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The amount of data we are generating and 
analyzing is growing exponentially
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The amount of data we are generating and 
analyzing is growing exponentially

We are storing 30% to 40% more data every year 
à data stored is doubling every 2 to 3 years!

Source: “Drowning in Data.” IEEE Spectrum, September 2018.
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The amount of data we are generating and 
analyzing is growing exponentially

We are not just storing, we are analyzing data.
à 5 ZB of data is predicted to be analyzed in 2025.

Source: International Data Corporation, 2017.
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Users are increasingly storing and 
processing data in the cloud
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Elasticity Scalability

Cost-efficiency Performance

Cloud computing offers high…

…only if each application receives the
storage and compute resources it needs.

Allocating resources to achieve these goals is hard.
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Why is resource allocation difficult?

Flash storage capacity utilization in cluster

Consider the resource utilization of a large-scale service at Facebook, normalized over 6 months: 
[EuroSys’16]

Flash storage read bandwidth in cluster
CPU utilization in cluster

Compute and storage requirements 
vary dynamically over time.
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Resource requirements vary 
across applications.
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Why is resource allocation difficult?

Flash storage capacity utilization in cluster
Flash storage read bandwidth in cluster
CPU utilization in cluster

Flash storage is underutilized.

Compute and storage requirements 
are often uncorrelated. 

Consider the resource utilization of a large-scale service at Facebook, normalized over 6 months: 
[EuroSys’16]

But servers in a cloud facility have fixed 
ratios of compute and storage.
à Lack of flexibility leads to 
imbalanced resource usage
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At datacenter scale...
~10,000s of servers
~10s of Megawatts …underutilizing resources 

is extremely wasteful.

Huge opportunity to improve resource utilization!
Challenge: maintain high performance
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How should we build resource-efficient and
high performance storage systems for diverse, 

elastic applications in the cloud?
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Decouple storage from compute resources
• Improve resource allocation flexibility by enabling                 

fast, predictable access to remote data 
o Efficiently integrate network & storage software processing
o Introduce token-based I/O scheduling for quality of service

Automate storage resource management
• Allocate resources dynamically based on application 

requirements, learned via hints or a machine learning model

Key insights
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Decouple storage from compute

Provide flexibility to allocate as many CPU cores an application needs, 
independent of its storage capacity and storage throughput requirements. 

Application A
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Decouple storage from compute

Provide flexibility to allocate as many CPU cores an application needs, 
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Decouple storage from compute

Provide flexibility to allocate as many CPU cores an application needs, 
independent of its storage capacity and storage throughput requirements. 

Application A’

Goal: enable any CPU to use any storage device in a cloud facility 
that has spare capacity & bandwidth.
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Share storage to improve utilization

Share storage devices among applications to increase utilization and improve 
cost-efficiency.

Application C

Goal: enable any CPU to use any storage device in a cloud facility 
that has spare capacity & bandwidth.

Application D

Application B



16

Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance, 
we need fast, predictable access to remote data. 
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Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance, 
we need fast, predictable access to remote data. 

Remote access to storage

Local access to storage
bus
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Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance, 
we need fast, predictable access to remote data. 

Remote access to storage
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Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance, 
we need fast, predictable access to remote data. 

Remote access to storage

Networking 
hardware is fast

à up to 100 Gb/s

Traditional software for 
processing network 

storage requests is slow
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Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance, 
we need fast, predictable access to remote data. 

Remote access to storage

shared

Request interference 
can cause unpredictable 

performance
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Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance, 
we need fast, predictable access to remote data. 

