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It's an exciting time for ML systems



Large growth in...

* ML use-cases

e ML model sizes

* Training data volume
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* ML use-cases
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* Training data volume
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Example: Google TPU pod



Large growth in...

* ML use-cases

* ML model sizes

* Training data volume

* FLOPS provided by specialized ML hardware accelerators
* Costll!

- Training ML models consumes many GPU/TPU-hours and $$%




How much does it cost...

...to train a 100 Trillion parameter model
for 1 day on the cloud?

A. $4,000
B. $40,000
C. $400,000

PERsIA: An Open, Hybrid System Scaling Deep Learning-based
Recommenders up to 100 Trillion Parameters

Xiangru Lian', Binhang Yuan®, Xuefeng Zhu?, Yulong Wang?, Yongjun He®, Honghuan Wu?, Lei
Sun?, Haodong Lyu?, Chengjun Liu?, Xing Dong?, Yigiao Liao?, Mingnan Luo?, Congfei Zhang?,
Jingru Xie2, Haonan LiZ, Lei Chen?, Renjie Huangz, Jianying Lin?, Chengchun Shu?, Xuezhong
Qiuz, Zhishan Liu?, Dongying Kongz, Lei Yuan?, Hai Yu?, Sen Yangz, Ce Zhang3, Ji Liu!
!Kwai Inc., USA; 2?Kuaishou Technology, China; *ETH Ziirich, Switzerland;
{firstname.lastname}@{1.kwai.com;2 kuaishou.com;3.inf.ethz.ch}

ABSTRACT
Deep learning based models have dominated the current landscape
of production r der systems. Furth recent years

have witnessed an exponential growth of the model scale—from
Google's 2016 model with 1 billion parameters to the latest Face-
book’s model with 12 trillion parameters. Significant quality boost
has come with each jump of the model capacity, which makes
us believe the era of 100 trillion parameters is around the corner.
However, the training of such models is challenging even within
industrial scale data centers. This difficulty is inherited from the
staggering b geneity of the training putation—the model’s
embedding layer could include more than 99.99% of the total model
size, which is extremely memory-intensive; while the rest neural
network isi 1 p intensive. To support the train-
ing of such huge models, an efficient distributed training system is
in urgent need. In this paper, we resolve this challenge by careful
co-design of both the optimization algorithm and the distributed
system architecture. Specifically, in order to ensure both the training
efficiency and the training accuracy, we design a novel hybrid train-
ing algorithm, where the embedding layer and the dense neural net-
work are handled by diffe synchronizati hani then
we build a system called PErs1A (short for parallel recommendation
training system with hybrid acceleration) to support this hybrid
training algorithm. Both th ical d rations and empirical
studies up to 100 trillion p have been conducted to jus-
tified the system design and implementation of PERsSIA. We make
PeRs1A publicly available (at https://github.com/PersiaML/Persia)
so that anyone would be able to easily train a d

model

# of Rec der Model Pa: (by Trillion)
100
Persia
10 =0
FB-ZionEX (2022)|
1 °
FB-ZionEX (2021)
@
0.1 Baidu-AlBox (2018) o
FB-ZionEX (2020)
d Amazon-XMC (2021
0.01 | Alibaba-XDL (2016) AMC AR
Youtube (2016
0.001 ® !

2016 2017 2018 2019 2020 2021 2022

Figure 1: Model sizes of diff der sy 3
among which only XDL and AlBox (via PaddlePaddle) are

open-source. PERSIA is an open-source training system for
d

deep 1 ing-based y , which scales up

models to the scale of 100 trillion parameters.

Kwai, we also observe that recommendation plays an important
role for video sharing—more than 300 million of daily active users
explore videos selected by recommender systems from billions of
candidates.

Racing towards 100 trillion parameters. The continuing advance-

ment of modern recommender models is often driven by the ever

at the scale of 100 trillion parameters.

1 INTRODUCTION

A recommender system is an important component of Internet

services today. Tasks such as click-through rate (CTR) and buy-

through rate (BTR) predictions are widely adopted in industrial
pplications, influencing the ad at billions of dollar level

for search engines such as Google, Bing and Baidu [78]. Moreover,

80% of movies watched on Netflix [30] and 60% of videos clicked

ing model sizes—from Google's 2016 model with 1 billion
parameters [24] to Facebook's latest model (2022) with 12 trillion
parameters [62] (See Figure 1). Every jump in the model capacity
has been bringing in significantly improvement on quality, and the
era of 100 trillion parameters is fust around the corner.

