU resources on metadata and storage servers before horizontally scaling

the number of nodes.

Balancing load with data steering: To balance load while dynamically sizing the cluster,

Pocket leverages the short-lived nature of ephemeral data and serverless jobs. As ephemeral data

objects only live for tens to hundreds of seconds (see Figure 4.3), migrating this data to re-distribute

load when nodes are added or removed has high overhead. Instead, Pocket focuses on steering data

for incoming jobs across active and new storage servers joining the cluster. Pocket controls data

steering by assigning specific weights for storage servers in each job’s weight map. To balance load,

the controller assigns higher weights to under-utilized storage servers.

The controller uses a similar approach, at a coarser granularity, to balance load across metadata

servers. As noted in §4.3.2, the controller currently assigns each job to one metadata server. The

controller estimates the load a job will impose on a metadata server based on its throughput and

capacity allocation. Combining this estimate with metadata server resource utilization statistics,

the controller selects a metadata server to use for an incoming job such that the predicted metadata

server resource utilization remains within the target range.

4.5 Implementation

Pocket consists of a centralized controller, metadata servers, storage servers, and a client library.

Our implementation runs on commodity cloud hardware and leverages several open source code

bases.

Controller: Pocket’s controller, implemented in Python, leverages the Kubernetes container

orchestration system to launch and tear down metadata and storage servers, running in separate

Docker containers [9]. The controller uses Kubernetes Operations (kops) to spin up and down

virtual machines that run containers [8]. As explained in §4.4.2, Pocket rightsizes cluster resources

to maintain a target utilization range. We implement a resource monitoring daemon in Python

which runs on each node, sending CPU and network utilization statistics to the controller every

second. Metadata servers also send storage tier capacity utilization statistics. We empirically tune

the target utilization range based on node startup time. For example, we use a conservative target
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utilization range when the controller needs to launch new VMs compared to when VMs are running

and the controller simply launches containers.

Metadata management: We implement Pocket’s metadata and storage server architecture

on top of the Apache Crail distributed data store [4, 197]. Crail is designed for low latency, high

throughput storage of arbitrarily sized data with low durability requirements. Crail provides a unified

namespace across a set of heterogeneous storage resources distributed in a cluster. Its modular

architecture separates the data and metadata plane and supports pluggable storage tier and RPC

library implementations. While Crail is originally designed for RDMA networks, we implement a

TCP-based RPC library for Pocket since RDMA is not readily available in public clouds. Like

Crail, Pocket’s metadata servers are implemented in Java. Each metadata server logs its metadata

operations to a file on a shared NFS mount point, such that the log can be accessed and replayed

by a new metadata server in case a metadata server fails.

Storage tiers: We implement three different storage tiers for Pocket. The first is a DRAM tier

implemented in Java, using NIO APIs to efficiently serve requests from clients over TCP connections.

The second tier uses NVMe Flash storage. We implement Pocket’s NVMe storage servers on top of

ReFlex, the system we described in Chapter 3, which allows clients (i.e., lambdas) to access Flash

over commodity Ethernet networks with high performance. The third tier we implement is a generic

block storage tier that allows Pocket to use any block storage device (e.g., HDD or SATA/SAS SSD)

via a standard kernel device driver. Similar to ReFlex, this tier is implemented in C and uses DPDK

for efficient, userspace networking. However, instead of using SPDK to access NVMe Flash devices

from userspace, this tier uses the Linux libaio library to submit asynchronous block storage requests

to a kernel block device driver. Leveraging userspace APIs for the Pocket NVMe and generic block

device tiers allows us to increase performance and resource efficiency. For example, ReFlex can

process up to 11× more requests per core than a conventional Linux network-storage stack [122].

Client library: Since the serverless applications we use are written in Python, we implement

Pocket’s application interface (Table 4.2) as a Python client library. The core of the library is

implemented in C++ to optimize performance. We use Boost to wrap the code into a Python

library. The library internally manages TCP connections with metadata and storage servers.

4.6 Evaluation

We evaluate Pocket to show it meets the performance, elasticity and cost-efficiency requirements

outlined in Section 4.2.1. We show that Pocket’s data plane delivers sub-millisecond I/O latencies

and scalable bandwidth (§4.6.2), the control plane dynamically rightsizes cluster resources based on

elastic application load (§4.6.3), and Pocket achieves the same performance as Redis while reducing

cost by almost 60% for the various serverless analytics applications we study (§4.6.4).
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Pocket
server

EC2
server

DRAM
(GB)

Storage
(TB)

Network
(Gb/s)

$/hr

Controller m5.xl 16 0 ∼8 0.192
Metadata m5.xl 16 0 ∼8 0.192
DRAM r4.2xl 61 0 ∼8 0.532
NVMe i3.2xl 61 1.9 ∼8 0.624
SSD i2.2xl 61 1.6 . 2 1.7052

HDD h1.2xl 32 2 ∼8 0.468

Table 4.4: Type and cost of Amazon EC2 VMs used for Pocket

4.6.1 Methodology

We deploy Pocket on Amazon Web Service (AWS). We use EC2 instances to run Pocket storage,

metadata, and controller nodes. We use four different kinds of storage media: DRAM, NVMe-based

Flash, SATA/SAS-based Flash (which we refer to as SSD), and HDD. DRAM servers run on r4.2xl

instances, NVMe Flash servers run on i3.2xl instances, SSD servers run on i2.2xl instances, and

HDD servers run on h1.2xl instances. We choose the instance families based on their local storage

media, shown in Table 4.4. We choose the VM size to provide a good balance of network bandwidth

and storage capacity for the serverless applications we study.

We run Pocket storage and metadata servers as containers on EC2 VMs, orchestrated with

Kubernetes v1.9. We use AWS Lambda as our serverless computing platform. We enable lambdas

to access Pocket EC2 nodes by deploying them in the same virtual private cloud (VPC). We configure

lambdas with 3 GB of memory. Amazon allocates lambda compute resources proportional to memory

resources [24]. We compare Pocket’s performance and cost-efficiency to ElastiCache Redis (cluster-

mode enabled) and Amazon S3 [19, 128, 22]. We conducted experiments in April 2018.

We study three different serverless analytics applications, described below. The applications

differ in their degree of parallelism, ephemeral object size distribution (Figure 4.2), and throughput

requirements.

Video analytics: We use the Thousand Island Scanner (THIS) for distributed video process-

ing [167]. Lambdas in the first stage read compressed video frame batches, decode, and write the

decoded frames to ephemeral storage. Each lambda fetches a 250 MB decoder executable from S3

as it does not fit in the AWS Lambda deployment package. Each first stage lambda then launches

second stage lambdas, which read decoded frames from ephemeral storage, compute a MXNET deep

learning classification algorithm and output an object detection result. We use a 25 minute video

with 40K 1080p frames. We tune the batch size for each stage to minimize the job’s end-to-end

execution time; the first stage consists of 160 lambdas while the second has 305 lambdas.

MapReduce Sort: We implement a MapReduce sort application on AWS Lambda, similar

to PyWren [116]. Map lambdas fetch input files from long-term storage (we use S3) and write

2The cost of the i2 instance is particularly high since it is an old generation instance that is being phased out by
AWS and replaced by the newer generation i3 instances with NVMe Flash devices.
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Figure 4.5: Unloaded latency for 1KB I/Os from lambda clients using different storage systems.

intermediate files to ephemeral storage. Reduce lambdas merge and sort intermediate data and

upload output files to long-term storage. We run a 100 GB sort, which generates 100 GB of ephemeral

data. We run the job with 250, 500, and 1000 lambdas.

Distributed software compilation (λ-cc): We use gg to infer software build dependency

trees and invoke lambdas to compile source code with high parallelism [6, 77]. Each lambda fetches

its dependencies from ephemeral storage, computes (i.e., compiles, archives or links), and writes its

output to ephemeral storage, including the final executable for the user to download. We present

results for compiling the cmake project source code. This build job has a maximum inherent paral-

lelism of 650 tasks and generates a total of 850 MB ephemeral data. Object size ranges from 10s of

bytes to MBs, as shown in Figure 4.2.

4.6.2 Microbenchmarks

Storage request latency: Figure 4.5 compares the 1 KB request latency of S3, Redis, and various

Pocket storage tiers measured from a lambda client. Pocket-DRAM, Pocket-NVMe and Redis latency

is below 540 µs, which is over 45× faster than S3. The latency of the Pocket-SSD and Pocket-HDD

tiers is higher due to higher storage media access times. Pocket-HDD get latency is higher than put

latency since lambdas issue random reads while writes are sequential; the metadata server routes

writes to sequential logical block addresses. Pocket-DRAM has higher latency than Redis mainly

due to the metadata lookup RPC, which takes 140 µs. While Redis cluster clients simply hash keys

to Redis nodes, Pocket clients must contact a metadata server. While this extra RPC increases

request latency, it allows Pocket to optimize data placement per job and dynamically scale the

cluster without redistributing data across nodes.
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Figure 4.6: Total GB/s for 1MB requests from 100 lambda clients using different storage systems.