How do we decide which resources to allocate 
to each application and where to place data?  
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Automate storage resource management

o Automatically decide how many storage devices to allocate, where to 
place data, and on what type of storage technology

o Dynamically adjust allocations as application load varies
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Requirement #2: Learn application resource requirements
to automate resource allocation

Learn the application’s characteristics (e.g., capacity, throughput, latency 
requirements) and translate to a performance-cost efficient resource allocation.

o Leverage high-level hints about application characteristics
à use heuristic policies to decide resource allocation

o Leverage performance data collected across application runs 

à build a machine learning model that recommends a near-optimal resource allocation
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Two major requirements for cloud storage

Ethernet

1. Fast access to remote data

2. Automatic, elastic allocation 
of storage resources



26

Contributions
[OSDI’14] IX: Dataplane OS for Fast Networking

[EuroSys’16] Flash Storage Disaggregation

[HotStorage’17] Rack-Scale Disaggregated Storage

[ASPLOS’17] ReFlex: Remote Flash ≈ Local Flash

[ATC’18a] Understanding Ephemeral Storage for 
Serverless Analytics 

[OSDI’18] Pocket: Elastic Ephemeral Storage for 
Serverless Analytics

[ATC’18b] Selecta: ML-based Heterogeneous Cloud 
Storage Configuration

Ethernet

1. Fast access to remote data

2. Automatic, elastic allocation 
of storage resources



27

Focus of this talk
[OSDI’14] IX: Dataplane OS for Fast Networking

[EuroSys’16] Flash Storage Disaggregation

[HotStorage’17] Rack-Scale Disaggregated Storage

[ASPLOS’17] ReFlex: Remote Flash ≈ Local Flash

[ATC’18a] Understanding Ephemeral Storage for 
Serverless Analytics 

[OSDI’18] Pocket: Elastic Ephemeral Storage for 
Serverless Analytics

[ATC’18b] Selecta: ML-based Heterogeneous Cloud 
Storage Configuration

Ethernet

1. Fast access to remote data

2. Automatic, elastic allocation 
of storage resources



28

Fast access to remote flash
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Flash storage

What if we use existing remote storage approaches 
to access remote flash?

NVMe Flash:
o 70 µs read latency  à 100x faster than disk
o 1,000,000 IOPS      à 1000x higher than disk



30

0

200

400

600

800

1000

0 50 100 150 200 250 300

p9
5 

re
ad

 la
te

nc
y 

(u
s)

IOPS (Thousands)

Local Flash

libaio+libevent (1core)

Issue #1: Existing software is too slow
Existing remote storage solutions have significant overheads.

4× throughput drop

2× latency 

Software is the 
bottleneck

Remote Flash 
(Linux libevent-libaio)
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Issue #2: Unpredictable performance on shared flash
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ReFlex: Remote Flash ≈ Local Flash
A software system for fast, predictable access to remote flash storage



33

ReFlex: Remote Flash ≈ Local Flash
A software system for fast, predictable access to remote flash storage

Issue #1: Existing software is too slow
à Custom network-storage OS, designed for low latency and high throughput

ü Run to completion 
ü Adaptive batching 
ü Reduce data copies
ü Direct access to hardware
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How does ReFlex achieve high performance?

Linux vs. ReFlex

Network 
queues

Flash storage 
queues

Hardware

Network 
queues

Flash storage 
queues

Hardware

Software Software



35

How does ReFlex achieve high performance?

Linux vs. ReFlex

Network 
queues

Flash storage 
queues

Hardware

Network 
queues

Flash storage 
queues

Hardware

Software Software

Interrupt driven
à context-switch

Run to 
completion

Improves data cache locality &
Removes scheduling unpredictability



36

How does ReFlex achieve high performance?

Linux vs. ReFlex

Network 
queues

Flash storage 
queues

Hardware

Network 
queues

Flash storage 
queues

Hardware

Software Software

Adaptive 
batchingInterrupt driven

à context-switch

Improves instruction cache locality
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How does ReFlex achieve high performance?

Linux vs. ReFlex

Network 
queues

Flash storage 
queues

Hardware

Network 
queues

Flash storage 
queues

Hardware

Software Software

Multiple data 
copies 

Forward request 
payload directly

Avoids copying data in software
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How does ReFlex achieve high performance?

Linux vs. ReFlex

Network 
queues

Flash storage 
queues

Hardware

Network 
queues

Flash storage 
queues

Hardware

Software Software

Many layers of 
generalized 
abstractions

Direct access to 
hardware queues

Flexibility to implement a custom 
network-storage OS
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ReFlex performance: throughput per core
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ReFlex performance: throughput per core
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ReFlex performance: latency
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ReFlex: Remote Flash ≈ Local Flash
A software system for fast, predictable access to remote flash storage

Issue #1: Existing software is too slow
à Custom network-storage OS, designed for low-latency and high throughput

Issue #2: Unpredictable performance on shared flash storage
à Novel I/O scheduler provides tail latency and throughput guarantees



43

How does ReFlex provide predictable performance?