I ingly, the i asing p comes mostly from the
embedding layer which maps each entrance of an ID type feature
(such as an user ID [50, 83] and a session ID [79, 85, 86]) into a
fixed length low-dimensional embedding vector. Consider the bil-
lion scale of entrances for the ID type features in a production

on YouTube [25] are driven by dations; over
40% of user engagement on Pinterest are powered by its Related
Pins recommendation module [58]; over half of the Instagram com-
munity has visited dation based Instagram Explore to
discover new content relevant to their interests [12]; up to 35% of
Amazon’s revenue is driven by recommender systems [18, 104]. At

T der system (e.g., [28, 89)) and the wide utilization of
feature crosses (23], the embedding layer usually domains the pa-
rameter space, which makes this component extremely memory-
intensive. On the other hand, these low-dimensional embedding
vectors are concatenated with diversified Non-ID type features (e.g.,
image (95, 98), audio (87, 96], video [20, 46], social network [27, 33),

Slide from Ce Zhang




How much does it cost...

...to train a 100 Trillion parameter model
for 1 day on the cloud?
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B. $40,000
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us believe the era of 100 trillion parameters is around the corner.
However, the training of such models is challenging even within
industrial scale data centers. This difficulty is inherited from the
staggering b geneity of the training putation—the model’s
embedding layer could include more than 99.99% of the total model
size, which is extremely memory-intensive; while the rest neural
network isi 1 p intensive. To support the train-
ing of such huge models, an efficient distributed training system is
in urgent need. In this paper, we resolve this challenge by careful
co-design of both the optimization algorithm and the distributed
system architecture. Specifically, in order to ensure both the training
efficiency and the training accuracy, we design a novel hybrid train-
ing algorithm, where the embedding layer and the dense neural net-
work are handled by diffe synchronizati hani then
we build a system called PErs1A (short for parallel recommendation
training system with hybrid acceleration) to support this hybrid
training algorithm. Both th ical d rations and empirical
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among which only XDL and AlBox (via PaddlePaddle) are
open-source. PERSIA is an open-source training system for
deep 1 ing-based der sy , which scales up

models to the scale of 100 trillion parameters.

Kwai, we also observe that recommendation plays an important
role for video sharing—more than 300 million of daily active users
explore videos selected by recommender systems from billions of
candidates.

Racing towards 100 trillion parameters. The continuing advance-

ment of modern recommender models is often driven by the ever

at the scale of 100 trillion parameters.

1 INTRODUCTION

A recommender system is an important component of Internet

services today. Tasks such as click-through rate (CTR) and buy-

through rate (BTR) predictions are widely adopted in industrial
pplications, influencing the ad at billions of dollar level

for search engines such as Google, Bing and Baidu [78]. Moreover,

80% of movies watched on Netflix [30] and 60% of videos clicked

ing model sizes—from Google's 2016 model with 1 billion
parameters [24] to Facebook's latest model (2022) with 12 trillion
parameters [62] (See Figure 1). Every jump in the model capacity
has been bringing in significantly improvement on quality, and the
era of 100 trillion parameters is just around the corner.

I ingly, the increasing comes mostly from the
embedding layer which maps each entrance of an ID type feature
(such as an user ID [50, 83] and a session ID [79, 85, 86]) into a
fixed length low-dimensional embedding vector. Consider the bil-
lion scale of entrances for the ID type features in a production

on YouTube [25] are driven by dations; over
40% of user engagement on Pinterest are powered by its Related
Pins recommendation module [58]; over half of the Instagram com-
munity has visited dation based Instagram Explore to
discover new content relevant to their interests [12]; up to 35% of
Amazon’s revenue is driven by recommender systems [18, 104]. At

T der system (e.g., [28, 89)) and the wide utilization of
feature crosses (23], the embedding layer usually domains the pa-
rameter space, which makes this component extremely memory-
intensive. On the other hand, these low-dimensional embedding
vectors are concatenated with diversified Non-ID type features (e.g.,
image (95, 98), audio (87, 96], video [20, 46], social network [27, 33),
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How much does it cost.

.to train a 100 Trillion parameter model
for 1 day on the cloud?

A. $4,000
B. $40,000
C. $400,000

GLC 300 SUV

Engine 2.0L inline-4 turbo

Starting at $43,850" MSRP

Used:

* 3,000 CPU cores
« 64 A100 GPUs

« 360 TB of RAM
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ABSTRACT
Deep lcammg based models have dominated the current landscape
of produc r der systems. Furth recent years

have witnessed an exponential growth of the model scale—from
Google's 2016 model with 1 billion parameters to the latest Face-
book's model with 12 trillion parameters. Significant quality boost
has come with each jump of the model capacity, which makes
us believe the era of 100 trillion parameters is around the corner.
However, the training of such models is challenging even within
industrial scale data centers. This difficulty is inherited from the
staggering h geneity of the training computation—the model’s
embedding layer could include more than 99.99% of the total model
size, whlch is cxln:mcl) memory- mlcnslv: while the rest neural
network is i i tensive. To support the train-
ing of such huge modcls an cﬂicl:nl distributed training system is
in urgent need. In this paper, we resolve this challenge by careful
co-design of both the optimization algorithm and the distributed
system architecture. Specifically, in order to ensure both the training
efficiency and the training accuracy, we design a novel hybrid train-
ing algorithm, where the cmbcddmg laycr zmd the dcnsc m:ural net-
work are handled by di sy then
we build a system called PErs1A (short for parallel recommendation
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among which only XDL and AlBox (via Paddlel’nddle) are
open-source. Pxnsu\ is an upen source training system for
deep 1 ing-b: , which scales up
models to lhe scale of 100 trillion parameters.