Storage request throughput: We measure the get throughput of S3, Redis (cache.r4.2xl)

and various Pocket storage tiers by issuing 1 MB requests from 100 concurrent lambdas. In Fig-

ure 4.6, we sweep the number of nodes in the Redis and Pocket clusters and compare the cumulative

throughput to that achieved with S3. Pocket-DRAM, Pocket-NVMe and Redis all achieve similar

throughput. With a single node, the bottleneck is the 1 GB/s VM network bandwidth. With two

nodes, Pocket’s DRAM and NVMe tiers achieve higher throughput than S3. Pocket’s SSD and HDD

tiers have significantly lower throughput. The HDD tier is limited by the 40 MB/s random access

bandwidth of the disk on each node. The SSD tier is limited by poor networking (less than ∼2

Gb/s) on the old generation i2.2xl instances. Hence, we also plot the throughput using i2.8xl

instances which have 10 Gb/s networking. The bottleneck becomes the 500 MB/s throughput limit

of the SATA/SAS SSD.

We focus the rest of our evaluation of Pocket on the DRAM and NVMe Flash tiers as they demand

the highest data plane software efficiency due to the technology’s low latency and high throughput.

We also find that in our AWS deployment, the DRAM and NVMe tiers offer significantly higher

performance-cost efficiency compared to the HDD and SSD tiers. For example, NVMe Flash servers,

which run on on i3.2xl instances, provide 1 GB/s per 1900 GB capacity at a cost of $0.624/hour.

Meanwhile, HDD servers, on h1.2xl instances, provide only 40 MB/s per 2000 GB capacity at a

cost of $0.468/hour. Thus, the NVMe tier offers 19.7× higher throughput per GB per dollar.

Metadata throughput: We measure the number of metadata operations that a metadata

server can handle per second. A single core metadata server on the m5.xl instance supports up

to 90K operations per second and up to 175K operations per second with four cores. The peak

metadata request rate we observe for the serverless analytics applications we study is 75 operations

per second per lambda. Hence, a multi-core metadata server can support jobs with thousands of

lambdas.
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Figure 4.7: Pocket node startup time breakdown.

Adding/removing servers: Since Pocket runs in containers on EC2 nodes, we measure the

time it takes to launch a VM, pull the container image, and launch the container. Pocket storage

servers must also register their storage capacity with metadata servers to join the cluster. Figure 4.7

shows the time breakdown. VM launch time varies across EC2 instance types. The container image

for the metadata server and DRAM server has a compressed size of 249 MB while the Pocket-NVMe

compressed container image is 540 MB due to dependencies for DPDK and SPDK to run ReFlex.

The image pull time depends on the VM’s network bandwidth. The VM launch time and container

image pull time only need to be done once when the VM is first started. Once the VM is warm,

meaning the image is available locally, starting and stopping containers takes only a few seconds.

The time to terminate a VM is tens of seconds.

4.6.3 Rightsizing Resource Allocations

We now evaluate Pocket with the three different serverless applications described in §3.4.1.

Rightsizing with application hints: Figure 4.8 shows how Pocket leverages user hints to

make cost-effective resource allocations, assuming each hint is provided in addition to the previous

ones. With no knowledge of application requirements, Pocket defaults to a policy that spreads data

for a job across a default allocation of 50 nodes, filling DRAM first, then Flash. With knowledge

of the maximum number of concurrent lambdas (250, 160, and 650 for the sort, video analytics

and λ-cc jobs, respectively), Pocket allocates lower aggregate throughput than the default allocation

while maintaining similar job execution time (within 4% of the execution time achieved with the

default allocation). Furthermore, these jobs are not sensitive to latency; the sort job and the first

stage of the video analytics job are throughput intensive while λ-cc and the second stage of the video

analytics job are compute limited. The orange bars in Figure 4.8 show the cost savings of using

NVMe Flash as opposed to DRAM when the latency insensitivity hint is provided for these jobs.
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Figure 4.8: Resource cost savings achieved by Pocket when hints are provided cumulatively.

The green bar shows the relative resource allocation cost when applications provide explicit hints

for their capacity and peak throughput requirements; such hints can be obtained from a profiling

run. Across all scenarios, each job’s execution time remains within 4% of its execution time with

the default resource allocation.

Reclaiming capacity using hints: Figure 4.9 shows the capacity used over time for the

video analytics job, with and without data lifetime management hints. All ephemeral data in this

application is written and read only once, since each first stage lambda writes ephemeral data

destined to a single second stage lambda. Hence for all get operations, this job can make use of the

DELETE hint which informs Pocket to promptly garbage collect an object as soon as it has been

read. By default, when the DELETE hint is not specified, Pocket waits until the job deregisters

to delete the job’s data. The job in Figure 4.9 completes at the 158 second mark. We show that

leveraging the DELETE hint allows Pocket to reclaim capacity more promptly, making more efficient

use of resources as this capacity can be offered to other jobs.

Rightsizing cluster size: Elastic and automatic resource scaling is a key property of Pocket.

Figure 4.10 shows how Pocket scales cluster resources as multiple jobs register and deregister with

the controller. Job registration and deregistration times are indicated by upwards and downwards

arrows along the x-axis, respectively. In this experiment, we assume Pocket receives capacity and

throughput hints for each job’s requirements. The first job is a 10 GB sort application requesting

3 GB/s, the second job is a video analytics application requesting 2.5 GB/s and the third job is a

different invocation of a 10 GB sort also requesting 3 GB/s. Each storage server provides 1 GB/s.

We use a minimum of two storage servers in the cluster. We provision seven VMs for this experiment

and ensure that storage server containers are locally available, such that when the controller launches

new storage servers, only container startup and capacity registration time is included.

Figure 4.10 shows that Pocket quickly and effectively scales the allocated storage bandwidth

(dotted line) to meet application throughput demands (solid line). The spike surpassing the allocated
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Figure 4.9: Capacity usage benefits with garbage collection hints in Pocket. With the DELETE hint
for get operations in a video analytics job, Pocket can readily reclaim capacity by deleting objects
after they have been read versus waiting for the job to complete.

throughput is due to a short burst in EC2 VM network bandwidth. The VMs provide ‘up to 10

Gb/s’, but since we typically observe a ∼8 Gb/s bandwidth limit in practice, the controller allocates

throughput assuming each node provides 8 Gb/s. As the controller rightsizes resources for each job,

job execution time stays within 5% of its execution time when running on 50 nodes, the conservative

default resource allocation. If the controller had to spin up new VMs to accommodate a job’s

requirements instead of just launching containers, the job’s start time would be delayed by up to

215 seconds (see EC2 NVMe server startup time in Figure 4.7) since the register job call blocks

until the required storage servers are available.

4.6.4 Comparison to S3 and Redis

Job execution time: Figure 4.11 plots the per-lambda execution time breakdown for the MapRe-

duce 100 GB sort job, run with 250, 500, and 1000 concurrent lambdas. The purple bars show

the time spent fetching original input data and writing final output data to S3 while the blue bars

compare the time for ephemeral data I/O with S3, Redis and Pocket-NVMe. S3 does not support

sufficient request rates when the job is run with 500 or more lambdas. S3 returns errors, advising

to reduce the I/O rate. Pocket provides similar throughput to Redis, however since the application

is not sensitive to latency, Pocket uses NVMe Flash instead of DRAM to reduce cost.

Similarly, for the video analytics job, we observe that Pocket-NVMe achieves the same perfor-

mance as Redis. However, using S3 for the video analytics job increases the average time spent on

ephemeral I/O by each lambda in the first stage (video decoding) by 3.2× and 4.1× for lambdas in

the second stage (MXNET classification), compared to using Pocket or Redis.

The performance of the distributed compilation job (λ-cc cmake) is limited by lambda CPU

resources [124]. A software build job has inherently limited parallelism; early-stage lambdas compile
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Figure 4.10: Pocket’s controller dynamically scales cluster resources to meet I/O requirements as
jobs enter and leave the system.

independent files in parallel, however lambdas responsible for archiving and linking are serialized as

they depend on the outputs of the early-stage lambdas. We observe that the early-stage lambdas

are compute-bound on current serverless infrastructure. Although using Pocket or Redis reduces

the fraction of time each lambda spend on ephemeral I/O, the overall execution time for this job

remains the same as when using S3 for ephemeral storage, since the bottleneck is dependencies on

compute-bound lambdas.

