
1

Fast, Elastic Storage
for the Cloud

Ana Klimovic

Stanford University

January 2019

2

The amount of data we are generating and
analyzing is growing exponentially

3

The amount of data we are generating and
analyzing is growing exponentially

We are storing 30% to 40% more data every year
à data stored is doubling every 2 to 3 years!

Source: “Drowning in Data.” IEEE Spectrum, September 2018.

4

The amount of data we are generating and
analyzing is growing exponentially

We are not just storing, we are analyzing data.
à 5 ZB of data is predicted to be analyzed in 2025.

Source: International Data Corporation, 2017.

5

Users are increasingly storing and
processing data in the cloud

6

Elasticity Scalability

Cost-efficiency Performance

Cloud computing offers high…

…only if each application receives the
storage and compute resources it needs.

Allocating resources to achieve these goals is hard.

7

Why is resource allocation difficult?

Flash storage capacity utilization in cluster

Consider the resource utilization of a large-scale service at Facebook, normalized over 6 months:
[EuroSys’16]

Flash storage read bandwidth in cluster
CPU utilization in cluster

Compute and storage requirements
vary dynamically over time.

N
or

m
al

ize
d

Re
so

ur
ce

 U
til

iz
at

io
n

Resource requirements vary
across applications.

8

Why is resource allocation difficult?

Flash storage capacity utilization in cluster
Flash storage read bandwidth in cluster
CPU utilization in cluster

Flash storage is underutilized.

Compute and storage requirements
are often uncorrelated.

Consider the resource utilization of a large-scale service at Facebook, normalized over 6 months:
[EuroSys’16]

But servers in a cloud facility have fixed
ratios of compute and storage.
à Lack of flexibility leads to
imbalanced resource usage

N
or

m
al

ize
d

Re
so

ur
ce

 U
til

iz
at

io
n

9

At datacenter scale...
~10,000s of servers
~10s of Megawatts …underutilizing resources

is extremely wasteful.

Huge opportunity to improve resource utilization!
Challenge: maintain high performance

10

How should we build resource-efficient and
high performance storage systems for diverse,

elastic applications in the cloud?

11

Decouple storage from compute resources
• Improve resource allocation flexibility by enabling

fast, predictable access to remote data
o Efficiently integrate network & storage software processing
o Introduce token-based I/O scheduling for quality of service

Automate storage resource management
• Allocate resources dynamically based on application

requirements, learned via hints or a machine learning model

Key insights

12

Decouple storage from compute

Provide flexibility to allocate as many CPU cores an application needs,
independent of its storage capacity and storage throughput requirements.

Application A

13

Decouple storage from compute

Provide flexibility to allocate as many CPU cores an application needs,
independent of its storage capacity and storage throughput requirements.

Application A’

14

Decouple storage from compute

Provide flexibility to allocate as many CPU cores an application needs,
independent of its storage capacity and storage throughput requirements.

Application A’

Goal: enable any CPU to use any storage device in a cloud facility
that has spare capacity & bandwidth.

15

Share storage to improve utilization

Share storage devices among applications to increase utilization and improve
cost-efficiency.

Application C

Goal: enable any CPU to use any storage device in a cloud facility
that has spare capacity & bandwidth.

Application D

Application B

16

Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance,
we need fast, predictable access to remote data.

17

Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance,
we need fast, predictable access to remote data.

Local access to storage
bus

18

Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance,
we need fast, predictable access to remote data.

Remote access to storage

Local access to storage
bus

19

Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance,
we need fast, predictable access to remote data.

Remote access to storage

20

Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance,
we need fast, predictable access to remote data.

Remote access to storage

Networking
hardware is fast

à up to 100 Gb/s

Traditional software for
processing network

storage requests is slow

21

Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance,
we need fast, predictable access to remote data.

Remote access to storage

shared

Request interference
can cause unpredictable

performance

22

Requirement #1: Fast access to remote data

To improve resource allocation flexibility while maintaining high performance,
we need fast, predictable access to remote data.

How do we decide which resources to allocate
to each application and where to place data?