Kwai, we also observe that recommendation plays an important
role for video sharing—more than 300 million of daily active users
explore videos selected by recommender systems from billions of
candidates.

Racing towards 100 trillion parameters. The continuing advance-
mcn! of modern recommender models is often driven by the ever

so that anyone would be able to easily train a der model
at the scale of 100 trillion parameters.

1 INTRODUCTION

A recommender system is an important component of Internet

services today. Tasks such as click-through rate (CTR) and buy-

lhmugh rate (B’I'R) prcdxclmns are widely adopted in industrial
g the ad at billions of dollar level

for search engines such as Google, Bing and Baidu [78]. Moreover,

80% of movies watched on Netflix [30] and 60% of videos clicked

g model sizes—from Google's 2016 model with 1 billion
paramelcrs [24]) to Facebook's latest model (2022) with 12 trillion
parameters [62] (See Figure 1). Every jump in the model capacity
has been bringing in significantly improvement on quality, and the
era of 100 lnllmn pnmmems is just around the corner.

I , the i comes mostly from the
embedding layrr which maps each entrance of an ID type feature
(such as an user ID [50, 83] and a session ID [79, 85, 86]) into a
fixed length low-dimensional embedding vector. Consider the bil-
lion scale of entrances for the ID type features in a production

on YouTube [25] are driven by dations; over

system (e.g., [28, 89]) and the wide utilization of

40% of user engagement on Pinterest are powered by its Related
Pins recommendation module [58] over half of the Instagram com-
munity has visited based Instag Explore to
discover new content relevant to their interests [12]; up to 35% of
Amazon’s revenue is driven by recommender systems [18, 104]. At

feature crosses [23), the embedding layer usually domains the pa-
rameter space, which makes this component extremely memory-
intensive. On the other hand, these low-dimensional embedding
vectors are concatenated with diversified Non-ID type features (e.g.,
image 95, 98], audio [87, 96, video [20, 46, social network [27, 33),
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ML has a cost & resource efticiency problem



ML has a cost & resource efticiency problem

* Another example:

[\ mosaic™
GPT-3 Quality
g for <$500k

https://www.mosaicml.com/blog/gpt-3-quality-for-500k 10
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How can we reduce the cost of ML?



How can we reduce the cost of ML?

Many complementary approaches...

Improve:

 Resource efficiency
* Resource cost

* Model efficiency

* Data efficiency

12
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Many complementary approaches...

Improve:

 Resource efficiency

* Data efficiency

- maximize ML hardware (GPU/TPU) utilization
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* Data efficiency
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How can we reduce the cost of ML?

Many complementary approaches...

Improve:
 Resource efficiency - maximize ML hardware (GPU/TPU) utilization

- use cheap, transient resources (e.g., spot VMs)
- sparsely activate models, sparse architectures

» Data efficiency - train on the most important/relevant data



How can we reduce the cost of ML?

Improve:

 Resource efficiency - maximize ML hardware (GPU/TPU) utilization

It we can ensure a job makes “good use” of ML hardware, the job

will finish faster and we will pay for less time on that hardware.

Focus on maximizing GPU/TPU utilization = most $$$ component

17



What hinders high GPU/TPU utilization?

 Feeding GPUs/TPUs with input data is often a bottleneck



What hinders high GPU/TPU utilization?

 Feeding GPUs/TPUs with input data is often a bottleneck

 Need to read large volumes of data from storage and preprocess data
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What hinders high GPU/TPU utilization?

 Feeding GPUs/TPUs with input data is often a bottleneck

 Need to read large volumes of data from storage and preprocess data
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Input data ingestion for ML

Before we can feed training data to a model, we need to preprocess data.

Raw Data Training / Serving

A



Input data processing for ML

Before we can feed training data to a model, we need to preprocess data.

Raw Data

AAAAAA

A

Offline

preprocessing
Extract features

Clean data
Validate data
Normalize data

Data records

Training / Serving
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Input data processing for ML

Before we can feed training data to a model, we need to preprocess data.