Cost analysis: Table 4.4 shows the hourly cost of running Pocket nodes on EC2 VMs in April

2018. Our minimum size Pocket cluster, consisting of one controller node, one metadata server

and two i3.2xl storage nodes costs $1.632 per hour on EC2. However, Pocket’s fixed cost can be

amortized as the system is designed to support multiple concurrent jobs from one or more tenants.

We intend for Pocket to be operated by a cloud provider and offered as a storage service with a

pay-what-you-use cost model for users, similar to the cost model of serverless computing platforms.

Hence, for our cost analysis, we derive fine-grain resource costs, such as the cost of a CPU core and

the cost of storage per GB, using AWS EC2 instance pricing. For example, we calculate NVMe

Flash $/GB by taking the difference between i3.2xl and r4.2xl instance costs (since these VMs

have the same CPU and DRAM configurations but i3.2xl includes a 1900 GB NVMe drive) and

dividing by the GB capacity of the i3.2xl NVMe drive.

Using this fine-grain resource pricing model for Pocket, Table 4.5 compares the cost of running

the 100 GB sort, video analytics and distributed compilation jobs with S3, ElastiCache Redis, and

Pocket-NVMe. We use reduced redundancy pricing for S3 and assume the GB-month cost is charged

hourly [21]. We base Redis costs on the price of entire VMs, not only the resources consumed, since

ElastiCache Redis clusters are managed by individual users rather than cloud providers. Pocket
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Figure 4.11: Execution time breakdown of 100GB sort.

Job S3 Redis Pocket

100 GB sort 0.05126 5.320 2.1648
Video analytics 0.00034 1.596 0.6483
λ-cc cmake 0.00005 1.596 0.6480

Table 4.5: Hourly ephemeral storage cost (in USD)

achieves the same performance as Redis for all three jobs while saving 59% in cost. S3 is still orders

of magnitude cheaper. However, S3’s cloud provider based cost is not a fair comparison to the cloud

user based cost model we use for Pocket and Redis. Furthermore, while the λ-cc job has similar

performance with Pocket, Redis and S3 due to a lambda compute bottleneck, the video analytics

and sort job execution time is 40 to 65% higher with S3.

4.7 Discussion

Choice of API: Pocket’s simple get/put interface provides sufficient functionality for the appli-

cations we studied. Lambdas in these jobs consume entire data objects that they read and they

do not require updating or appending files. However, POSIX-like I/O semantics for appending or

accessing parts of objects could benefit other applications. Pocket’s get/put API is implemented on

top of Apache Crail’s append-only stream abstraction which allows clients to read at file offsets and

append to files with single-writer semantics [196]. Thus, Pocket’s API could easily be modified to

expose Crail’s I/O semantics. Other operators such as filters or multi-gets could also help optimize

the number of RPCs and bytes transferred. The right choice of API for ephemeral storage remains

an open question.

Security: Pocket uses access control to secure applications in a multi-tenant environment. To
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prevent malicious users from accessing other tenants’ data, metadata servers issue single-use certifi-

cates to clients which are verified at storage servers. An I/O request that is not accompanied with a

valid certificate is denied. Clients communicate with metadata servers over SSL to protect against

man in the middle attacks. Users set cloud network security rules to prevent TCP traffic snooping

on connections between lambdas and storage servers. Alternatively, users can encrypt their data.

Pocket does not currently prevent jobs from issuing higher load than specified in job registration

hints. Request throttling can be implemented at metadata servers to mitigate interference when a

job tries to exceed its allocation.

Learning job characteristics: Pocket currently relies on user or application framework hints

to cost-effectively rightsize resource allocations for a job. Currently, Pocket does not autonomously

learn application properties. Since users may repeatedly run jobs on different datasets, as many data

analytics and modern machine learning jobs are recurring [140], Pocket’s controller can maintain

statistics about previous invocations of a job and use this information combined with machine

learning techniques to rightsize resource allocations for future runs [123, 15]. We plan to explore

this in future work.

Applicability to other cloud platforms: While we evaluate Pocket on the AWS cloud plat-

form, the system addresses a real problem applicable across all cloud providers as no available

platform provides an optimized way for serverless tasks to exchange ephemeral data. Pocket’s per-

formance will vary with network and storage capabilities of different infrastructure. For example,

if a low latency network is available, the DRAM storage tier provides significantly lower latency

than the NVMe tier. Such variations emphasize the need for a control plane to automate resource

allocation and data placement.

Applicability to other cloud workloads: Though we presented Pocket in the context of

ephemeral data sharing in serverless analytics, Pocket can also be used for other applications that

require distributed, scalable temporary storage. For instance, Google’s Cloud Dataflow, a fully-

managed data processing service for streaming and batch data analytics pipelines, implements the

shuffle operator – used for transforms such as GroupByKey – as part of its service backend [86].

Pocket can serve as fast, elastic storage for the intermediate data generated by shuffle operations in

this kind of service.

Reducing cost with resource harvesting: Cloud jobs are commonly over-provisioned in

terms CPU, DRAM, network, and storage resources due to the difficulty of rightsizing general jobs

and the need to accommodate diurnal load patterns and unexpected load spikes. The result is

significant capacity underutilization at the cluster level [35, 205, 68]. Recent work has shown that

the plethora of allocated but temporarily unused resources provide a stable substrate that can be

used to run analytics job [47, 220]. We can similarly leverage harvested resources to dramatically

reduce the total cost of running Pocket. Pocket’s storage servers are particularly well suited to run

on temporarily idle resource as ephemeral data has short lifetime and low durability requirements.
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4.8 Related Work

Section 4.2 provided an overview of related storage systems. Here we discuss work related to resource

scaling and data placement policies. We also describe how Pocket fits in the context of fully managed

data warehouses offered by today’s cloud providers.

Elastic resource scaling: Various reactive [81], predictive [57, 127, 171, 72, 152, 202, 208] and

hybrid [53, 103, 80, 150] approaches have been proposed to automatically scale resources based on

demand [168, 151]. Muse takes an economic approach, allocating resources to their most efficient use

based on a utility function that estimates the impact of resource allocations on job performance [51].

Pocket provisions resources upfront for a job based on hints and conservative heuristics while using

a reactive approach to adjust cluster resources over time as jobs enter and leave the system.

Pocket’s reactive scaling is similar to Horizontal Pod autoscaling in Kubernetes which collects

multidimensional metrics and adjusts resources based on utilization ratios [7]. Petal [130] and

the controller by Lim et al. [135] propose data re-balancing strategies in elastic storage clusters

while Pocket avoids redistributing short-lived data due to the high overhead. CloudScale [182],

Elastisizer [100], CherryPick [16], and other systems [204, 214, 123] take an application-centric view

to rightsize a job at the coarse granularity of traditional VMs as opposed to determining fine-grain

storage requirements. Nevertheless, the proposed cost and performance modeling approaches can

also be applied to Pocket to autonomously learn job resource preferences.

Intelligent data placement: Mirador is a dynamic storage service that optimizes data place-

ment for performance, efficiency, and safety [211]. Mirador focuses on long-running jobs (minutes

to hours), while Pocket targets short-term (seconds to minutes) ephemeral storage. Tuba manages

geo-replicated storage and, similar to Pocket, optimizes data placement based on performance and

cost constraints received from applications [28]. Extent-based Dynamic Tiering (EDT) uses access

pattern simulations and monitoring to find a cost-efficient storage solution for a workload across

multiple storage tiers [90]. The access pattern of ephemeral data is often simple (e.g., write-once-

read-once) and the data is short-lived, hence it is not worth migrating between tiers. Multiple

systems make storage configuration recommendation based on workload traces [26, 195, 14, 149, 17].

Given I/O traces for a job, Pocket could apply similar techniques to assign resources when a job

registers.

Fully managed data warehousing: Cloud providers offer fully managed infrastructure for

querying large amounts of structured data with high parallelism and elasticity. Examples include

Amazon Redshift [20], Google BigQuery [88], Azure SQL Data Warehouse [147], and Snowflake [58].

These systems are designed to support relational queries and high data durability, while Pocket

is designed for elastic, fast, and fully managed storage of data with low durability requirements.

However, a cloud data warehouse like Snowflake, which currently stores temporary data generated

by query operators on local disk or S3, could leverage Pocket to improve elasticity and resource

utilization.
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4.9 Conclusion

General-purpose analytics on serverless infrastructure presents unique opportunities and challenges

for performance, elasticity and resource efficiency. We analyzed challenges associated with efficient

data sharing and presented Pocket, an ephemeral data store for serverless analytics. In a similar

spirit to serverless computing, Pocket aims to provide a highly elastic, cost-effective, and fine-grained

storage solution for analytics workloads. Pocket achieves these goals using a strict separation of

responsibilities for control, metadata, and data management. To the best of our knowledge, Pocket

is the first system designed specifically for ephemeral data sharing in serverless analytics workloads.

