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It’s an exciting time for ML systems
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Large growth in…

• ML use-cases
• ML model sizes
• Training data volume
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Large growth in…

• ML use-cases
• ML model sizes
• Training data volume
• FLOPS provided by specialized ML hardware accelerators
• Cost!!!
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à Training ML models consumes many GPU/TPU-hours and $$$



How much does it cost…

…to train a 100 Trillion parameter model 
for 1 day on the cloud?
A. $4,000
B. $40,000
C. $400,000

Used: 
• 3,000 CPU cores
• 64 A100 GPUs
• 360 TB of RAM

6
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8Blog: https://cloud.google.com/blog/products/ai-machine-learning/training-a-recommender-model-of-100-trillions-parameters-on-google-cloud
Slide from Ce Zhang

https://cloud.google.com/blog/products/ai-machine-learning/training-a-recommender-model-of-100-trillions-parameters-on-google-cloud


ML has a cost & resource efficiency problem

9



ML has a cost & resource efficiency problem

• Another example: 

10https://www.mosaicml.com/blog/gpt-3-quality-for-500k

https://www.mosaicml.com/blog/gpt-3-quality-for-500k


How can we reduce the cost of ML?
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How can we reduce the cost of ML?

Many complementary approaches…

Improve:
• Resource efficiency 
• Resource cost 
• Model efficiency 
• Data efficiency 
• …
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Systems ML
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Many complementary approaches…

Improve:
• Resource efficiency à maximize ML hardware (GPU/TPU) utilization

• Resource cost à use cheap, transient resources (e.g., spot VMs)
• Model efficiency à sparsely activate models, sparse architectures
• Data efficiency à train on the most important/relevant data
• …

How can we reduce the cost of ML?
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If we can ensure a job makes “good use” of ML hardware, the job 
will finish faster and we will pay for less time on that hardware. 

Focus on maximizing GPU/TPU utilization à most $$$ component



What hinders high GPU/TPU utilization? 
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• Feeding GPUs/TPUs with input data is often a bottleneck
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What hinders high GPU/TPU utilization? 
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CPU GPU/TPUDisk/SSD

• Feeding GPUs/TPUs with input data is often a bottleneck
• Need to read large volumes of data from storage and preprocess data

Bottleneck



Input data ingestion for ML

Training / ServingRaw Data Data records

Before we can feed training data to a model, we need to preprocess data.
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Input data processing for ML

Training / ServingRaw Data Data records

Offline
preprocessing
• Extract features
• Clean data
• Validate data
• Normalize data

Before we can feed training data to a model, we need to preprocess data.
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Input data processing for ML

Training / ServingRaw Data Data records

Online
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• Filter features
• Sample elements
• Randomly augment
• Shuffle & batch

Before we can feed training data to a model, we need to preprocess data.
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“Last mile” 
data processing



Input processing impacts training time & cost

CPU GPU/TPUDisk/SSD
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Input processing impacts training time & cost

CPU GPU/TPUDisk/SSD
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• Feeding data-hungry GPUs/TPUs is challenging
• Input data processing on host CPU is often a bottleneck

Bottleneck



Input processing consumes high CPU/energy

CPU GPU/TPUDisk/SSD
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Input processing consumes high CPU/energy

CPU GPU/TPUDisk/SSD
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• At Google, data processing consumes ~30% of compute time in training jobs [1]
• At Meta, data processing consumes more power than training for some jobs [2]

[1] Derek G. Murray, Jiří Šimša, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.

[2] Mark Zhao et al. “Understanding data storage and ingestion for large-scale deep recommendation model training”, ISCA 2022.



How to optimize ML input data processing?

1. Autotune the input data pipeline
2. Disaggregate and distribute data processing
3. Multi-tenant data processing as a service
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CPU GPU/TPUCPU

Remote 
CPU

Remote 
CPU
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CPU
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How to optimize ML input data processing?
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3. Multi-tenant data processing as a service
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CPU GPU/TPU



tf.data: ML input data processing framework

• API provides generic operators that can be composed & parameterized:
• Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

• Runtime efficiently executes input pipelines by applying:

• Software pipelining and parallelism

• Static optimizations (e.g., operator fusion)

• Dynamic optimizations (autotuning parallelism & prefetch buffer sizes)

34
Derek G. Murray, Jiří Šimša, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.
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import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)

model = ...
model.fit(dataset, epochs=10)
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read data from storage



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)

model = ...
model.fit(dataset, epochs=10)

3939

apply user-defined preprocessing



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)

model = ...
model.fit(dataset, epochs=10)
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batch data for training efficiency



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)

414141

overlap data processing and loading



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)
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train model with tf.data dataset