Raw Data Data records Training / Serving
N\ >

0= -0

Offline Online
preprocessing preprocessing

Extract features *  Filter features
Clean data *  Sample elements
Validate data *  Randomly augment
Normalize data *  Shuffle & batch
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Input data processing for ML

Before we can feed training data to a model, we need to preprocess data.

Raw Data

k -

Data records

\/_)Q_)

Online
preprocessing

Filter features
Sample elements
Randomly augment
Shuffle & batch

“Last mile”
data processing

Training / Serving
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Input processing impacts training time & cost
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Input processing impacts training time & cost

* Feeding data-hungry GPUs/TPUs is challenging

flops

* Input data processing on host CPU is often a bottleneck

GPU/TPU
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Input processing consumes high CPU/energy
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Input processing consumes high CPU/energy

At Google, data processing consumes ~30% of compute time in training jobs [1]
+ At Meta, data processing consumes more power than training for some jobs [2]
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[1] Derek G. Murray, Jifi Sim$a, Ana Klimovic, lhor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.
28
[2] Mark Zhao et al. “Understanding data storage and ingestion for large-scale deep recommendation model training”, ISCA 2022.



How to optimize ML input data processing?

1. Autotune the input data pipeline
and data processing
data processing



How to optimize ML input data processing?

1. Autotune the input data pipeline
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How to optimize ML input data processing?

2. Disaggregate and distribute data processing
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How to optimize ML input data processing?

3. Multi-tenant data processing as a service
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How to optimize ML input data processing?

1. Autotune the input data pipeline
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tf.data: ML input data processing framework 1

» API provides generic operators that can be composed & parameterized:

* Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

N 34
Derek G. Murray, Jifi Simsa, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.



tf.data: ML input data processing framework 1F

* API provides generic operators that can be composed & parameterized:

* Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

read(file) map (parse) filter(cond) map(crop) shuffle() batch() prefetch()

N 35
Derek G. Murray, Jifi Simsa, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.



tf.data: ML input data processing framework 1F

* API provides generic operators that can be composed & parameterized:

* Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

read(file) map (parse) filter(cond) map(crop) shuffle() batch() prefetch()

* Runtime efficiently executes input pipelines by applying:
* Software pipelining and parallelism

» Static optimizations (e.g., operator fusion)

« Dynamic optimizations (autotuning parallelism & prefetch buffer sizes)

N 36
Derek G. Murray, Jifi Simsa, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.



import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)

dataset = dataset.batch(batch size=32)

model = ...

model.fit(dataset, epochs=10)

37



import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)

dataset = dataset.batch(batch_size=32)

model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordpl@taset(".../*.tfrecord")
dataset = dataset.map(preprocess)

dataset = dataset.batch(batch_size=32)

model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRec

dataset = dataset.map(pPeprocess)
dataset = dataset.batch(batch_size=32)
model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.T

dataset = dataset.m

dataset = dataset.bPlch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)
model = ...

model.fit(dataset, epochs=10)

41



import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)

dataset = dataset.batch(batch_size=32)

dataset = dataset.prefetch(buffer_size=X)

model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)

dataset = dataset.batch(batch_size=3;;\\\:::::::Z:::::=¥
dataset = dataset.prefetch(buffer_size=X)

model = ...

model.fit(dataset, epochs=10)

Example of optimization:
map+batch fusion

43



import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord”, num_parallel readers=Z7)

dataset = dataset.map(preprocess, num_parallel calls=Y)

dataset = dataset.batch(batch_size=32)

dataset = dataset.prefetch(buffer_size=X)

model = ... Software parallelism & pipelining

model.fit(dataset, epochs=10)

44



import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord”, num_parallel readers=Z7)
dataset = dataset.map(preprocess, num_parallel calls=Y)
dataset = dataset.batch(batch_size=32) k\\\\\
dataset = dataset.prefetch(buffer_size=X)
tf.data.AUTOTUNE
model =
model.fit(dataset, epochs=16) Hill-climbing algorithm tunes CPU/mem

allocations to minimize output latency,
modelled by M/M/1/k queue at each iterator

45



Plumber: input pipeline pert debug/tuning

* |dentify which op of the input pipeline is the bottleneck

 Adjust op CPU/memory/storage resource allocations to alleviate bottlenecks:
* Measure resource accounted rate (i.e., “cost”) for each operator

* If Operator B is twice as “expensive” as Operator A, give Operator B twice the resources
* Cast resource allocation as an integer linear programming problem

I I I I
CPU | Operator A I 1 Operator B |
timeor o I 1 I
byt “®Cost: T Cost: 2T
e ' °s ! ! °s | CPU threads
| | | [
I : I ;- or read()
I I | 15 allocations
| I | I
: cpu I = I cpu cpu I
| I | I
I I | I

Michael Kuchnik et al. Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines. MLSys'22.