Tenant A Tenant B Tenant C

Flash storage

ReFlex scheduler

ReFlex schedules requests to satisfy the performance objectives specified by each tenant. 

W
R

RR

R
R

W
W

W

Challenge: Account for the performance 
properties of different request types 
(e.g., read vs. write, 4 KB vs. 1 MB request)

Goal: Provide tail latency and throughput
guarantees to tenants sharing flash.

Solution: profile device to derive a request 
cost model that captures how each type of 
request impacts tail latency and throughput
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How does ReFlex provide predictable performance?
Step 1: Build a request cost model

à account for different request types
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How does ReFlex provide predictable performance?

Step 2: Schedule requests

0                   250K                   500K                750K             1000K

For this device, 
write cost =  10 x read cost

Weighted IOPS = Read IOPS + ( 10 x Write IOPS)

Step 1: Build a request cost model
à account for different request types

Example scenario

Tenant A:
• 1ms tail latency
• 200K IOPS

Tenant B: 
• Best-effort (use slack)
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How does ReFlex provide predictable performance?

Example scenario

Tenant A:
• 1ms tail latency
• 200K IOPS

Tenant B: 
• Best-effort (use slack)

1ms tail latency SLO

200K
IOPS

Slack
310K Device max IOPS: 

510K

Step 2: Schedule requests

Weighted IOPS = Read IOPS + ( 10 x Write IOPS)
0                   250K                   500K                750K             1000K

For this device, 
write cost =  10 x read cost

Step 1: Build a request cost model
à account for different request types
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ReFlex performance guarantees on shared Flash

Tenants A & B: latency-critical; Tenant C + D: best effort
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ReFlex performance guarantees on shared Flash

Tenants A & B: latency-critical; Tenant C + D: best effort
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ReFlex performance guarantees on shared Flash

Tenants A & B: latency-critical; Tenant C + D: best effort
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ReFlex impact
o ReFlex provides high throughput, low latency with the flexibility to 

use commodity networks

o Broadcom is porting ReFlex to a SoC platform
o ReFlex integrated into Apache Crail storage system à runs on

https://github.com/stanford-mast/reflex

https://github.com/stanford-mast/reflex
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Contributions
[OSDI’14] IX: dataplane OS for fast networking

[EuroSys’16] Flash storage disaggregation

[HotStorage’17] Rack-Scale Disaggregated Storage 

[ASPLOS’17] ReFlex: Remote Flash ≈ Local Flash

[ATC’18a] Understanding Ephemeral Storage for 
Serverless Analytics 

[OSDI’18] Pocket: Elastic Ephemeral Storage for 
Serverless Analytics

[ATC’18b] Selecta: ML-based Heterogeneous Cloud 
Storage Configuration

Ethernet

1. Fast access to remote data

2. Automatic, elastic allocation 
of storage resources
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Automatic, elastic allocation 
of storage resources
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Serverless computing
Serverless computing is a new cloud service à users can launch 
thousands of tiny tasks with high elasticity and fine-grain billing

Users focus on writing code 
for their applications 

à no resource management

Cloud providers automatically 
allocate and scale resources.
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Serverless analytics

PyWren
(Jonas et al., SoCC’17)

serverless

gg: The Stanford  Builder
(Fouladi et al.)