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)
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Example of optimization:
fusionmap+batch

tf.data runtime applies optimizations 
to the input pipeline under the hood



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord", num_parallel_readers=Z)
dataset = dataset.map(preprocess, num_parallel_calls=Y)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)

444444

tf.data runtime applies optimizations 
to the input pipeline under the hood

Software parallelism & pipelining



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord", num_parallel_readers=Z)
dataset = dataset.map(preprocess, num_parallel_calls=Y)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)
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tf.data.AUTOTUNE

4545

Hill-climbing algorithm tunes CPU/mem 
allocations to minimize output latency, 

modelled by M/M/1/k queue at each iterator

tf.data runtime applies optimizations 
to the input pipeline under the hood



Plumber: input pipeline perf debug/tuning
• Identify which op of the input pipeline is the bottleneck
• Adjust op CPU/memory/storage resource allocations to alleviate bottlenecks: 

• Measure resource accounted rate (i.e., “cost”) for each operator  
• If Operator B is twice as “expensive” as Operator A, give Operator B twice the resources
• Cast resource allocation as an integer linear programming problem

• Compared to tf.data AUTOTUNE: 
• Awareness of HW resource saturation
• Automatically insert caching op when datasets can fit in memory 

Michael Kuchnik et al. Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines. MLSys’22. 

Operator A Operator B



Training speedup with tf.data optimizations
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Baseline is input pipeline logic with no software parallelism or graph optimizations.

Software parallelism

Derek G. Murray, Jiří Šimša, Ana Klimovic, Ihor Indyk. tf.data: A Machine Learning Data Processing Framework. VLDB 2021.



Training speedup with tf.data optimizations

48
Derek G. Murray, Jiří Šimša, Ana Klimovic, Ihor Indyk. tf.data: A Machine Learning Data Processing Framework. VLDB 2021.

Baseline is input pipeline logic with no software parallelism or graph optimizations.

Software parallelism
Software parallelism + Graph Opt



How to optimize ML input data processing?

1. Autotune the input data pipeline
2. Disaggregate and distribute data processing
3. Multi-tenant data processing as a service
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CPU GPU/TPU

Autotuning tries to make best use of CPU 
and RAM available on the training node 

for high-throughput data processing.



How much CPU/RAM to provision per GPU/TPU?

It is hard to determine the right resource ratio for a ML training node. 

50

Training jobs benefit differently 
when given more CPU for data 
processing per accelerator core

à Ideal resource allocation depends on the model and input pipeline



How much CPU/RAM to provision per GPU/TPU?

It is hard to determine the right resource ratio for a ML training node. 
Example of normalized CPU and RAM usage CDF, from ~73K ML training jobs at Google: 

51

Long tailLong tail

Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa, Chandu Thekkath. A case for disaggregation of ML data processing, 2022.



We need a scalable data processing architecture

Need to adjust resource allocation over time. ML training is increasingly data-hungry.

52

At Meta, storage and bandwidth has grown over 2x and 4x over the past 2 years.

Mark Zhao et al. “Understanding data storage and ingestion for large-scale deep recommendation model training”, ISCA 2022.



How to optimize ML input data processing?

1. Autotune the input data pipeline
2. Disaggregate and distribute data processing
3. Multi-tenant data processing as a service
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CPU GPU/TPUCPU

Remote 
CPU

Remote 
CPU

Remote 
CPU

Remote 
CPU

Remote 
CPU



Solution: disaggregate data processing

55

• Independently scale resources for input data processing & model training



Solution: disaggregate data processing
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• Independently scale resources for input data processing & model training
• Approach taken at Google (tf.data service), Meta (DPP), …



tf.data service: disagg ML data processing

Client

Cloud storage
(source data)

57

Training 
Job



tf.data service: disagg ML data processing

Client

Dispatcher

tf.data service

Metadata
Store

Cloud storage
(source data)

Users register ML data processing job 
with the tf.data service dispatcher

58

Training 
Job



Dispatcher

tf.data service

Metadata
Store

Cloud storage
(source data)
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Worker

Worker

Cloud storage
(source data)

Worker

The dispatcher distributes data processing 
across remote workers

Client

tf.data service: disagg ML data processing

Training 
Job



Dispatcher

tf.data service

Metadata
Store

Cloud storage
(source data)

60

Worker

Worker

Cloud storage
(source data)

Worker

Client

Clients fetch processed data from workers 
in time for the next training step

tf.data service: disagg ML data processing

Training 
Job



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()

model = ...
model.fit(dataset, epochs=10)

616161



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()
dataset = dataset.distribute(dispatcher_IP)

model = ...
model.fit(dataset, epochs=10)

626262

register input pipeline with dispatcher 



Benefits of disaggregated ML data processing

Remove input bottlenecks

63



Benefits of disaggregated ML data processing

Remove input bottlenecks à up to 110x speedup
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Training time speedup

Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa, Chandu Thekkath. A case for disaggregation of ML data processing, 2022.