Training speedup with tf.data optimizations

Baseline is input pipeline logic with no software parallelism or graph optimizations.

N
Ul

Bl Software parallelism

1.4 :
" iy __ N

ResNet-50 Mask RCNN GNMT Transformer

- - N
o 9y o

(9

End-to-end Training Time Speedup

47
Derek G. Murray, Jifi Sim&a, Ana Klimovic, lhor Indyk. tf.data: A Machine Learning Data Processing Framework. VLDB 2021.



Training speedup with tf.data optimizations

Baseline is input pipeline logic with no software parallelism or graph optimizations.

N
%))

21.9 Bl Software parallelism
i Software parallelism + Graph Opt

- - N
() u o

(9

End-to-end Training Time Speedup

ResNet-50 SSD Mask-RCNN GNMT Transformer

48
Derek G. Murray, Jifi Sim&a, Ana Klimovic, lhor Indyk. tf.data: A Machine Learning Data Processing Framework. VLDB 2021.



How to optimize ML input data processing?

1. Autotune the input data pipeline

N
N— "
\/' V|
o — _—
—~_

Autotuning tries to make best use of CPU —
and RAM available on the training node — E.E._.
for high-throughput data processing. CPU GPU/TPU




Epoch time (s)

How much CPU/RAM to provision per GPU/TPU?

It is hard to determine the right resource ratio for a ML training node.

- ldeal resource allocation depends on the model and input pipeline

--#- ResNet-50 (GPU) w/ ImageNet
—»— EfficientNetV2 (TPU) w/ ImageNet

—e— RetinaNet (TPU) w/ COCO

——l

4 6 8 10
CPU Cores per GPU / TPU accelerator

12

Training jobs benefit differently
when given more CPU for data

processing per accelerator core

50



How much CPU/RAM to provision per GPU/TPU?

It is hard to determine the right resource ratio for a ML training node.
Example of normalized CPU and RAM usage CDF, from ~73K ML training jobs at Google:

1.0 1.0
0.8 - 0.8 1
C C
Res o
9] 9]
© ©
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() (<)
2 2
© ©
3 >
g 0.4 £ 0.4
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QO QO
0.2 0.2
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0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
(a) CPU usage (b) RAM usage
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We need a scalable data processing architecture

Need to adjust resource allocation over time. ML training is increasingly data-hungry.

At Meta, storage and bandwidth has grown over 2x and 4x over the past 2 years.

4 — —— Dataset Storage Size

- Online Ingestion
Bandwidth

2

1 N N et m]
Qo Q1 Q2 Q3 Q4 Qs Q6 Q7 08

Quarter

Normalized Growth

Mark Zhao et al. “Understanding data storage and ingestion for large-scale deep recommendation model training”, ISCA 2022. 52



How to optimize ML input data processing?

2. Disaggregate and distribute data processing
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CPU GPU/TPU
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How to optimize ML input data processing?

2. Disaggregate and distribute data processing
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Solution: disaggregate data processing

* Independently scale resources for input data processing & model training



olution: disaggregate data processing

* Independently scale resources for input data processing & model training
 Approach taken at Google (tf.data service), Meta (DPP), ...

A case for disaggregation of ML data processing Understanding Data Storage and Ingestion for Large-Scale Deep

Recommendation Model Training

Andrew Audibert Yang Chen Dan Graur Ana Klimovic Jif{ Simsa Industrial Product*
Google Google ETH Zurich ETH Zurich Google . . .
Mark Zhao®, Niket AgarwalT, Aarti Basant', Bugra Gedik', Satadru Pan’, Mustafa Ozdal’, Rakesh
Chandramohan A. Thekkath Komuravellif, Jerry Pan’, Tianshu Bao®, Haowei Luf, Sundaram Narayanan', Jack La.ngmanT,
Google Kevin Wilfong', Harsha Rastogi', Carole-Jean Wu', Christos Kozyrakis*, Parik Pol’
Abstract To enable high utilization of ML hardware, Google built TMeta, *Stanford University

Machine Learning (ML) computation requires feeding in-
put data for the models to ingest. Traditionally, input data
processing happens on the same host as the ML computa-
tion [8, 25]. The input data processing can however become
a bottleneck of the ML computation if there are insufficient
resources to process data quickly enough. This slows down
the ML computation and wastes valuable and scarce ML hard-
ware (e.g. GPUs and TPUs) used by the ML computation.

In this paper, we present ff.data service, a disaggregated
input data processing service built on top of tf.data. Our work
goes beyond describing the design and implementation of
a new system which disaggregates preprocessing from ML
computation and presents: (1) empirical evidence based on
production workloads for the need of disaggregation, as well
as quantitative evaluation of the impact disaggregation has on
the performance and cost of production workloads, (2) bene-
fits of disaggregation beyond horizontal scaling, (3) analysis
of tf.data service’s adoption at Google, the lessons learned
during building and deploying the system and potential future
lines of research opened up by our work.

