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Abstract
Serverless computing enables the cloud platform to op-

timize resource management under the hood to im-

prove performance and resource-efficiency. However, to-

day’s serverless cluster managers are designed by simply

retrofitting legacy workload orchestration systems, de-

spite the unique characteristics of serverless workloads.

We study Knative-on-K8s as a representative state-of-

the-art cluster manager for serverless and show that it

can cause second-scale delays and contribute to over

65% of end-to-end latency for function invocations ex-

periencing cold starts. These overheads occur when the

cluster experiences high sandbox churn, which is com-

mon in production serverless deployments. We analyze

the root cause of current cluster manager overheads for

serverless workloads and propose a set of design princi-

ples to improve end-to-end latency and peak throughput

by rethinking the cluster manager system architecture.

CCS Concepts: • Computer systems organization
→ Cloud computing.

Keywords: Cloud computing, Serverless Computing,
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1 Introduction
Serverless computing — also known as Functions-as-a-

Service (FaaS) — is an increasingly popular paradigm of

cloud computing, in which users develop fine-grained

functions, while the platform automatically manages the
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Figure 1. End-to-end latency breakdown of cold func-

tion invocation. The clustermanager adds high overhead

when many concurrent cold starts.

resources needed to execute functions according to ap-

plication load. Compared to the traditional Infrastructure-

as-a-Service (IaaS) model of cloud computing, in which

users select and rent virtual machines to run their work-

loads, serverless computing makes the cloud easier to

use for developers and gives the cloud platform more

control of the infrastructure, enabling performance and

energy-efficiency optimizations under the hood.

The key component responsible for automating and

optimizing resource management is the cluster man-

ager. A FaaS cluster manager is responsible for autoscal-
ing function sandboxes based on load, placing function

sandboxes across nodes, and load-balancing function

invocations across sandboxes available in the cluster.

The design of today’s state-of-the-art FaaS cluster

managers stems from legacy cluster managers or con-

tainer orchestrators, such as Kubernetes (K8s). How-

ever, we find that these systems struggle to address the

unique challenges imposed by the FaaS workloads. As

FaaS applications typically consist of many short-lived

functions whose invocation patterns are difficult to pre-

dict [26, 34], the cluster manager must frequently create

and tear down function sandboxes. The cluster manager

must maintain low latency, particularly when sandbox

creation is on the critical path of a function invocation

(we refer to this as a cold start). However, Figure 1 shows
that cold latency increases drastically as we scale the

number of concurrent sandbox creations in the clus-

ter, primarily due to cluster manager overhead. We use

Knative-on-K8s [4, 5] as a representative FaaS cluster

manager, as it is the foundation for widely-used com-

mercial and open-source serverless platforms [2, 30].

In our 10-worker-node experiment, the cluster man-

ager becomes a bottleneck for cold function invoca-

tions, attributing as much as 65% of end-to-end latency

https://doi.org/10.1145/3605181.3626286
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and adding up to seconds of delay. This is problem-

atic as production FaaS clusters experience hundreds of

cold starts per second [26]. While prior work optimizes

sandbox creation and initialization latency on worker

nodes [14, 7, 35, 22, 30], little attention has been paid to

minimizing the overhead of orchestrating a large num-

ber of sandboxes across a FaaS cluster under high churn.

In this paper, we analyze the root cause of state-of-

the-art FaaS cluster overheads and propose a set of new

design principles to address current bottlenecks. By

analyzing the fine-grained breakdown of function la-

tency as we sweep the rate of sandbox creations in a

Knative-on-K8s FaaS cluster (§3), we conclude that sand-

box orchestration overhead does not come from poor

autoscaling, placement, or load-balancing policies. In-

stead, propagating policy decisions in the complex system

architecture of the cluster manager is what introduces

significant delays. For example, Knative-on-K8s involves

multiple microservice components on the critical path

of sandbox creation and placement. Components trans-

fer large nested JSON blobs over gRPC to a centralized

API server that persists state to a strongly consistent

database. The centralized API server node, which serial-

izes/deserializes gRPC payloads from multiple compo-

nents to update the database, saturates CPU resources

and leads to high queuing delays observed in Figure 1.