Our evaluation on AWS demonstrates that Pocket offers high performance data access for arbitrary

size data sets, combined with automatic fine-grain scaling, self management and cost effective data

placement across multiple storage tiers.



Chapter 5

Selecta: Automatic Cloud Storage

Configuration for Data Analytics

5.1 Introduction

As discussed in Section 2.2.2, determining the right cloud configuration for analytics applications

is challenging, yet critical for both performance and cost. Even if we limit ourselves to a single

instance type and focus on optimizing performance, the choice of storage configuration for a par-

ticular application remains non-trivial. Figure 2.2, discussed in Section 2.2.2, showed an example.

Part of the challenge is that analytics workloads access multiple data streams, including input and

output files, logs, and intermediate data (e.g., shuffle and broadcast). Each data stream has distinct

characteristics in terms of access frequency, access patterns, and data lifetime, which make different

streams more suitable for different types of storage devices.

We present Selecta, a tool that learns near-optimal VM and storage configurations for analytics

applications for user-specified performance-cost objectives. Selecta targets analytics jobs that are

frequently or periodically re-run on newly arriving data [12, 76, 163]. A configuration is defined

by the type of cloud instance (core count and memory capacity) along with the storage type and

capacity used for input/output data and for intermediate data. To predict application performance

for different configurations, Selecta applies latent-factor collaborative filtering, a machine-learning

technique commonly used in recommender systems [39, 172, 40, 67, 68]. Selecta uses sparse perfor-

mance data for training applications profiled on various cloud configurations, as well as performance

measurements for the target application profiled on only two configurations. Selecta leverages the

sparse training data to learn significantly faster and more cost-effectively than exhaustive search.

The approach also improves on recent systems such as CherryPick and Ernest whose performance

68
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Block
Storage

Seq
Read
MB/s

Seq
Write
MB/s

Rand
Read
IOPS

Rand
Write
IOPS

Rand
Rd/Wr
IOPS

r-HDD 135 135 132 132 132
r-SSD 165 165 3,068 3,068 3,068
l-NVMe 490 196 103,400 35,175 70,088

Table 5.1: Performance for 500 GB volumes. Sequential I/Os are 128 KB, random I/Os are 4 KB.

prediction models require more information about the target application and hence require more ap-

plication runs to converge [15, 204]. Moreover, past work does not consider the heterogeneous cloud

storage options or the varying preferences of different data streams within each application [214].

We evaluate Selecta with over one hundred Spark SQL and ML workloads, each with two different

dataset scaling factors. We show that Selecta chooses a near-optimal performance configuration

(within 10% of optimal) with 94% probability and a near-optimal cost configuration with 80%

probability. We also analyze Selecta’s sensitivity to various parameters such as the amount of

information available for training workloads or the target application.

5.2 Motivation and Background

We discuss current approaches for selecting a cloud storage configuration and elaborate on the

challenges involved, which we briefly introduced in Section 2.3.2. Throughout, we use the notation

l- and r- to refer to local and remote storage options, respectively. For example, l-NVMe refers to

local NVMe Flash.

5.2.1 Current Approaches

Conventional configurations: Input/output files for data analytics jobs are traditionally stored

in a distributed file system, such as HDFS or object storage systems such as Amazon S3 [187, 22].

Intermediate data is typically read/written to/from a dedicated local block storage volume on each

node (i.e., l-SSD or l-NVMe) and spilled to r-HDD if extra capacity is needed. In typical Spark-as-

a-service cloud deployments, two remote storage volumes are provisioned by default per instance:

one for the instance root volume and one for logs [61].

Existing tools: Recent work focuses on automatically selecting an optimal VM configuration

in the cloud [214, 204, 15]. However, these tools tend to ignore the heterogeneity of cloud storage

options, at best distinguishing between ‘fast’ and ‘slow’. In the next section, we discuss the extent

of the storage configuration space.
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Figure 5.1: Comparison of execution time and cost for TPC-DS query 64 on various VM and storage
configurations, defined as <VM size, storage for input/output data, storage for intermediate data>.

5.2.2 Challenges

Complex configuration space: Cloud storage comes in multiple flavors: object storage (e.g.,

Amazon S3 [22]), file storage (e.g., Azure Files [144]), and block storage (e.g., Google Compute

Engine Persistent Disks [85]). Block and object storage are most commonly used for data analytics.

Block storage is further sub-divided into hardware options: cold or throughput-optimized hard drive

disk, SAS SSD, or NVMe Flash. Block storage can be local (directly attached) or remote (over the

network) to an instance. Local block storage is ephemeral; data persists only as long as the instance

is running. Remote volumes persist until explicitly deleted by the user.

Table 5.1 compares three block storage options available in Amazon Web Services (AWS). Each

storage option provides a different performance, cost, and flexibility trade-off. For instance, l-NVMe

storage offers the highest throughput and lowest latency at higher cost per bit. Currently, cloud

providers typically offer NVMe in fixed capacity units directly attached to select instance types,

charged per second or hour. AWS currently charges $0.023 more per hour for an instance with

475 GB of NVMe Flash compared to without NVMe. In contrast, S3 fees are based on capacity

($0.023 per GB/month) and bandwidth ($0.004 per 10K GET requests) usage.

In addition to the storage configuration, users must choose from a variety of VM types to deter-

mine the right number of CPU cores and memory, the number of VMs, and their network bandwidth.

These choices often affect storage and must be considered together. For example, on instances with

1 Gb/s network bandwidth, the network limits the sequential throughput achievable with r-HDD

and r-SSD storage volumes in Table 5.1.

Performance-cost objectives: While configurations with the most CPU cores, the most mem-

ory, and fastest storage generally provide the highest performance, optimizing for runtime cost is

much more difficult. Systems designed to optimize a specific objective (e.g., predict the configuration
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that maximizes performance or minimizes cost) are generally not sufficient to make recommenda-

tions for more complex objectives (e.g., predict the configuration that minimizes execution time

within a specific budget). By predicting application execution time on candidate configurations, our

approach remains general. Unless otherwise specified, we refer to cost as the cost of executing an

application.

Heterogeneous application data: We classify data managed by distributed data analytics

frameworks (e.g., Spark [217]) into two main categories: input/output data which is typically stored

long-term and intermediate data which lives for the duration of job execution. Examples of inter-

mediate data include shuffle data exchanged between mappers and reducers, broadcast variables,

and cached dataset partitions spilled from memory. These streams typically have distinct access fre-

quency, data lifetime, access type (random vs. sequential), and I/O size. For example, input/output

data is generally long-lived and sequentially accessed, whereas intermediate data is short-lived and

most accesses are random.

Storage decisions are complex: Selecting the right configuration for a job significantly reduces

execution time and cost, as shown in Figure 5.1, which compares a Spark SQL query (TPC-DS

query 64) on various VM and storage configurations in an 8-node cluster. We consider 3 i3 VM

instance sizes in EC2 (xl, 2xl, and 4xl) and heterogeneous storage options for input/output and

intermediate data. The lowest performing configuration has 24× the execution time of the best

performing configuration. Storing input/output data on r-SSD and intermediate data on l-NVMe

(the lowest cost configuration) has 7.5× lower cost than storing input/output data on r-HDD and

intermediate data on r-SSD.

5.3 Selecta Design

5.3.1 Overview

Selecta is a tool that automatically predicts the performance of a target application on a set of

candidate configurations. As shown in Figure 5.2, Selecta takes as input: i) execution time for a

set of training applications on several configurations, ii) execution time for the target application

on two reference configurations, and iii) a performance-cost objective for the target application. A

configuration is defined by the number of nodes (VM instances), the CPU cores and memory per

node, as well as the storage type and capacity used for input/output data and for intermediate data.

Selecta uses latent factor collaborative filtering (see §5.3.2) to predict the performance of the target

application on the remaining (non-reference) candidate configurations. With these performance

predictions and the per unit time cost of various VM instances and storage options, Selecta can

recommend the right configuration for the user’s performance-cost objective. For example, Selecta

can recommend configurations that minimize execution time, minimize cost, or minimize execution

time within a specific budget.
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Figure 5.2: An overview of performance prediction and configuration recommendation with Selecta.