Benefits of disaggregated ML data processing

Remove input bottlenecks à up to 110x speedup, 89x cost reduction

65

Training time speedup Cost reduction

Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa, Chandu Thekkath. A case for disaggregation of ML data processing, 2022.



How to optimize ML input data processing?
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1. Autotune the input data pipeline
2. Disaggregate and distribute data processing
3. Multi-tenant data processing as a service



ML data processing as a service 

Worker

...

DispatcherClient 

Metadata
Store

Worker

Worker

Cloud storage
(source data)

67

DATA SERVICE



ML data processing as a service 

Client 0.2
Client 0.1

...

Worker

...

Dispatcher

Client m

Metadata
Store

Worker

Worker

Cloud storage
(source data)

Job 0

Job m

Multi-tenant

68

DATA SERVICE

Can we leverage a global view of data processing across jobs?

Client 0.0



Why leverage knowledge across jobs?

70[1] Derek G. Murray, Jiří Šimša, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.

• Input data pipeline are often re-executed across jobs
• e.g., hyperparameter tuning



Cachew: ML data processing as a service 

Client 0.2
Client 0.1

Client 0.0

...

Worker

...

Dispatcher

Client m

Metadata
Store

Worker

Worker

Cloud storage
(source data)

Job 0

Job m

The dispatcher autoscales workers
à just enough workers to avoid data stalls
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DATA SERVICE



Cachew: ML data processing as a service 

Client 0.2
Client 0.1

Client 0.0

...

Worker

...

Dispatcher

Client m

Metadata
Store

Worker

Worker

Cache
(source 

& 
preprocessed 

data)

Cloud storage
(source data)

Job 0

Job m

Cache 
cluster
(source & 

preprocessed 
data)

The dispatcher decides which datasets to 
cache in fast, distributed storage

72

DATA SERVICE



Challenges for ML data processing service

1. How to efficiently autoscale resources for input data processing?

73

Training jobs benefit 
differently when given more 
CPU for data processing per 

accelerator core.



Challenges for ML data processing service

1. How to efficiently autoscale resources for input data processing?
2. How/when to efficiently cache and re-use (transformed) datasets?
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Challenges for ML data processing service

1. How to efficiently autoscale resources for input data processing?
2. How/when to efficiently cache and re-use (transformed) datasets?
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Caching does not always improve performance…

• Input data reading may not be the training bottleneck

• Transformed dataset may be much larger than source dataset, saturing cache I/O bandwidth

• Reusing non-deterministically transformed data can hurt ML model accuracy (removes randomness) 
Input data processing may not be the training bottleneck

• Transformed dataset may be very large, saturating I/O read bandwidth
• Reusing non-deterministically transformed data can hurt accuracy (removes randomness 

that can help a model regularize)



Challenges for ML data processing service

1. How to efficiently autoscale resources for input data processing?
2. How/when to efficiently cache and re-use (transformed) datasets?

Scaling & caching are difficult optimization decisions for users.

77



Opportunity for ML data processing service

1. How to efficiently autoscale resources for input data processing?
2. How/when to efficiently cache and re-use (transformed) datasets?

Scaling & caching are difficult optimization decisions for users.
à Need a data processing service that automates these decisions.

78

https://github.com/eth-easl/cachew

https://github.com/eth-easl/cachew


Autocaching policy
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Worker

...

DispatcherClient m

Metadata
Store

Worker

Worker

Cloud storage
(source data)

Job m

CACHEW SERVICE

How to decide whether to read/write a dataset in faster, more $ storage?

Cache 
cluster
(source & 

preprocessed 
data)

Cache 
cluster
(source & 

preprocessed 
data)



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(parse).filter(filter_func).map(rand_augment)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()
dataset = dataset.distribute(dispatcher_IP)

model = ...
model.fit(dataset, epochs=10)

808080



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(parse).filter(filter_func).map(rand_augment)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()
dataset = dataset.distribute(dispatcher_IP)

model = ...
model.fit(dataset, epochs=10)

818181

user-defined preprocessing



import tensorflow as tf

def preprocess(record):
...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.autocache().map(parse).filter(filter_func).autocache().map(rand_augment)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()
dataset = dataset.distribute(dispatcher_IP)

model = ...
model.fit(dataset, epochs=10)

828282

Cachew users can apply autocache ops to hint where 
it is viable (from an ML perspective) to cache/reuse data

Cachew will decide which autocache op is an optimal 
dataset to cache from a throughput perspective. 
Caching will only be applied at 1 location, if at all.