Drawing insights from our analysis of Knative-on-

K8s overhead, we propose three key design principles

for a new cluster manager system architecture tailored

for FaaS (§4). First, we propose to minimize the number

of RPCs involved in the critical path of sandbox creation

and placement, by designing the cluster manager with a

monolithic control plane, as opposed to a complex set of

intertwinedmicroservices. Second, to avoid the serializa-

tion overheads of large nested JSON blobs, we propose

to simplify the cluster state format by storing small flat

objects in key-value stores or even relational tables op-

timized for fast, frequent updates [9] . Our third design

principle is to centrally manage state in concurrent in-

memory data structures. We argue that only a fraction

of cluster state needs to be persisted to a database to

enable recovery from component failures, while the rest

can be reconstructed. Minimizing the volume of state

that needs to be persisted improves latency by minimiz-

ing the time spent waiting for state updates to persist

to storage on the critical path of sandbox creation.

2 Background
We discuss the requirements for a FaaS cluster manager

(§2.1), challenges (§2.2), and related work (§2.3).

2.1 FaaS Orchestration Requirements
While cluster managers designed for IaaS are primarily

responsible for placing coarse-grained virtual machines

onto physical servers [33, 16, 15, 11], a FaaS cluster man-

ager has additional responsibilities, as it needs to further
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Figure 2. Sandbox creations per minute in 30-min win-

dow of Azure trace (Day 0, Hour 8).

hide resource management complexity from users. In

addition to placing function sandboxes across nodes, a

FaaS cluster manager must autoscale function sandboxes
in response to incoming requests (including scaling from

zero and handling high bursts) and load-balance requests
across sandboxes. The cluster manager’s control plane

must efficiently implement autoscaling and placement

policies to respond to high request churn, which in-

volves frequently creating and tearing down sandboxes

for short-lived functions. The cluster manager’s data

plane must steer requests to available sandboxes at low

latency and high throughput. Both the data and control

planes must be fault tolerant and optimized for high

performance and resource efficiency.

2.2 FaaS Orchestration Challenges
FaaS applications have unique characteristics that im-

pose three key challenges for cluster management.

Manage high volume of fine-grained state. Com-

pared to IaaS, where users tend to run monolithic long-

running workloads, FaaS applications consist of many

fine-grained functions that are chained together and/or

invoked in parallel. For resource efficiency, functions

must be densely packed per node, with each function ex-

ecuting in a separate sandbox for secure isolation. While

a 10K-node IaaS cluster may manage ∼100K virtual ma-

chines, a 10K-node FaaS cluster would likely manage 10s

of millions of function sandboxes [7]. Due to the finer

granuarlity of execution, the cluster manager must also

manage state at finer granularity, including per-sandbox

state (e.g., network endpoints) and per-function state

(e.g., autoscaling metrics). Managing state at this scale is

challenging while maintaining low latency access times.

Low latency updates due to high sandbox churn.
As serverless functions have highly bursty invocation

patterns and short execution times [26, 34], the cluster

manager must frequently create and tear down function

sandboxes, resulting in frequent cluster state updates.

For example, Figure 2 simulates
1
a 30-min window of

the Azure Functions trace [26] and shows that the clus-

ter manager must create 18.3K sandboxes per minute

(i.e. 305 per second), on average. We also measure the

fraction of function invocation requests for which sand-

box creation is on the critical path, since low latency

1
The experiment simulates trace execution on a 1000-node cluster

with a cluster manager architecture resembling Knative-on-K8s and

using its default autoscaling, load-balancing, and placement policies.
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cluster state updates are particularly important for these

“cold” requests. Assuming a 1-min keep-alive for func-

tion sandboxes (default in Knative-on-K8s and similar

to [26]), we find that 52% of functions always experi-

ence a cold start, whereas for 8% of functions, every

other invocation is a cold start. While prior work pro-

poses autoscaling policies to decrease the probability

of cold starts [24, 26, 27], these approaches add extra

memory pressure and cost. In addition to minimizing

the frequency of cold starts, the cluster manager must

minimize cold start delays.

Fault tolerance and cluster state consistency. FaaS
clusters are inherently distributed systems prone to com-

ponent failures. Hence, the cluster manager must be able

to recover from control plane and data plane failures,

while providing fault tolerance features with minimal

overhead. To avoid the latency overhead of persisting

and replicating state on the critical path of sandbox cre-

ation, it is important to determine which state can be

maintained as soft state that is simply reconstructed

after a failure.

2.3 Current Cluster Managers
Kubernetes-based cluster management. Container
orchestration systems are commonly the basis of FaaS

cluster managers, as they provide mechanisms and poli-

cies for autoscaling, placing, and load-balancing sand-

boxes. Kubernetes (K8s) [5] is an open-source, state-of-

the-art container orchestrator, which stems fromGoogle’s

internal cluster manager, Borg [32, 29]. Although origi-

nally designed to manage long-running containerized

applications, K8s is highly modular and general-purpose.