We demonstrate that horizontally scaling data processing
using tf.data service helps remove input bottlenecks, achiev-
ing speedups of up to 110x and job cost reductions of up to
89x. We further show that tf.data service can support compu-
tation reuse through data sharing across ML jobs with iden-

and open-sourced the tf.data framework [25]. tf.data provides
an efficient runtime to execute ML input data pipelines and a
convenient API to express input data transformations. Since
its launch in 2017, tf.data has grown in adoption to become
the predominant solution for data ingestion and processing of
ML computations at Google. All Google-based submissions
to the ML Perf training competition [22] in recent years have
relied on tf.data to achieve high performance. The framework
is also widely used by open-source Tensorflow [1] programs.

However, tf.data could not meet the needs of all Tensorflow
programs. The original design colocated data ingestion and
processing with the ML computations. For some Tensorflow
programs, host resources used for colocated data processing
(CPU, RAM, and I/O bandwidth) became the bottleneck, leav-
ing expensive ML hardware underutilized. This increases the
end-to-end execution time and cost of ML jobs.

The fundamental challenge is that ML jobs have a wide
spectrum of CPU and memory requirements, which make it
impossible to right-size host CPU and memory resources (for
data processing) colocated with specialized ML accelerators
(for ML computations). Evidence of this is shown in Fig-
ure 1. By pre-provisioning colocated preprocessing resources,
a one-size-fits-all resource deployment is imposed on ML
preprocessing which is only optimal for a narrow subset of all
potential ML jobs. Most jobs will either end up using a frac-

ABSTRACT

Datacenter-scale Al training clusters consisting of thousands of
domain-specific accelerators (DSA) are used to train increasingly-
complex deep learning models. These clusters rely on a data storage
and ingestion (DSI) pipeline, responsible for storing exabytes of
training data and serving it at tens of terabytes per second. As
DSAs continue to push training efficiency and throughput, the DSI
pipeline is becoming the dominating factor that constrains the over-
all training performance and capacity. Innovations that improve
the efficiency and performance of DSI systems and hardware are
urgent, demanding a deep understanding of DSI characteristics and
infrastructure at scale.

This paper presents Meta’s end-to-end DSI pipeline, composed
of a central data warehouse built on distributed storage and a Data
PreProcessing Service that scales to eliminate data stalls. We char-
acterize how hundreds of models are collaboratively trained across
geo-distributed datacenters via diverse and continuous training
jobs. These training jobs read and heavily filter massive and evolv-
ing datasets, resulting in popular features and samples used across
training jobs. We measure the intense network, memory, and com-
pute resources required by each training job to preprocess samples
during training. Finally, we synthesize key takeaways based on our
production infrastructure characterization. These include identify-
ing hardware bottlenecks, discussing opportunities for heteroge-
neous DSI hardware, motivating research in datacenter scheduling
and benchmark datasets, and assimilating lessons learned in opti-
mizing DSI infrastructure.
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Machine learning systems, databases, distributed systems, data
ingestion, data storage
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1 INTRODUCTION

Domain-specific accelerators (DSAs) for deep neural networks
(DNNs) have become ubiquitous because of their superior perfor-
mance per watt over traditional general purpose processors [40].
Industry has rapidly embraced DSAs for both DNN training and in-
ference. These DSAs include both traditional technologies, such as
GPUs and FPGAs, as well as application-specific integrated circuits
(ASICs) from, e.g., Habana [37], Graphcore [45], SambaNova [67],
Tenstorrent [74], Tesla [75], AWS [23], Google [40], and others.
DSAs are increasingly deployed in immense scale-out systems to
train increasingly-complex and computationally-demanding DNNs
using massive datasets. For example, the latest MLPerf Training
round (v1.1) [56] contains submissions from Azure and NVIDIA us-
ing 2048 and 4320 A100 GPUs, respectively, whereas Google submit-
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tf.data service: disagg ML data processing

Training et
Job @

Cloud storage
(source data)
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tf.data service: disagg ML data processing

Users register ML data processing job

with the tf.data service dispatcher

Training
Job

4 )

\ Dispatcher

Metadata
Store
& /)

\

tf.data service \

/

Cloud storage
(source data)
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tf.data service: disagg ML data processing

The dispatcher distributes data processing

across remote workers

Training
Job

/
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\ Dispatcher
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tf.data service
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Worker )
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W)
Worker
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Worker

Cloud storage

(source data)
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tf.data service: disagg ML data processing