As new applications are launched over time, these performance measurements become part of

Selecta’s growing training set and accuracy improves (see § 5.4.4). We also feed back performance

measurements after running a target application on a configuration recommended by Selecta — this

helps reduce measurement noise and improve accuracy. Since Selecta takes ∼1 minute to generate

a new set of predictions (the exact runtime depends on the training matrix size), a user can re-

run Select when re-launching the target application with a new dataset to get a more accurate

recommendation. In our experiments, the recommendations for each target application converge

after two feedback iterations. The ability to grow the training set over time also provides Selecta

with a mechanism for expanding the set of configurations it considers. Initially, the configuration

space evaluated by Selecta is the set of configurations that appear in the original training set. When

a new configuration becomes available and Selecta receives profiling data for applications on this

configuration, the tool will start predicting performance for all applications on this configuration.

5.3.2 Predicting Performance

Prediction approach: Selecta uses collaborative filtering to predict the performance of a target

application on candidate configurations. We choose collaborative filtering as it is agnostic to the

details of the data analytics framework used (e.g., Spark vs. Storm) and it allows us to leverage

sparse training data collected across applications and configurations [170]. While systems such as

CherryPick [15] and Ernest [204] build performance models based solely on training data for the

target application, Selecta’s goal is to leverage training data available from multiple applications

to converge to accurate recommendations with only two profiling runs of a target application. We

discuss alternatives to collaborative filtering to explain our choice.

Content-based approaches, such as as linear regression, random forests, and neural network

models, build a model from features such as application characteristics (e.g., GB of shuffle data

read/written) and configuration characteristics (e.g., I/O bandwidth or the number of cores per VM).
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We find that unless inputs features such as the average CPU utilization of the target application

on the target configuration are used in the model, content-based predictors do not have enough

information to learn the compute and I/O requirements of applications and achieve low accuracy.

Approaches that require running target applications on all candidate configurations to collect feature

data are impractical.

Another alternative is to build performance prediction models based on the structure of an

analytics framework, such as the specifics of the map, shuffle, and reduce stages in Spark [110, 222].

This leads to framework-specific models and may require re-tuning or even re-modeling as framework

implementations evolve (e.g., as the CPU efficiency of serialization operations improves).

Latent factor collaborative filtering: Selecta’s collaborative filtering model transforms ap-

plications and configurations to a latent factor space [39]. This space characterizes applications and

configurations in terms of latent (i.e., ‘hidden’) features. These features are automatically inferred

from performance measurements of training applications [170]. We use a matrix factorization tech-

nique known as Singular Value Decomposition (SVD) for the latent factor model. SVD decomposes

an input matrix P , with rows representing applications and columns representing configurations,

into the product of three matrices, U, λ, and V . Each element pij of P represents the normalized

performance of application i on configuration j. The latent features are represented by singular val-

ues in the diagonal matrix λ, ordered by decreasing magnitude. The matrix U captures the strength

of the correlation between a row in P and a latent feature in λ. The matrix V captures the strength

of the correlation between a column in P and a latent feature in λ. Although the model does not

tell us what the latent features physically represent, a hypothetical example of a latent feature is

random I/O throughput. For instance, Selecta could infer how strongly an application’s perfor-

mance depends on random I/O throughput and how much random I/O throughput a configuration

provides.

One challenge for running SVD is the input matrix P is sparse, since we only have the performance

measurements of applications on certain configurations. In particular, we only have two entries in the

target application row and filling in the missing entries corresponds to predicting performance on the

other candidate configurations. Since performing SVD matrix factorization requires a fully populated

input matrix P , we start by randomly initializing the missing entries and then run Stochastic

Gradient Descent (SGD) to update these unknown entries using an objective function that minimizes

the mean squared error on the known entries of the matrix [45]. The intuition is that by iteratively

decomposing and updating the matrix in a way that minimizes the error for known entries, the

technique also updates unknown entries with accurate predictions. A useful rule of thumb is to

retain enough singular values to make up 90% of the energy in matrix λ [132]. That is, the sum of

the squares of the retained singular values should be at least 90% of the sum of the squares of all

the singular values. Selecta uses the Python sci-kit surprise library for SVD [105].
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5.3.3 Using Selecta

New target application: The first time an application is presented to Selecta, it is profiled on

two reference configurations which, preferably, are far apart in their compute and storage resource

attributes. Selecta requires that reference configurations remain fixed across all applications, since

performance measurements are normalized to a reference configuration before running SVD. Profiling

application performance involves running the application to completion and recording execution time

and CPU utilization (including iowait) over time.

Defining performance-cost objectives: After predicting application performance across all

configurations, Selecta recommends a configuration based on a user-defined ranking function. For in-

stance, to minimize runtime cost, the ranking function is min(runtime × cost/hour). While choosing

a storage technology (e.g., SSD vs. NVMe Flash), Selecta must also consider the application’s storage

capacity requirements. Selecta leverages statistics from profiling runs available in Spark monitoring

logs to determine the intermediate (shuffle) data and and input/output data capacity [189].

Adapting to changes: Recurring jobs and their input datasets are likely to evolve. To detect

changes in application characteristics that may impact the choice of optimal configuration, Selecta

relies on CPU utilization information from both initial application profiling and subsequent execu-

tions rounds. When an application is first introduced to the system, Selecta assigns a unique ID

to store application specific information such as iowait CPU utilization. Whenever an application

is re-executed, Selecta compares the current iowait time to the stored configuration. Depending

on the difference in iowait time, Selecta will either compute a refined prediction based on available

measurements or treat the workload as new application, starting a new profiling run.

Dealing with noise in the cloud: An additional challenge for recommending optimal con-

figurations is noise on public cloud platforms, which arises due to interference with other tenants,

hardware heterogeneity, or other sources [179]. To account for noise, Selecta relies on the feed-

back of performance and CPU utilization measurements. As measurements are fed into the system,

Selecta averages performance and CPU utilization and uses reservoir sampling to avoid high skew

from outliers [206]. Selecta keeps a configurable number of sample points for each entry in the

application-configuration matrix (e.g., three) to detect changes in applications as described above.

If a particular run is heavily impacted by noise such that the compute and I/O bottlenecks differ

significantly from previous runs, Selecta’s mechanism for detecting changes in applications identifies

the outlier.

5.4 Selecta Evaluation

Selecta’s collaborative filtering approach is agnostic to the choice of applications and configurations.

We evaluate Selecta for data analytics workloads on a subset of the cloud configuration space with

the goal of understanding how to provision cloud storage for data analytics.
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Instance CPU cores RAM (GB) NVMe
i3.xlarge 4 30 1 x 950 GB
r4.xlarge 4 30 -
i3.2xlarge 8 60 1 x 1.9 TB
r4.2xlarge 8 60 -
i3.4xlarge 16 120 2 x 1.9 TB
r4.4xlarge 16 120 -

Table 5.2: AWS EC2 instance properties

Storage Type Locality
Use for

Input/Output
Data?

Use for
Intermediate

Data?
r-HDD Block Remote X -
r-SSD Block Remote X X
l-NVMe Block Local X X
S3 Object Remote X -

Table 5.3: AWS storage options considered

5.4.1 Methodology

Cloud configurations: We deploy Selecta on Amazon EC2 and consider configurations with the

instance and storage options shown in Tables 5.2 and 5.3. Among the possible VM and storage

combinations, we consider seventeen candidate configurations. We trim the space to stay within

our research budget and to focus on experiments that are most likely to uncover interesting insights

about cloud storage for analytics. We choose EC2 instance families that are also supported by

Databricks, a popular Spark-as-a-service provider [60]. i3 is currently the only instance family

available with NVMe Flash and r4 instances allow for a fair comparison of storage options as they

have the same memory to compute ratio. We only consider configurations where the intermediate

data storage IOPS are equal to or greater than the input/output storage IOPS, as intermediate data

has more random accesses. Since we find that most applications are I/O-bound with r-HDD, we

only consider r-HDD for the instance size with the least amount of cores. We limit our analysis to

r-HDD because our application datasets are up to 1 TB whereas instances with l-HDD on AWS

come with a minimum of 6 TB disk storage, which would not be an efficient use of capacity. We do

not consider local SAS/SATA SSDs as their storage capacity to CPU cores ratio is too low for most

Spark workloads. We use Elastic Block Store (EBS) for remote block storage [18].

We use a cluster of 9 nodes for our evaluation. The cluster consists of one master node and

eight executor nodes. The master node runs the Spark driver and YARN Resource Manager. Unless

input/output data is stored in S3, we run a HDFS namenode on the master server as well. We

configure framework parameters, such as the JVM heap size and number of executors, according to

Spark tuning guidelines and match the number of executor tasks to the VM’s CPU cores [55, 54].