23

Automate storage resource management

o Automatically decide how many storage devices to allocate, where to
place data, and on what type of storage technology

o Dynamically adjust allocations as application load varies

24

Requirement #2: Learn application resource requirements
to automate resource allocation

Learn the application’s characteristics (e.g., capacity, throughput, latency
requirements) and translate to a performance-cost efficient resource allocation.

o Leverage high-level hints about application characteristics
à use heuristic policies to decide resource allocation

o Leverage performance data collected across application runs

à build a machine learning model that recommends a near-optimal resource allocation

25

Two major requirements for cloud storage

Ethernet

1. Fast access to remote data

2. Automatic, elastic allocation
of storage resources

26

Contributions
[OSDI’14] IX: Dataplane OS for Fast Networking

[EuroSys’16] Flash Storage Disaggregation

[HotStorage’17] Rack-Scale Disaggregated Storage

[ASPLOS’17] ReFlex: Remote Flash ≈ Local Flash

[ATC’18a] Understanding Ephemeral Storage for
Serverless Analytics

[OSDI’18] Pocket: Elastic Ephemeral Storage for
Serverless Analytics

[ATC’18b] Selecta: ML-based Heterogeneous Cloud
Storage Configuration

Ethernet

1. Fast access to remote data

2. Automatic, elastic allocation
of storage resources

27

Focus of this talk
[OSDI’14] IX: Dataplane OS for Fast Networking

[EuroSys’16] Flash Storage Disaggregation

[HotStorage’17] Rack-Scale Disaggregated Storage

[ASPLOS’17] ReFlex: Remote Flash ≈ Local Flash

[ATC’18a] Understanding Ephemeral Storage for
Serverless Analytics

[OSDI’18] Pocket: Elastic Ephemeral Storage for
Serverless Analytics

[ATC’18b] Selecta: ML-based Heterogeneous Cloud
Storage Configuration

Ethernet

1. Fast access to remote data

2. Automatic, elastic allocation
of storage resources

28

Fast access to remote flash

29

Flash storage

What if we use existing remote storage approaches
to access remote flash?

NVMe Flash:
o 70 µs read latency à 100x faster than disk
o 1,000,000 IOPS à 1000x higher than disk

30

0

200

400

600

800

1000

0 50 100 150 200 250 300

p9
5

re
ad

 la
te

nc
y

(u
s)

IOPS (Thousands)

Local Flash

libaio+libevent (1core)

Issue #1: Existing software is too slow
Existing remote storage solutions have significant overheads.

4× throughput drop

2× latency

Software is the
bottleneck

Remote Flash
(Linux libevent-libaio)

31

Issue #2: Unpredictable performance on shared flash

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

0	 250	 500	 750	 1000	 1250	

p9
5	
re
ad

	la
te
nc
y	
(u
s)
	

Total	IOPS	(Thousands)	

100%read	
99%read	
95%read	
90%read	
75%read	
50%read	

Write requests from one tenant can interfere with read requests from
another tenant, leading to unpredictable performance on shared flash

Write requests
increase the tail
latency of read

requests

32

ReFlex: Remote Flash ≈ Local Flash
A software system for fast, predictable access to remote flash storage

33

ReFlex: Remote Flash ≈ Local Flash
A software system for fast, predictable access to remote flash storage

Issue #1: Existing software is too slow
à Custom network-storage OS, designed for low latency and high throughput

ü Run to completion
ü Adaptive batching
ü Reduce data copies
ü Direct access to hardware

34

How does ReFlex achieve high performance?

Linux vs. ReFlex

Network
queues

Flash storage
queues

Hardware

Network
queues

Flash storage
queues

Hardware

Software Software

35

How does ReFlex achieve high performance?

Linux vs. ReFlex

Network
queues

Flash storage
queues

Hardware

Network
queues

Flash storage
queues

Hardware

Software Software

Interrupt driven
à context-switch

Run to
completion

Improves data cache locality &
Removes scheduling unpredictability

36

How does ReFlex achieve high performance?

Linux vs. ReFlex

Network
queues

Flash storage
queues

Hardware

Network
queues

Flash storage
queues

Hardware

Software Software

Adaptive
batchingInterrupt driven

à context-switch

Improves instruction cache locality

37

How does ReFlex achieve high performance?

Linux vs. ReFlex

Network
queues

Flash storage
queues

Hardware

Network
queues

Flash storage
queues

Hardware

Software Software

Multiple data
copies

Forward request
payload directly

Avoids copying data in software

38

How does ReFlex achieve high performance?