Clients fetch processed data from workers
in time for the next training step

tf.data service \

~

Training | ~o_. L | Q
Job - _\ Worker f‘\\
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\ Dispatcher N N
Worker )\

Metadata
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)

dataset = dataset.batch(batch size=32)

dataset = dataset.prefetch()

model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)

dataset = dataset.batch(batch_size=32)

dataset = dataset.prefetch()

dataset = dataset.distribute(dispatcher_ IP)

model = ...

model.fit(dataset, epochs=10)
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Benefits of disaggregated ML data processing

Remove input bottlenecks



Normalized Speedup

Benefits of disaggregated ML data processing

Remove input bottlenecks = up to 110x speedup

Training time speedup

110.320.0
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2N |deal
11.711.8
10‘:

2.9 2.9

1 1.0 1.0

M2 M3

Models
64
Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa, Chandu Thekkath. A case for disaggregation of ML data processing, 2022.



Normalized Speedup

Benefits of disaggregated ML data processing

Remove input bottlenecks = up to 110x speedup, 89x cost reduction

Training time speedup Cost reduction
110.320.0 |
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How to optimize ML input data processing?

data processing



ML data processing as a

|
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ML data processing as a service

Can we leverage a global view of data processing across jobs?

Client 0.2
Client 0.1
Job 0 Client 0.0

Client m
Jobm { @

-

4 )

Dispatcher
> Metadata
Store
(S ~/

Multi-tenant

\

DATA SERVICE
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. Worker /:
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. Worker )

~ \\ “
\ \
&j \ ‘\
\ \
Worker ) * |

Cloud storage

(source data)
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Why leverage knowledge across jobs?

* Input data pipeline are often re-executed across jobs

* e.g., hyperparameter tuning

1.0 —
- == |nput pipeline executions /’
- Total input pipeline compute time ,/'

» 0.8— /’{qu
2 77
£0.6- o o
= o 10% of pipelines account
q) “’ . . .
= ,// for 77% of input pipeline
©
5 0.4+ ’,r” executions and 72% of
g el tf.data compute time
) //

0.2 P

/’,
0,0 ___I—I-il_l—lil LB R L I,*l,,-»l-:l’:‘:?lr)ﬂr T T T T T 1111 T T T T T 111l T T VY O A YL |
1072 1= 12 102 I 109

Derek G. Murray, Jifi Sim&a, Ana Klimovic, lhor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.

Normalized # of Input Pipelines (ordered most to least frequently executed)
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Cachew: ML data processing as a service

Client 0.2

Client 0.1
Job 0 CIienrt 0.0
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The dispatcher autoscales workers
—> just enough workers to avoid data stalls
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Cachew: ML data processing as a service

Client 0.2
Client 0.1 / DATA SERVICE \
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Cloud storage
(source data)

72



Challenges for ML data processing service

1. How to efficiently autoscale resources for input data processing?

1000+

Epoch time (s)

--#- ResNet-50 (GPU) w/ ImageNet
—4+—- EfficientNetV2 (TPU) w/ ImageNet
—e— RetinaNet (TPU) w/ COCO

-~
e
-
—
~
-~
-~
-~
~
-
——
—
-~
-~
—
-~

e e e e e tmm =

4 6 8 10 12
CPU Cores per GPU / TPU accelerator

Training jobs benefit
differently when given more

CPU for data processing per
accelerator core.
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Challenges for ML data processing service

1. How to efficiently for input data processing?
2. How/when to efficiently (transformed) datasets?



Challenges for ML data processing service

1. How to efficiently autoscale resources for input data processing?
2. How/when to efficiently cache and re-use (transformed) datasets?

Caching does not always improve performance...

 Input data reading may not be the training bottleneck
« Transformed dataset may be much larger than source dataset, saturing cache 1/0O bandwidth

« Reusing non-deterministically transformed data can hurt ML model accuracy (removes randomness)
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Challenges for ML data processing service

1. How to efficiently for input data processing?
2. How/when to efficiently (transformed) datasets?

Scaling & caching are difficult optimization decisions for users.



Opportunity for ML data processing service

Scaling & caching are difficult optimization decisions for users.
- Need a data processing service that automates these decisions.