Applications: We consider Spark [217] as a representative data analytics framework, similar
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to previous studies [156, 200, 15]. We use Spark v2.1.0 and Hadoop v2.7.3 for HDFS. We evaluate

Selecta with over one hundred Spark SQL and ML applications, each with two different dataset scales,

for a total of 204 workloads. Our application set includes 92 queries of the TPC-DS benchmark with

scale factors of 300 and 1000 GB [199]. We use the same scale factors for Spark SQL and ML queries

from the TPC-BB (BigBench) benchmark which has structured, unstructured and semi-structured

data modeled after the retail industry domain [82]. Since most BigBench queries are CPU-bound,

we focus on eight queries which have more substantial I/O requirements: queries 3, 8, 14, 16, 21,

26, 28, 29. We also run 100 and 400 GB sort jobs [160]. Finally, we run a SQL equijoin query on

two tables with 16M and 32M rows each and 4KB entries [161]. For all input and output files, we

use the uncompressed Parquet data format [79].

Experiment methodology: We run each application on all candidate configurations to obtain

the ground truth performance and optimal configuration choices for each application. To account for

noise in the cloud we run each experiment (i.e., each application on each candidate configuration)

three times and use the average across runs in our evaluation. Two runs are consecutive and one run

is during a different time of day. We also validate our results by using data from one run as input

to Selecta and the average performance across runs as the ground truth. To train and test Selecta,

we use leave-one-out cross validation [173], meaning one workload at a time serves as the target

application while the remaining workloads are used for training. We assume training applications

are profiled on all candidate configurations, except for the sensitivity analysis in §5.4.4 where we

investigate training matrix density requirements for accurate predictions.

Metrics: We measure the quality of Selecta’s predictions using two metrics. First, we report

the relative root mean squared error (RMSE), a common metric for recommender systems. The

second and more relevant metric for Selecta is the probability of making an accurate configuration

recommendation. We consider a recommendation accurate if the configuration meets the user’s cost-

performance objective within a threshold T of the true optimal configuration for that application.

For example, for a minimum cost objective with T = 10%, the probability of an accurate prediction is

the percentage of Selecta’s recommendations (across all tested applications) whose true cost is within

10% of the true optimal cost configuration. Using a threshold is more robust to noise and allows

us to make more meaningful conclusions about Selecta’s accuracy, since a second-best configuration

may have similar or significantly worse performance than the best configuration. Our performance

metric is execution time and cost is in US dollars.

5.4.2 Prediction Accuracy

We provide a matrix with 204 rows as input to Selecta, where one row (application) is designated as

the target application in each test round. We run Selecta 204 times, each time considering a different

application as the target. For now, we assume all remaining rows of training data in the matrix

are dense, implying the user has profiled training applications on all candidate configurations. The
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(a) Probability of accurate recommendations within a
threshold from optimal. Dotted lines are after one feed-
back iteration.

(b) Probability of accurate configuration recommenda-
tion for performance within threshold, given strict cost
restrictions.

Figure 5.3: Probability of accurate recommendations within a threshold from optimal.

Figure 5.4: Percentage of configurations whose true performance, cost, and cost-performance is
within the threshold. Across all of the applications, more than half of the configurations have
performance that is over 100% higher than the true best configuration for each application.

single target application row is sparse, containing only two entries out of 17, one for each of the

profiling runs on reference configurations.

Selecta predicts performance with a relative RMSE of 36%, on average across applications. To

understand how Selecta’s performance predictions translate into recommendations, we plot accuracy

in Figure 5.3a for performance, cost and cost*performance objectives. The plot shows the probability

of near-optimal recommendations as a function of the threshold T defining what percentage from

optimal is considered close enough. When searching for the best performing configuration, Selecta

has a 94% probability of recommending a configuration within 10% of optimal. For a minimum cost

objective, Selecta has a 80% probability of recommending a configuration within 10% of optimal.

Predicting cost*performance is more challenging since errors in Selecta’s relative execution time

predictions for an application across candidate configurations are squared: cost*performance =

(execution time)2 * config cost per hour.
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perf-predict-using-small 

cost-predict-using-small 

cost*perf-predict-using-small 

perf-predict-using-large 

cost-predict-using-large 

cost*perf-predict-using-large 

Figure 5.5: Selecta’s accuracy with large datasets using predictions from small dataset vs. re-
computing prediction with large datasets.

The dotted lines in Figure 5.3a show how accuracy improves after a single feedback round.

Here, we assume the target application has the same dataset in the feedback round. This provides

additional training input for the target application row (either a new entry if the recommended

configuration was not a reference configuration, or a new sample to average to existing data if

the recommended configuration was a reference configuration). The probability of near-optimal

recommendations increases most noticeably for the cost*performance objective, from 52% to 65%

after feedback, with T=10%.

Figure 5.3b shows the probability of accurate recommendations for objectives of the form “select

the best performing configuration given a fixed cost restriction C.” For this objective, we consider

Selecta’s recommendation accurate if its cost is less than or equal to the budget and if its performance

is within the threshold of the true best configuration for the objective. Selecta achieves between 83%

and 94% accuracy for the cost restrictions in Figure 5.3b assuming T=10%. The long tail is due

to performance prediction errors that lead Selecta to underestimate the execution cost for a small

percentage of configurations (i.e., cases where Selecta recommends a configuration that is actually

over budget).

Figure 5.4 shows the distribution of the true performance, cost, and performance-cost data.

The figure plots the percentage of configurations that fall within the threshold. Across all of the

applications, more than half of the configurations have performance that is over 100% higher than

the true best configuration for each application. This highlights how important and challenging it

is to select the right configuration for a job.

In Figure 5.6, we compare Selecta’s accuracy against four baselines. The first baseline is a random

forest predictor, similar to the approach used by PARIS [214]. We use the following features: the

number of CPU cores, disk IOPS and disk MB/s the configuration provides, the intermediate and
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Figure 5.6: Selecta’s accuracy compared to baseline approaches.

input/output data capacity of the application, and the CPU utilization, performance, and total disk

throughput measured when running the application on each of the two reference configurations.

Although the random forest predictor leverages more features than Selecta, it has lower accuracy.

Collaborative filtering is a better fit for the sparse nature of the training data. We find the most

important features in the random forest model are all related to I/O (e.g., the I/O throughput

measured when running the application on the reference configurations and the read/write IOPS

supported by the storage used for intermediate data), which emphasizes the importance of selecting

the right storage.

The second baseline (labeled ‘default’) in Figure 5.6 uses the recommended default configura-

tions documented in Databricks engineering blog posts: l-NVMe for intermediate data and S3 for

input/output data [61, 63, 62]. The ‘max cost per time’ baseline uses the simple heuristic of always

picking the most expensive instance per unit time. The ’min cost per time’ baseline chooses the least

expensive instance per unit time. Selecta outperforms all of these heuristic strategies, confirming

the need for a tool to automate configuration selection.

5.4.3 Evolving Datasets

We study the impact of dataset size on application performance and Selecta’s predictions using

the small and large dataset scales described in §5.4.1. We train Selecta using all 102 workloads

with small datasets, then evaluate Selecta’s prediction accuracy for the same workloads with large

datasets. The dotted lines in Figure 5.5 plots Selecta’s accuracy when recommending configurations

for applications with large datasets solely based on profiling runs of the application with a smaller

dataset. The solid lines show accuracy when Selecta re-profiles applications with large datasets to

make predictions. For approximately 8% of applications, profiling runs with small datasets are not

sufficient indicators of performance with large datasets.
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(a) Query on 300GB is CPU-bound. (b) Query on 1TB is IO-bound.

Figure 5.7: CPU utilization over time for TPC-DS query 89 on r4.xlarge cluster with r-SSD. For
this query, performance with a small dataset is not indicative of performance with a larger dataset.
Selecta detects difference in average iowait percentage (blue dotted line).

We find that in cases where the performance with a small dataset is not indicative of performance

with a large dataset, the relationship between compute and I/O intensity of the application is

affected by the dataset size. As described in §5.3.3, Selecta detects these situations by comparing

CPU utilization statistics for the small and large dataset runs. Figure 5.7 shows an example of a

workload for which small dataset performance is not indicative of performance with a larger dataset.

We use the Intel Performance Analysis Tool to record and plot CPU utilization [106]. When the

average iowait percentage for the duration of the run changes significantly between the large and

small profiling runs on the reference configuration, it is generally best to profile the application on

the reference configurations and treat it as a new application.

5.4.4 Sensitivity Analysis

We perform a sensitivity analysis to determine input matrix density requirements for accurate pre-

dictions. We look at both the density of matrix rows (i.e., the percentage of candidate configurations

that training applications are profiled on) and the density of matrix columns (i.e., the number of

training applications used). We also discuss sensitivity to the choice of reference configurations.