Linux vs. ReFlex

Network
queues

Flash storage
queues

Hardware

Network
queues

Flash storage
queues

Hardware

Software Software

Many layers of
generalized
abstractions

Direct access to
hardware queues

Flexibility to implement a custom
network-storage OS

39

ReFlex performance: throughput per core

0

200

400

600

800

1000

0 250 500 750 1000 1250

p9
5

Re
ad

 L
at

en
cy

 (u
s)

I/O operations per second

Local-1T
ReFlex-1T
Libaio-1TLinux remote

ReFlex remote

Linux remote

Local

ReFlex:
850K IOPS/core

Linux (libevent-libaio)
75K IOPS/core

4KB requests

K KKKK

40

ReFlex performance: throughput per core

0

200

400

600

800

1000

0 250 500 750 1000 1250

p9
5

Re
ad

 L
at

en
cy

 (u
s)

I/O operations per second

Local-1T
ReFlex-1T
Libaio-1TLinux-1T

11x improvement
with ReFlex

K KKKK

ReFlex remote

Linux remote

Local

4KB requests

41

ReFlex performance: latency

0

200

400

600

800

1000

0 250 500 750 1000 1250

p9
5

Re
ad

 L
at

en
cy

 (u
s)

I/O operations per second

Local-1T
ReFlex-1T
Libaio-1TLinux-1T

Latency
Local Flash 78 µs
ReFlex 99 µs
Linux 139 µs

ReFlex remote

Linux remote

Local

K KKKK

4KB requests

42

ReFlex: Remote Flash ≈ Local Flash
A software system for fast, predictable access to remote flash storage

Issue #1: Existing software is too slow
à Custom network-storage OS, designed for low-latency and high throughput

Issue #2: Unpredictable performance on shared flash storage
à Novel I/O scheduler provides tail latency and throughput guarantees

43

How does ReFlex provide predictable performance?

Tenant A Tenant B Tenant C

Flash storage

ReFlex scheduler

ReFlex schedules requests to satisfy the performance objectives specified by each tenant.

W
R

RR

R
R

W
W

W

Challenge: Account for the performance
properties of different request types
(e.g., read vs. write, 4 KB vs. 1 MB request)

Goal: Provide tail latency and throughput
guarantees to tenants sharing flash.

Solution: profile device to derive a request
cost model that captures how each type of
request impacts tail latency and throughput

44

How does ReFlex provide predictable performance?
Step 1: Build a request cost model

à account for different request types

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 250 500 750 1000
p9

5
re

ad
 la

te
nc

y
(u

s)
Total IOPS (Thousands)

99%read
95%read
90%read
75%read
50%read

IOPS = Read IOPS + Write IOPS

For this device,
write cost = 10 x read cost

0 250K 500K 750K 1000K

Weighted IOPS = (1 x Read IOPS) + (10 x Write IOPS)

45

How does ReFlex provide predictable performance?

Step 2: Schedule requests

0 250K 500K 750K 1000K

For this device,
write cost = 10 x read cost

Weighted IOPS = Read IOPS + (10 x Write IOPS)

Step 1: Build a request cost model
à account for different request types

Example scenario

Tenant A:
• 1ms tail latency
• 200K IOPS

Tenant B:
• Best-effort (use slack)

46

How does ReFlex provide predictable performance?

Example scenario

Tenant A:
• 1ms tail latency
• 200K IOPS

Tenant B:
• Best-effort (use slack)

1ms tail latency SLO

200K
IOPS

Slack
310K Device max IOPS:

510K

Step 2: Schedule requests

Weighted IOPS = Read IOPS + (10 x Write IOPS)
0 250K 500K 750K 1000K

For this device,
write cost = 10 x read cost

Step 1: Build a request cost model
à account for different request types

47

ReFlex performance guarantees on shared Flash

Tenants A & B: latency-critical; Tenant C + D: best effort

0

20

40

60

80

100

120

140

Tenant A Tenant B Tenant C Tenant D

IO
PS

(T

ho
us

an
ds

)

0

500

1000

1500

2000

2500

3000

3500

4000

Tenant A Tenant B Tenant C Tenant D

p9
5

re
ad

 la
te

nc
y

(u
s)

Latency
objective

Tenant A objective

Tenant B objective

100%rd 80%rd 95%rd 25%rd 100%rd 80%rd 95%rd 25%rd

Tenant A Tenant B Tenant C Tenant D Tenant A Tenant B Tenant C Tenant D

Tail latency Throughput

48

ReFlex performance guarantees on shared Flash

Tenants A & B: latency-critical; Tenant C + D: best effort

0

20

40

60

80

100

120

140

Tenant A Tenant B Tenant C Tenant D

IO
PS

(T

ho
us

an
ds

)

0

500

1000

1500

2000

2500

3000

3500

4000

Tenant A Tenant B Tenant C Tenant D

p9
5

re
ad

 la
te

nc
y

(u
s)

I/O sched disabled

Latency
objective

Tenant A objective

Tenant B objective

100%rd 80%rd 95%rd 25%rd 100%rd 80%rd 95%rd 25%rd

Tenant A Tenant B Tenant C Tenant D Tenant A Tenant B Tenant C Tenant D

Tail latency Throughput

X X

X

X

49

ReFlex performance guarantees on shared Flash

Tenants A & B: latency-critical; Tenant C + D: best effort

0

20

40

60

80

100

120

140

Tenant A Tenant B Tenant C Tenant D

IO
PS

(T

ho
us

an
ds

)