ExCamera
(Fouladi et al., 

NSDI’17)

Serverless computing is increasingly used for interactive analytics
à exploit massive task parallelism to get a result in near real-time
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Data sharing in serverless analytics
o Analytics jobs involve multiple stages of execution
Challenge: exchange intermediate data efficiently between tasks

λ λ
λ

λ

λ

λ
λ λ

λ
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λ
λλ
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λ λ
λ

ephemeral data
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Data sharing in serverless analytics

o Direct communication between serverless tasks is difficult: 
• Tasks are short-lived and stateless

reducer0

reducer1

mapper1

mapper2

mapper3

mapper0

?
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Data sharing in serverless analytics

o The natural approach for sharing ephemeral data is through a 
shared remote data store

reducer0

reducer1

mapper1

mapper2
mapper3

mapper0
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Requirements for ephemeral storage

1. High performance for a wide range of object sizes
2. Cost efficiency
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Requirements for ephemeral storage

1. High performance for a wide range of object sizes
2. Cost efficiency

• Example of performance-cost tradeoff for a serverless video analytics job 
with different ephemeral data store configurations 

Finding Pareto optimal 
resource allocations is 
non-trivial…and gets 

harder with multiple jobs.
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Requirements for ephemeral storage

1. High performance for a wide range of object sizes
2. Cost efficiency
3. Fault-tolerance

Today’s cloud storage systems are not optimized for the 
requirements of serverless analytics jobs.
e.g., - S3 has low cost, but is optimized for large objects

- Redis offers high performance, but uses DRAM à expensive
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Pocket

o A fast and elastic storage service for ephemeral data sharing         
in serverless analytics 

o Pocket achieves high performance and cost efficiency by:
1. Leveraging multiple storage technologies
2. Rightsizing resource allocations for applications
3. Autoscaling storage resources in the cluster based on usage

o Similar performance to Redis, an in-memory data store, while 
saving ~60% in cost for various serverless analytics jobs
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Metadata server(s)
request routing

Pocket design

Storage server Storage server Storage server Storage server

Controller
app-driven resource 
allocation & scaling 

Metadata server(s)
request routing

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ 
λ λ λ λ 

Job C
λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ
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Metadata server(s)
request routing

1. Leverage multiple storage technologies

Storage server Storage server Storage server Storage server

Controller
app-driven resource 
allocation & scaling 

Metadata server(s)
request routing

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ 
λ λ λ λ 

Job C
λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ

ReFlex

Disk Flash Flash DRAM
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Metadata server(s)
request routing

2. Allocate resources based on job requirements

Storage server Storage server Storage server Storage server

Controller
app-driven resource 
allocation & scaling 

Metadata server(s)
request routing

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ 
λ λ λ λ 

Job C
λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ

Disk Flash Flash DRAM

i. Register job

Optional hints about job:
§ Latency sensitivity
§ Maximum # of concurrent tasks
§ Total ephemeral data capacity
§ Peak aggregate bandwidth required

Resource allocation decision:
1. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)
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Metadata server(s)
request routing

3. Autoscale resources based on utilization

Storage server Storage server Storage server

Controller
app-driven resource 
allocation & scaling 

Metadata server(s)

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ 
λ λ λ λ 

Job C
λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ

CPU
Net

HDD

CPU
Net

Flash

CPU
Net

DRAM 

Storage server
CPU
Net

Flash 

CPU
Net

DRAM 
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Evaluating Pocket

o Pocket is intended to be managed by cloud providers
o Evaluate Pocket running on Amazon EC2 virtual machines
o Run serverless applications on AWS Lambda:

• Video analytics (object recognition) 
• MapReduce sort
• Distributed software compilation

https://github.com/stanford-mast/pocket

https://github.com/stanford-mast/pocket
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Application performance with Pocket
o Compare Pocket to S3 and Redis, which are commonly used today

S3 does not 
provide sufficient 

throughput

MapReduce sort job hints

Ephemeral 
capacity

100 
GB

Latency sensitive False

Aggregate
peak throughput

100 
Gb/s
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Application performance with Pocket
o Compare Pocket to S3 and Redis, which are commonly used today

Pocket has similar 
performance to Redis

at lower cost (uses 
Flash vs. DRAM)

MapReduce sort job hints

Ephemeral 
capacity

100 
GB

Latency sensitive False

Aggregate
peak throughput

100 
Gb/s
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Application storage cost with Pocket
o Pocket leverages job attribute hints for cost-effective resource allocation and 

amortizes VM costs across multiple jobs, offering a pay-what-you-use model 

(with throughput & capacity hints)

Pocket reduces cost 
by ~60% compared 

to Redis for all 3 jobs
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Autoscaling the Pocket cluster