Figure 5.8a shows how Selecta’s accuracy for performance, cost and cost*performance objectives

varies as a function of input matrix density. Assuming 203 training applications have accumulated

in the system over time, we show that, on average across target applications, rows only need to be

approximately 20 to 30% dense for Selecta to achieve sufficient accuracy. This means that at steady

state, users should profile training applications on about 20-30% of the candidate configurations

(including reference configurations). Profiling additional configurations has diminishing returns.

We consider a cold start situation in which a user wants to jump start the system by profiling a
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(a) Sensitivity to input matrix density in steady
state: 20% density per row suffices for accurate
predictions.

(b) Sensitivity to number of training applications,
profiled on all configurations: 2.5× the number of
configs suffices.

(c) Sensitivity to input matrix density for cold
start : ∼50% density per row (training applica-
tion) required.

Figure 5.8: Sensitivity analysis: accuracy as a function of input matrix density

limited set of training applications across all candidate configurations. Figure 5.8b shows the number

of training applications required to achieve desired accuracy. Here, for each target application testing

round, we take the 203 training applications we have and randomly remove a fraction of the rows

(training applications). We ensure to drop the row corresponding to the different dataset scale factor

run of the target application, to ensure Selecta’s accuracy does not depend on a training application

directly related to the target application. Since the number of training applications required to

achieve desirable accuracy depends on the size of the configuration space a user wishes to explore,

the x-axis in Figure 5.8b represents the ratio of the number of training applications to the number

of candidate configurations, R. We find that to jump start Selecta with dense training data from

a cold start, users should provide 2.5× more training applications than the number of candidate

configurations to achieve desirable accuracy. In our case, jump starting Selecta with more than

43 = d2.5× 17e training applications profiled on all 17 configurations has diminishing returns.
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Naturally, a cold start requires more profiling data per row than the steady state scenario.

Figure 5.8c plots accuracy as we vary the percentage of candidate configurations on which the

training applications are profiled for a cold start using R=2.5 (i.e., 43 training applications for 17

candidate configurations). The figure shows that it is sufficient for users to profile the initial training

applications on 40% to 60% of candidate configurations, as long as the configurations are selected

randomly and independently for each job. As Selecta continues running and accumulates more

training applications, the percentage of configurations users need to profile for training applications

drops to 20-30% (this is the steady state result from Figure 5.8a).

We experimented with different reference configurations for Selecta. We find that accuracy is

not very sensitive to the choice of references. We saw a slight benefit using references that have

different VM and storage types. Although one reference configuration must remain fixed across all

application runs since it is used to normalize performance, we found that the reference configuration

used for the second profiling run could vary without significant impact on Selecta’s accuracy.

5.5 Cloud Storage Insights

Our analysis of cloud configurations for data analytics reveals some insights for cloud storage. We

discuss key takeaways and their implications for future research on storage systems.

NVMe storage is performance and cost efficient for data analytics: We find that config-

urations with NVMe Flash tend to offer not only the best performance, but also, more surprisingly,

the lowest cost. Although NVMe Flash is the most expensive type of storage per GB/hr, its high

bandwidth allows applications to run significantly faster, reducing the overall job execution cost.

On average across applications, we observe that l-NVMe Flash reduces job completion time of

applications by 27% compared to r-SSD and 75% compared to r-HDD. Although we did not consider

l-SSD or l-HDD configurations in our evaluation, we validate that local versus remote access to HDD

and SSD achieves similar performance since our instances have sufficient network bandwidth (up to

10 Gb/s) and modern networking adds little overhead on top of HDD and SSD access latency [25]. In

contrast, a previous study of Spark applications by Ousterhout et al. concluded that optimizing or

eliminating disk accesses can only reduce job completion time by a median of at most 19% [156]. We

believe the main reason for the increased impact of storage on end-to-end application performance

is due to the newer version of Spark we use in our study (v2.1.0 versus v1.2.1). Spark has evolved

with numerous optimizations targeting CPU efficiency, such as cache-aware computations, code

generation for expression evaluation, and serialization [59]. With ongoing work in optimizing the

CPU cycles spent on data analytics computations, for example by optimizing the I/O processing

path [197], we expect the choice of storage to be of even greater importance.

The need for end-to-end optimization: In our experiments, remote HDD storage performed

poorly, despite its cost effectiveness for long-living input/output data and its ability to match the
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sequential bandwidth offered by SSD. Using the Linux blktrace tool [112] to analyze I/O requests

at the block device layer, we found that although each Spark task reads/writes input/output data

sequentially, streams from multiple tasks running on different cores interleave at the block device

layer. Thus, the access stream seen by a remote HDD volume consists of approximately 60% random

I/O operations, dramatically reducing performance compared to fully sequential I/O. This makes

solutions with higher throughput for random accesses (e.g., using multiple HDDs devices or Flash

storage) more appropriate for achieving high performance in data analytics. Increasing random I/O

performance comes at a higher cost per unit time. In addition to building faster storage systems,

we should attempt to optimize throughout the stack for sequential accesses when these accesses

are available at the application level. Of course, there will always be workloads with intrinsically

random access patterns that will not benefit from such optimizations.

5.6 Discussion

Our work focused on selecting storage configurations based on their performance and cost. Other

important considerations include durability, availability, and consistency, particularly for long-term

input/output data storage [126]. Developers may also prefer a particular storage API (e.g., POSIX

files vs. object interface). Users can use these qualitative constraints to limit the storage space

Selecta considers. Users may also choose different storage systems for high performance processing

versus long term storage of important data.

Our study showed that separating input/output data and intermediate data uncovers a richer

configuration space and allows for better customization of storage resources to the application re-

quirements. We can further divide intermediate data into finer-grained streams such as shuffle data,

broadcast data, and cached RDDs spilled from memory. Understanding the characteristics of these

finer grain streams and how they should be mapped to storage options in the cloud may reveal

further benefits.

Compression schemes offer an interesting trade-off between processing, networking, and storage

requirements. In addition to compressing input/output files, systems like Spark allow compress-

ing individual intermediate data streams using a variety of compression algorithms (lz4, lzf, and

snappy) [190]. In future work, we plan to extend Selecta to consider compression options in addition

to storage and instance configuration.

We used Selecta to optimize data analytics applications as they represent a common class of

cloud workloads. Selecta’s approach should be applicable to other data-intensive workloads too, as

collaborative filtering does not make any specific assumptions about the application structure. In

addition to considering other types of workloads, in future work, we will consider scenarios in which

multiple workloads share cloud infrastructure. Delimitrou et al. have shown that collaborative

filtering can classify application interference sensitivity (i.e., how much interference an application
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will cause to co-scheduled applications and how much interference it can tolerate itself) [67, 68].

We also believe Selecta’s collaborative filtering approach can be extended to help configure isolation

mechanisms that limit interference between workloads, particularly on shared storage devices like

NVMe which exhibit dramatically different behavior as the read-write access patterns vary [122].

We have presented Selecta as a tool that helps cloud users select the right virtual machine and

storage configuration for their applications among the many options on traditional cloud computing

platforms. Selecta’s ability to automate resource configuration decisions at scale is also critical for

cloud providers, particularly in the context of emerging cloud computing platforms. In managed

cloud services, such as serverless computing, resource allocation becomes the responsibility of the

cloud provider. Selecta can be used to learn across serverless job invocations and optimize resource

allocation and task scheduling decisions for performance and cost objectives on serverless computing

platforms. We also believe the collaborative filtering approach used in Selecta can be used to enhance

the Pocket storage system discussed in Chapter 4. While Pocket currently relies on hints to learn

job characteristics and make cost-effective resource allocations, Selecta can learn such characteristics

across job invocations and automate the resource allocation process, alleviating users from the burden

of providing hints.

5.7 Related Work

Selecting cloud configurations: Several recent systems unearth near-optimal cloud configurations

for target workloads. CherryPick uses Bayesian Optimization to build a performance model that is

just accurate enough to distinguish near-optimal configurations [15]. Model input comes solely from

profiling the target application across carefully selected configurations. Ernest predicts performance

for different VM and cluster sizes, targeting machine learning analytics applications [204]. PARIS

takes a hybrid online/offline approach, using random forests to predict application performance on

various VM configurations based on features such as CPU utilization obtained from profiling [214].

These systems do not consider the vast storage configuration options in the cloud nor the heteroge-

neous data streams of analytics applications which can dramatically impact performance.

Resource allocation with collaborative filtering: Our approach for predicting performance

is most similar to Quasar [68] and Paragon [67], which apply collaborative filtering to schedule

incoming applications on shared clusters. ProteusTM [71] applies collaborative filtering to auto-

tune a transactional memory system. While these systems consider resource heterogeneity, they

focus on CPU and memory. While Selecta applies a similar modeling approach, our exploration of

the cloud storage configuration space is novel and reveals important insights.