83

● During first epoch, at each autocache op, infer compute vs. cache read throughput:

● Cachew selects the autocache op with max throughput (i.e. min TotalCacheExecTime)

● Compare with the throughput of pure compute (TotalComputeTime)

● Select option with highest throughput → at most one autocache selected

(M elements produced) (N elements produced)
…

Autocaching policy



Autoscaling policy
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Worker

...

DispatcherClient m

Metadata
Store

Worker

Worker

Cloud storage
(source data)

Job m

CACHEW SERVICE

How to decide how many workers to allocate for a job?

Cache 
cluster
(source & 

preprocessed 
data)



Autoscaling policy

85

• Intuition: scale up data workers until no additional benefit to 
end-to-end training time.

• How to estimate end-to-end training time as we scale workers? 
• Leverage the iterative nature of ML training: monitor batch time 



Autoscaling policy
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• Intuition: scale up data workers until no additional benefit to 
end-to-end training time.

Batch time

Fetch batch from local bufferFetch batch from local buffer Model training step on batch

If buffer has data → approx. 0 wait time
If buffer empty → wait for batch from Cachew

Depends on the model & HW accelerator 
→ constant



Autoscaling policy
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• Intuition: scale up data workers until no additional benefit to 
end-to-end training time.

Batch time

Fetch batch from local bufferFetch batch from local buffer Model training step on batch

Fetch batch Model training step on batch

Fetch Model training step on batch

Model training step on batch

Model training step on batch

# workers = 2

# workers = 3

# workers = 4

# workers = 5

# workers =1



Autoscaling policy

88

• Intuition: scale up data workers until no additional benefit to 
end-to-end training time.

Batch time

Fetch batch from local bufferFetch batch from local buffer Model training step on batch

Fetch batch Model training step on batch

Fetch Model training step on batch

Model training step on batch

Model training step on batch

# workers = 4

Remove worker

# workers = 2

# workers = 3

# workers =1



Autoscaling policy

89

• Intuition: scale up data workers until no additional benefit to 
end-to-end training time.

Batch time

Fetch batch from local bufferFetch batch from local buffer Model training step on batch

Fetch batch Model training step on batch

Fetch Model training step on batch

Model training step on batch Converged: 
# workers = 4



Cachew autoscaling & caching for multiple tenants

90

Converge to 3 
workers



Cachew autoscaling & caching for multiple tenants
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Compute Put in Cache
Converge to 3 

workers



Cachew autoscaling & caching for multiple tenants
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Compute Put in Cache Read from 
Cache



Cachew autoscaling & caching for multiple tenants
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Compute Put in Cache

Converge to 2 
workers

Read from 
Cache



Cachew autoscaling & caching for multiple tenants
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Compute Put in Cache

Second job reads 
from cache directly

Read from 
Cache



Cachew autoscaling & caching for multiple tenants
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Compute Put in Cache
Converge to 4 
workers; job2 

client can 
ingest data 2x 

faster than 
job1’s client

Read from 
Cache



Future directions for ML data services

96

How to leverage knowledge across jobs to improve data and model quality? 

• Training data discovery service
• Recommend “relevant” source datasets used by other jobs

• Data auto-augmentation service
• Recommend data augmentations

• Data importance service
• Recommend training examples that are most relevant for the task at hand 



ML with dynamic input datasets

97

• Many practical ML use-cases involve training on dynamic data:
• New data streaming in, some older data needs to be deleted
à Model needs to adapt; learn from new data + recall “important” old data

• Need system support for: 
• Efficiently mixing new (streaming) & old (stored) data
• Data importance aware data storage/caching & training
• Data drift aware model retraining and deployment strategies

• To stimulate research in this area, we are building a open-source benchmark 
and system architecture for ML training on dynamic datasets.
à early stage, collaborators welcome!
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Client 0.2
Client 0.1

Client 0.0

...

Worker

...

Dispatcher

Client m
Metadata
Store

Worker

Worker

Cache
(source 

& 
preprocessed 

data)

Cloud storage
(source data)

Job 0

Job m

Cache 
cluster
(source & 

preprocessed 
data)

CACHEW SERVICE

Input data processing is often a bottleneck, 
leaving expensive GPUs/TPUs idle

Cachew: multi-tenant ML data processing service
à autoscale & autocache

CPU GPU/TPUDisk/SSD

Bottleneck

Disaggregating data processing can eliminate data stalls

à Up to 110x speedup, 89x cost reduction on production model

ML has a cost problem

https://github.com/eth-easl/cachew

https://github.com/eth-easl/cachew