Hence, K8s is the foundation for many serverless plat-

forms, such as OpenWhisk [1], vHive [30], OpenFaas [6],

and CloudRun for Anthos [2], which is Google’s com-

mercial serverless offering that runs a FaaS software

layer called Knative [4] on top of K8s. We use Knative-

on-K8s as a representative open-source cluster manager

for FaaS, as it is used for commercial serverless offer-

ings [2] and in popular open-source FaaS platforms, like

vHive [30]. We analyze its performance limitations in §3

and find similar performance issues in other K8s-based

FaaS platforms like OpenWhisk.

Cluster management beyond Kubernetes. Other
clustermanagers, such asMesos [17], YARN [31], Borg [32,

33], Mercury [20], Omega [25], Twine [28], Sparrow [23],

Quasar [12], Paragon [11], Tarcil [13], and Apollo [8]

have been designed to efficiently share of a large clus-

ter of machines between different applications. Tra-

ditional cluster managers lack native autoscaling fea-

tures required for serverless computing and often sacri-

fice responsiveness to achieve scalability (e.g., all inter-

component communication piggybacks on heartbeats

that are sent every few seconds), making them unfit

for subsecond-scale elasticity in FaaS workloads. These

systems also typically target workloads running for

API Server Database

Deployment  
Controller

ReplicaSet 
Controller

Endpoint 
Controller

Serverless Service
Controller

Revision  
Controller

Autoscaling
Controller

K8s Controller

Knative Controller

Figure 3. Simplified diagram of Knative-on-K8s.

more than 100s of seconds with a lower degree of col-

location compared to densely-packed serverless func-

tions [26]. While much related work on cluster manage-

ment focuses on improving the quality of scheduling

policies [15, 18], we argue that more emphasis needs

to be placed on the system architecture design and im-

plementation to guarantee low latency at high load and

high churn in serverless environments.

3 Understanding Current Cluster
Manager Overhead

We study the end-to-end latency breakdown for cold

and warm requests to understand the cluster manager’s

contribution to latency and current scalability limits.

Experiment setup. Our experiment setup consists

of a 13-node cluster of x170 machines on CloudLab [3],

each running stock Ubuntu 20.04 on a 10-core 2.4 GHz

Intel E5-2640 CPUwith SMT disabled, 64 GBDRAM, and

a 25 Gb/s NIC. We use Knative v1.3.0 running on top of

Kubernetes v1.23.5, with containerd v1.6.2 as the sand-

box environment. We dedicate one node in the cluster

for Kubernetes-specific components (placement service,

upscale controllers, cluster state database) and another

node for Knative-specific components (autoscaling and

load balancing services). The load generator runs on

a separate node, while the remaining ten nodes are

worker nodes used solely for running functions. We

use the default Knative-on-K8s scheduling policies for

autoscaling, load balancing, and placement. Out-of-the-

box Knative-on-K8s requires extensive configuration for

performance and cannot be used to conduct fine-grained

latency breakdown directly. Hence, we tune configura-

tion knobs (e.g., increase components QPS limits) and

instrument system components to capture fine-grained

timestamps. We also prune the critical path of sandbox

creation to contain only fundamental functionality (e.g.,

we disable authentication token volume automount).

3.1 Cold Requests
Cold start latency breakdown. Figure 1 breaks down
the latency of "hello world" function invocations where

sandbox creation is on the critical path (i.e., cold starts).

Sandbox creation and sandbox initialization latency in

Figure 1 corresponds to actions that take place onworker

nodes. Sandbox creation is the time it takes to create a

function sandbox (i.e., K8s Pod) and its network setup,
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with the former being the dominant source of latency.

In Knative-on-K8s, each pod consists of two containers,

which are created sequentially: the container running

the user’s function and the sidecar used for throttling

requests to the main container. We assume container

images are prefetched on each worker node. Sandbox

initialization is the time it takes to execute user-level

initialization code for the two containers, i.e., start a

gRPC server and pass the K8s readiness probe to no-

tify the cluster manager data plane that the sandbox

is now ready to receive requests. As seen in Figure 1,

sandbox creation and initialization dominate cold start

latency when the cluster has few sandbox creations.

Much prior work has focused on sandbox boot time op-

timization [22, 14, 21]. However, we observe that when

many sandbox creations occur concurrently, the cluster

manager accounts for up to 65% of end-to-end latency.