() https:/github.com/eth-easl/cachew
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https://github.com/eth-easl/cachew

Autocaching policy

How to decide whether to read/write a dataset in faster, more $ storage?

e

CACHEW SERVICE

Ve N R \ Cache
Client m W Dispatcher J ki | cluster
Jobm @ J _ Worker | ) 7\ (source &

Metadata
Store
G /

\

preprocessed

Cloud storage
(source data)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")

dataset = dataset.map(parse).filter(filter func).map(rand_augment)
dataset = dataset.batch(batch size=32)

dataset = dataset.prefetch()

dataset = dataset.distribute(dispatcher_ IP)

model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecord@taset(".. .tfrecord")

dataset = dataset.map(parse).filter(filter_func).map(rand_augment)
dataset = dataset.batch(batch_size=32)

dataset = dataset.prefetch()

dataset = dataset.distribute(dispatcher_ IP)

model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")

dataset = dataset.autocache().map(parse).filter(filter func).autocache().map(rand_augment)
dataset = dataset.batch(batch_si I

dataset = dataset.prefetch()

dataset = dataset.distribute(dispatcher_ IP)

Cachew users can apply autocache ops to hint where

model = ... it is viable (from an ML perspective) to cache/reuse data
model.fit(dataset, epochs=10)

Cachew will decide which autocache op is an optimal
dataset to cache from a throughput perspective.
Caching will only be applied at 1 location, if at all.
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policy

e During first epoch, at each op, infer compute vs. cache read throughput:
TotalComputeTime
ye
r B
ReadFrom —> 4# AutocacheOp —>» ... = LastOp
(M elements produced) (N elements produced)
L + P + P
PreAutocacheTime PostAutocacheTime
ReadFromCache —>» ... —» LastOp
- B J

T T
ProjectedCacheReadTime PostAutocacheTime

e Cachew selects the autocache op with max throughput (i.e. min TotalCacheExecTime)
e Compare with the throughput of pure compute (TotalComputeTime)

e Select option with highest throughput — at most one autocache selected



Autoscaling policy

How to decide how many workers to allocate for a job?

Jobm
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policy

: scale up data workers until no additional benetfit to
end-to-end training time.

* How to estimate end-to-end training time as we scale workers?
* Leverage the iterative nature of ML training: monitor



Autoscaling policy

» Intuition: scale up data workers until no additional benefit to
end-to-end training time.
Batch time

e B

Fetch batch from local buffer = Model training step on batch

N AL
N ~ -

It buffer has data — approx. 0 wait time Depends on the model & HW accelerator
If buffer empty — wait for batch from Cachew — constant

86



Autoscaling policy

» Intuition: scale up data workers until no additional benefit to

end-to-end training time.

Batgh time

-

Fetch batch from local buffer
Fetch batch

Fetch

Model training step on batch
Model training step on batch
Model training step on batch

Model training step on batch

Model training step on batch

l
l
l
l

# workers =1

# workers =

# workers =

# workers =

# workers =
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Autoscaling policy

» Intuition: scale up data workers until no additional benefit to
end-to-end training time.
Batch time

r )

Fetch batch from local buffer =~ Model training step on batch EENSICIEL

Fetch batch Model training step on batch EEIVHEEEY.
Fetch Model training step on batch EERCICSEEE

Model training step on batch EEAEECERE,

Model training step on batch [EEEUEEIEEIE,
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Autoscaling policy

» Intuition: scale up data workers until no additional benefit to
end-to-end training time.

Batgh time

-

/

Fetch batch from local buffer = Model training step on batch
Fetch batch Model training step on batch
Fetch Model training step on batch

Model training step on batch Converged:
# workers = 4
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Cachew autoscaling & caching for multiple tenants
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Cachew autoscaling & caching for multiple tenants
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Cachew autoscaling & caching for multiple tenants
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Cachew autoscaling & caching for multiple tenants
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Cachew autoscaling & caching for multiple tenants
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Cachew autoscaling & caching for multiple tenants
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Future directions for ML data services

How to leverage knowledge across jobs to improve data and model quality?

* Training data discovery service
» Recommend “relevant” source datasets used by other jobs

* Data auto-augmentation service
* Recommend data augmentations

* Data importance service
* Recommend training examples that are most relevant for the task at hand

96



ML with dynamic input datasets

* Many practical ML use-cases involve training on dynamic data:
* New data streaming in, some older data needs to be deleted
> Model needs to adapt; learn from new data + recall “important” old data

* Need system support for:

« Efficiently mixing new (streaming) & old (stored) data
 Data importance aware data storage/caching & training
« Data drift aware model retraining and deployment strategies

* To stimulate research in this area, we are building a open-source benchmark
and system architecture for ML training on dynamic datasets.
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ML has a cost problem

...to train a 100 Trillion parameter model
for 1 day on the cloud?

A. $4,000

B. $40,000 WA mosaic™

C. $400,000 GPT-3 Quality
N for <$500k

Input data processing is often a bottleneck,
leaving expensive GPUs/TPUs idle

—

.

digs

Bottleneck
_ll“ll_
— I IE H=
‘ Riud | ———
Disk/SSD CPU GPU/TPU

Normalized Speedup

Disaggregating data processing can eliminate data stalls

- Up to 110x speedup, 89x cost reduction on production model

Cachew: multi-tenant ML data processing service
- autoscale & autocache

Training time speedup Cost reduction
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