Automating storage configurations: Many previous systems provide storage configuration

recommendations [26, 195, 14, 149, 17, 95, 119]. Our work analyzes the trade-offs between traditional

block storage and object storage available in the cloud. We also considering how heterogeneous
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streams in data analytics applications should be mapped to heterogeneous storage options.

Analyzing performance of analytics frameworks: While previous studies analyze how

CPU, memory, network and storage resources affect Spark performance [156, 200, 197, 134], our

work is the first to evaluate the impact of new cloud storage options (e.g., NVMe Flash) and provide

a tool to navigate the diverse storage configuration space.

Tuning application parameters: Previous work auto-tunes data analytics framework param-

eters such as the number of executors, JVM heap size, and compression schemes [101, 216, 215].

Our work is complementary. Users set application parameters and then run Selecta to obtain a

near-optimal hardware configuration.

5.8 Conclusion

The large and increasing number of storage and compute options on cloud services makes configuring

data analytics clusters for high performance and cost efficiency difficult. We presented Selecta,

a tool that learns near-optimal configurations of compute and storage resources based on sparse

training data collected across applications and candidate configurations. Requiring only two profiling

runs of the target application, Selecta predicts near-optimal performance configurations with 94%

probability and near-optimal cost configurations with 80% probability. Moreover, Selecta allowed us

to analyze cloud storage options for data analytics and reveal important insights, including the cost

benefits of NVMe Flash storage, the need for fine-gain allocation of storage capacity and bandwidth

in the cloud, and the need for cross-layer storage optimizations. We believe that, as data-intensive

workloads grow in complexity and cloud options for compute and storage increase, tools like Selecta

will become increasingly useful for end users, systems researchers, and even cloud providers (e.g.,

for scheduling ‘serverless’ application code).



Chapter 6

Conclusion

This dissertation has shown how to build high performance, cost-effective, and easy-to-use cloud

storage systems. We addressed two critical requirements. First, we enabled fast, predictable access

to remote data on modern Flash storage. This ensures that storage allocation is not constrained

by the physical characteristics of server hardware and resource allocations can be customized to

the requirements of individual applications. Second, we automated storage resource management

with intelligent allocation of storage resources. We demonstrated how to effectively learn application

characteristics through hints or a machine learning model trained on past performance data to make

resource-efficient storage allocation decisions at scale. We built three new systems that collectively

improve the performance and resource efficiency of cloud storage, which we summarize below.

ReFlex is a custom network-storage operating system that enables applications to access remote

Flash over commodity cloud networks to improve resource allocation flexibility without sacrificing

the performance that applications achieve with local Flash. ReFlex processes requests to completion,

adaptively batches requests, and avoids unnecessary data copies to achieve 11× higher throughput

per core compared to a Linux system that uses libaio-libevent for remote access to Flash storage.

ReFlex also introduces a novel I/O scheduler to enforce tail latency and throughput guarantees for

up to thousands of tenants sharing a remote Flash storage device.

Pocket is a distributed ephemeral data store that builds on top of ReFlex to provide application-

aware storage resource allocation along with low latency and high throughput access to data. We

specifically designed Pocket to efficiently share intermediate data in a new class of workloads, called

serverless analytics. Pocket features a new storage API that enables users or application frameworks

to pass hints about application characteristics which Pocket’s controller uses to make cost-effective

resource allocations. The system places data across multiple storage technology tiers to maximize

performance and cost efficiency. Finally, Pocket continuously monitors cluster resource utilization

to autoscale resources based on application load. The system achieves comparable performance to

a popular in-memory data store, Redis, while saving close to 60% in cost.

86
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Selecta is a system that automates resource allocation decisions for recurring jobs in the cloud

without requiring user or application framework hints. The system recommends a near-optimal

resource allocation for a target application by predicting the jobs execution time across a variety of

cloud resource configurations based on past performance data collected across runs. Using collabora-

tive filtering, Selecta makes fast, accurate recommendations with sparse training data by uncovering

latent similarities across jobs and resource configurations. Selecta can find resource allocations

that minimize the execution time of a job, minimize the cost of running a job, or maximize the

performance of a job within a budget. For minimizing job execution time, Selecta has a 94% prob-

ability of recommending a configuration that performs within 10% of the true highest performance

configuration.

The contributions of this dissertation — fast access to remote data, elastic distributed storage,

and automated resource allocation decisions — are vital in the context of the shift that cloud

computing is undergoing today. Stimulated by an exponential growth in the volume of data and

non-expert users who desire higher levels of abstraction for resource management, cloud providers

are increasingly offering fully-managed compute and storage services. Serverless computing (e.g.,

AWS Lambda [23]) and machine learning as a service platforms (e.g., Google Cloud AI [89]) are

examples of such services. As cloud computing evolves from users managing virtual machines with

fixed resource ratios to cloud providers increasingly managing resources automatically for user tasks,

insights from the design and implementation of ReFlex, Pocket, and Selecta are valuable in enabling

high performance, resource-efficient, and easy-to-use cloud storage.

6.1 Future Directions

Our work also opens several interesting avenues for future research. As cloud applications evolve

and datacenter hardware becomes more heterogeneous, there are many opportunities to innovate

across layers — from application frameworks to hardware interfaces — to bridge the requirements

of applications with the capabilities of modern hardware.

Storage for machine learning: Our current work has focused on addressing the cloud stor-

age requirements of multi-tier web applications, data analytics workloads, and serverless analytics

jobs. Machine learning workloads are a new class of applications increasingly being deployed on

cloud platforms and imposing new, challenging requirements for data management [138]. Processing

massive datasets with low latency and high throughput requires striking the right balance between

data disaggregation (to support large scale) and data locality (to maximize performance). ReFlex

provides fast access to remote data, enabling machine learning models to train on arbitrarily large,

distributed datasets with high parallelism. However, optimizing locality is still desirable as massive

datasets consume significant power and network bandwidth to move. Fortunately, the access pat-

terns of machine learning workloads and trends in emerging storage devices present opportunities
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to optimize data movement by pushing some computation closer to the data. For example, many

machine learning workloads involve updating only a fraction of weights in a weight vector stored

on a remote node. By leveraging on-chip processing capabilities in new Flash storage devices (e.g.,

SmartSSDs [174]), we can perform filter operations at storage nodes and send only the data of inter-

est to remote nodes for further processing. There are many open questions to explore, including how

to program ‘smart storage’ devices, which computations to support for machine learning workloads,

and how to coordinate distributed data processing in clusters of smart storage devices.

Opportunistic cloud storage: We saw that disaggregating compute and storage resources

improves resource utilization by allowing resource allocations to be customized to individual ap-

plication requirements. However, cloud providers are still motivated to overprovision resources to

have slack for accommodating unanticipated load spikes. Hence, a promising way to maximize re-

source utilization is to opportunistically run storage services on slack resources [47]. By harvesting

temporarily idle resources, cloud providers can offer storage services to users at significantly lower

cost. A major challenge is enabling higher priority services to easily reclaim slack resources when

needed, while still enabling the opportunistic storage services to store and process data with rea-

sonable performance guarantees on unreliable infrastructure [220, 148]. Pocket is a good candidate

for an opportunistic storage service since the system targets ephemeral data, which has low durabil-

ity requirements. However, Pocket’s original design does not provide fault tolerance as application

frameworks are responsible for relaunching tasks to regenerate any data that gets lost. Abstracting

potentially frequent resource revocations from users is important for enabling Pocket to run as an

opportunistic storage service on slack resources. The opportunistic storage service must make im-

portant decisions about when and where to replicate and/or checkpoint data. These decisions can

be greatly informed by training a machine learning model to predict slack resource usage trends over

time and provide early warning signals of resource revocations.

Adaptive fault tolerance: Our work on distributed storage for serverless analytics focused on

the broad class of temporary data generated and exchanged between intermediate stages of a job.

However, not all temporary data within a job has the same value. The data generated and consumed

during job execution varies greatly in terms of its fault tolerance requirements. For example, in a

long-running job, the temporary data generated by tasks near the final stage is likely more valuable

than the data generated by tasks early on in the job. This is because regenerating the final stage

data may require re-launching tasks from all stages prior to when a fault occurred. In this example,

we would likely want our storage system to checkpoint temporary data with increasing frequency

as a job progresses. More generally, co-designing application frameworks and storage systems to

automatically infer the value of individual data objects in a job and translate this value into a fault

tolerance scheme for each object is an interesting direction for future work. One approach is to

leverage a job’s execution graph, which captures data dependency chains, to extract the value of

individual data objects.
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