Takeaway 1: The state-of-the-art cluster management
system for FaaS becomes a bottleneck when the cluster
experiences high function sandbox churn.
The cluster manager latency in Figure 1 includes all

actions fromwhen an invocation arrives at the cluster to

when sandbox creation starts on a selected worker node.

This involves running the autoscaling algorithm, run-

ning the placement algorithm to select a worker node

for the sandbox, and updating cluster state. By breaking

down the cluster manager latency, we find that the large

delay at high sandbox churn comes from inefficient prop-

agation of policy decisions across multiple components

in the complex cluster manager system architecture.

Figure 3 shows a simplified diagram of the Knative-on-

K8s architecture, which consists of multiple controllers.

Knative-on-K8s associates multiple K8s resource types

(e.g., Deployment, ReplicaSet, and Endpoint) with each
function sandbox. K8s maintains a separate reconcilia-

tion controller for each resource type, which iteratively

tries to converge the actual state to a desired state. K8s

takes a level-based (vs. edge-triggered) approach to this

reconciliation. This is good for robustness, but comes

at the expense of latency and is at odds with the event-

driven nature of FaaS. While all controllers run in the

same process, these components cannot communicate di-

rectly via shared memory, because K8s imposes a strong

consistency requirement over all cluster state. Hence,

controller reconciliation actions involve many round

trips to the cluster state database via the API Server,

which serves as the database frontend. Jeffery et al. [19]

found that a simple operation sequence (e.g., create a de-

ployment with 3 sandboxes, upscale it to 10, downscale it

to 5, and delete the deployment) involves approximately

3K operations to the database. Furthermore, each write

to the K8s etcd database is a quorum-based blocking

operation. Overall, the controller reconciliation pipeline

can be modeled as a series of queues. The more sand-

boxes are created, the more actions are triggered in the

cluster, saturating CPU resources and leading to the

high queuing delays seen in Figure 1.
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Figure 4. Cold start latency vs. sandbox churn.

Takeaway 2: The cluster manager bottleneck comes
from a complex critical path of sandbox creation that
involves multiple controller reconciliation loops and per-
sisting all state to a strongly consistent database. The bot-
tleneck arises due to the cluster manager’s system archi-
tecture design, not its resource management policies. The
system architecture requires a redesign to meet the high
sandbox churn and low latency needs of FaaS applications.

Cluster manager scalability limit. We conduct an

additional series of experiments in which we vary the

steady rate of sandbox churn in the Knative-on-K8s

cluster and measure end-to-end latency in Figure 4 to

find the latency saturation point. Latency saturates at a

sandbox churn rate of merely 3.5 sandbox creations per

second. At this point, the API server process saturates

the 16 CPU cores on the K8smaster node. The API server

spends over 43% of CPU cycles on JSON serialization and

object diff/merging and 17% on Go garbage collection.

In attempt to increase K8s master node throughput,

we tried moving Knative’s components to a dedicated

set of nodes from K8s components, but we observed the

same performance. We also experimented with different

APIs exposed by K8s. While Knative uses the Deploy-

ment API, one can also directly create new sandboxes

with the K8s Pod API. However, we only observed mar-

ginal performance improvements, suggesting that the

overheads are more fundamental to the internal design

of K8s. Prior work has re-architected the communication

mechanism between the API server and worker nodes

in K8s to enable scaling clusters to millions of edge

worker nodes [36], however this came at the expense

of renouncing many K8s features that are essential for

FaaS, such as dynamic scheduling of sandboxes.

Takeaway 3: There is a large gap between the steady
rate of sandbox churn that Knative-on-K8s can support
(less than 4 sandbox creations per second in Figure 4) and
the average sandbox churn that production FaaS clusters
should support to meet the requirements of real workload
traces (100s of sandbox creations per second [26]).

Generalizing beyondKnative-on-K8s.Wevalidate

our results by running the same experiments on Google

Cloud Run for Anthos [2], a commercial cloud platform

that runs Knative on managed K8s instances. We find

that managed K8s exhibits comparable latency (slightly
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higher as not all knobs are exposed to optimize the

system configuration). We also run our experiments on

OpenWhisk [1] and observe similar bottlenecks.

Sandbox teardown. While sandbox creation is on

the critical path for many function invocations, sand-

box teardown happens off the critical path. We find that

teardown can take up to 400 ms and primarily involves

actions on worker nodes. As FaaS worker nodes need

to support a high degree of sandbox collocation for re-

source efficiency, frequent teardowns can negatively

affect latency and throughput by competing for CPU

cycles on worker nodes.