Job hints Job1: Sort Job2: Video analytics Job3: Sort

Latency sensitive False False False

Ephemeral data capacity 10 GB 6 GB 10 GB

Aggregate throughput 3 GB/s 2.5 GB/s 3 GB/s
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Autoscaling the Pocket cluster
The controller elastically 

scales resources to 
meet the requirements 

of multiple jobs 

Job hints Job1: Sort Job2: Video analytics Job3: Sort

Latency sensitive False False False

Ephemeral data capacity 10 GB 6 GB 10 GB

Aggregate throughput 3 GB/s 2.5 GB/s 3 GB/s
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Summary
To build resource-efficient, high performance storage systems, we need to:

Decouple storage from compute resources
• Improve resource allocation flexibility with 

fast, predictable access to remote data 

Automate storage resource management
• Allocate resources dynamically based on app 

requirements, learned via hints or ML

[OSDI’14] IX: Dataplane OS for Fast Networking

[EuroSys’16] Flash Storage Disaggregation

[HotStorage’17] Rack-Scale Disaggregated Storage

[ASPLOS’17] ReFlex: Remote Flash ≈ Local Flash

[ATC’18a] Understanding Ephemeral Storage 
for Serverless Analytics 

[OSDI’18] Pocket: Elastic Ephemeral Storage 
for Serverless Analytics

[ATC’18b] Selecta: ML-based Heterogeneous 
Cloud Storage Configuration



73

What’s next?
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Machine learning for cloud systems

o Use ML to enhance or replace heuristics and user hints
• E.g., Automate cluster resource allocation
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Profile on 2 
reference configs

Training 
App
Training 

App
Training 

AppTraining 
App

Target
App

2 2 2 1

8 7 1

6 4 1
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2 3 4 1

2 1

2 2 2 2 1
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6 2 4 7 1
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performance  
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Rank configs

Recommended 
VM & storage 
configuration

SELECTA

Perf/Cost
Objective

e.g., minimize cost

Profile on 20% 
of configs

ML-based resource allocation
o Selecta [ATC’18] predicts near-optimal configuration for a job using 

sparse training data across jobs
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ML-based resource allocation

Profile on 2 
reference configs

Training 
App
Training 

App
Training 

AppTraining 
App

Target
App

2 2 2 1

8 7 1

6 4 1

5 1 1

2 3 4 1

2 1

2 2 2 2 1

5 8 7 3 1

6 2 4 7 1

1 4 5 1 1

2 3 4 7 1

5 2 3 4 1

performance  
prediction

configurations

ap
pl
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ns SVD

Rank configs

Recommended 
VM & storage 
configuration

SELECTA

Perf/Cost
Objective

e.g., minimize cost

Profile on 20% 
of configs

o Selecta [ATC’18] predicts near-optimal configuration for a job using 
sparse training data across jobs
• 94% probability of recommending near-optimal performing configuration
• 80% probability of recommending near-optimal cost configuration
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Machine learning for cloud systems

o Use ML to enhance or replace heuristics and user hints 
• Automate cluster resource allocation
• Predict resource utilization for opportunistic computing
• Debug performance and security by detecting anomalies 



78GPU

Systems for machine learning
ML-based applications

Hardware
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Systems for machine learning

• Near-storage computing for massive datasets
• Distribute computing between the cloud and edge 
• Privacy in the cloud with secure enclaves
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1. Fast access to remote data

2. Automatic, elastic allocation 
of storage resources

Conclusion

[OSDI’14] IX: Dataplane OS for Fast Networking

[EuroSys’16] Flash Storage Disaggregation

[HotStorage’17] Rack-Scale Disaggregated Storage

[ASPLOS’17] ReFlex: Remote Flash ≈ Local Flash

[ATC’18a] Understanding Ephemeral Storage for 
Serverless Analytics 

[OSDI’18] Pocket: Elastic Ephemeral Storage for 
Serverless Analytics

[ATC’18b] Selecta: ML-based Heterogeneous Cloud 
Storage Configuration

As we continue exponentially generating and analyzing data in the cloud, we need: 

Ethernet