3.2 Warm Requests
Thus far, we have analyzed the cluster manager’s impact

on end-to-end latency for cold starts. We now explore

its contribution to warm request latency. When an in-

vocation arrives in Knative-on-K8s and there is already

an available sandbox to process the request, the cluster

manager adds a 4 ms to 6 ms delay to function execu-

tion time, at 50
th
and 95

th
percentiles, respectively. This

time is spent on routing the request in the data plane

to load-balance invocations across sandboxes. Since the

load balancer caches an up-to-date list of existing sand-

boxes in the cluster, it requires no interaction with the

cluster manager control plane to route requests. Hence,

warm requests are not affected by queuing in the cluster

control plane at high sandbox churn.

Takeaway 4: Warm function latency is not noticeably
affected by sandbox creations for other functions in the
cluster, due to clean separation of data and control planes.

4 Towards a New Cluster Manager for
Serverless

To address the fundamental inefficiencies uncovered in

§3 about the design of state-of-the-art K8s-based cluster

managers, we propose three design principles for a clean-

slate cluster manager architecture tailored for FaaS.

From microservice to monolith.While microser-

vice architectures have advantages — such as higher

modularity and parallelism with component replication

— they also add overheads, as we saw with Knative-on-

K8s. By aggregating logically related components in the

cluster manager, we can use lock-free in-memory con-

current data structures [10] for communication rather

than generic updates/watches to a cluster database over

gRPC. Hence, we propose to fuse control plane compo-

nents (autoscaling service, placement service, control

loop handlers) as a monolithic process to reduce the la-

tency and complexity of the critical path for sandbox cre-

ation. We still propose to separate the data plane (which

forwards invocation requests to worker nodes when

a sandbox is available) and the control plane (which

implements autoscaling and placement algorithms and

manages cluster-wide state for fault tolerance).

Simplified cluster state format. The K8s approach
of persisting cluster state updates in a format of ∼15 kB
deeply-nested JSON blobs consumes high storage capac-

ity at FaaS cluster scale and consumes extensive CPU

cycles for data serialization. The deeper the nesting in

the schema, the higher the (de)serialization overhead

with Golang native JSON serialization library. To ad-

dress these issues, we propose to simplify the cluster

state format. We find that not all the state that Knative-

on-K8s manages is essential in the FaaS context. We

estimate that the essential per-function state fits within

1 kB, on average, and per-sandbox state within 16 bytes.

This makes it feasible to keep all state in memory for

clusters with millions of functions and sandboxes.

In-memory state with limited persistence. In con-
trast to the heavyweight fault tolerance mechanisms in

K8s, which involve synchronously persisting every clus-

ter state change to a replicated database, we propose

to manage cluster state in-memory and persist to repli-

cated storage only the most fundamental data, such as

function definitions and component connection state.

Other state can be reconstructed. For example, if the pri-

mary control plane node fails, a new control plane node

can take over and notify all worker nodes to forward

their list of running sandboxes so that it can reconstruct

this state. If the whole serverless cluster fails, function

definitions can be reloaded from the disk on recovery

and the system can scale from zero as if there were

no sandboxes running beforehand. These optimizations

apply in the context of FaaS and allow us to optimize

latency on the critical path of sandbox creation during

normal operation. Another potential optimization we

plan to explore is whether some persisted state can be

replicated asynchronously outside of the critical path

instead of enforcing strong consistency for all state, as

some duties of a FaaS cluster manager may be feasible to

implement on eventually consistent (stale) data [19]. For

example, distributed schedulers like Sparrow [23] man-

age to maintain high decision quality while operating

on partial data for decision making. Hence, it is worth

exploring which state can be stale (and how stale) to re-

duce cluster manager overheads without compromising

decision quality. We also plan to explore cluster state

store designs (e.g., key-value stores, relational database).

5 Conclusion
Today’s cluster managers, such as Knative-on-K8s, add

seconds of delay to function invocations when many

sandboxes need to be created at once — a common case

in FaaS clusters. These overheads come from system

architecture inefficiencies, as multiple software compo-

nents communicate by exchangingmessages via strongly

consistent cluster database, resulting in high CPU con-

tention and queuing delays. Instead of retrofitting exist-

ing systems, we propose to redesign FaaS cluster man-

ager based on the lessons learned from this study.
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