0

500

1000

1500

2000

2500

3000

3500

4000

Tenant A Tenant B Tenant C Tenant D

p9
5

re
ad

 la
te

nc
y

(u
s)

I/O sched disabled
I/O sched enabled

Latency
objective

Tenant A objective

Tenant B objective

100%rd 80%rd 95%rd 25%rd 100%rd 80%rd 95%rd 25%rd

Tenant A Tenant B Tenant C Tenant D Tenant A Tenant B Tenant C Tenant D

Tail latency Throughput

✅ ✅

✅

✅

50

ReFlex impact
o ReFlex provides high throughput, low latency with the flexibility to

use commodity networks

o Broadcom is porting ReFlex to a SoC platform
o ReFlex integrated into Apache Crail storage system à runs on

https://github.com/stanford-mast/reflex

https://github.com/stanford-mast/reflex

51

Contributions
[OSDI’14] IX: dataplane OS for fast networking

[EuroSys’16] Flash storage disaggregation

[HotStorage’17] Rack-Scale Disaggregated Storage

[ASPLOS’17] ReFlex: Remote Flash ≈ Local Flash

[ATC’18a] Understanding Ephemeral Storage for
Serverless Analytics

[OSDI’18] Pocket: Elastic Ephemeral Storage for
Serverless Analytics

[ATC’18b] Selecta: ML-based Heterogeneous Cloud
Storage Configuration

Ethernet

1. Fast access to remote data

2. Automatic, elastic allocation
of storage resources

52

Automatic, elastic allocation
of storage resources

53

Serverless computing
Serverless computing is a new cloud service à users can launch
thousands of tiny tasks with high elasticity and fine-grain billing

Users focus on writing code
for their applications

à no resource management

Cloud providers automatically
allocate and scale resources.

54

Serverless analytics

PyWren
(Jonas et al., SoCC’17)

serverless

gg: The Stanford Builder
(Fouladi et al.)

ExCamera
(Fouladi et al.,

NSDI’17)

Serverless computing is increasingly used for interactive analytics
à exploit massive task parallelism to get a result in near real-time

λ λ
λ

λ

λ
λ

λ λ

λ
λ

λ
λλ

λ

λ λ
λ

55

Data sharing in serverless analytics
o Analytics jobs involve multiple stages of execution
Challenge: exchange intermediate data efficiently between tasks

λ λ
λ

λ

λ

λ
λ λ

λ
λ

λ
λλ

λ

λ λ
λ

ephemeral data

56

Data sharing in serverless analytics

o Direct communication between serverless tasks is difficult:
• Tasks are short-lived and stateless

reducer0

reducer1

mapper1

mapper2

mapper3

mapper0

?

57

Data sharing in serverless analytics

o The natural approach for sharing ephemeral data is through a
shared remote data store

reducer0

reducer1

mapper1

mapper2
mapper3

mapper0

58

Requirements for ephemeral storage

1. High performance for a wide range of object sizes
2. Cost efficiency

59

0

200

400

600

800

0 0.2 0.4 0.6 0.8 1

Ex
ec

ut
io

n
tim

e
(s

)

Resource usage cost ($)

DRAM NVMe Flash Disk

Requirements for ephemeral storage

1. High performance for a wide range of object sizes
2. Cost efficiency

• Example of performance-cost tradeoff for a serverless video analytics job
with different ephemeral data store configurations

Finding Pareto optimal
resource allocations is
non-trivial…and gets

harder with multiple jobs.

60

Requirements for ephemeral storage

1. High performance for a wide range of object sizes
2. Cost efficiency
3. Fault-tolerance

Today’s cloud storage systems are not optimized for the
requirements of serverless analytics jobs.
e.g., - S3 has low cost, but is optimized for large objects

- Redis offers high performance, but uses DRAM à expensive

61

Pocket

o A fast and elastic storage service for ephemeral data sharing
in serverless analytics

o Pocket achieves high performance and cost efficiency by:
1. Leveraging multiple storage technologies
2. Rightsizing resource allocations for applications
3. Autoscaling storage resources in the cluster based on usage

o Similar performance to Redis, an in-memory data store, while
saving ~60% in cost for various serverless analytics jobs

62

Metadata server(s)
request routing

Pocket design

Storage server Storage server Storage server Storage server

Controller
app-driven resource
allocation & scaling

Metadata server(s)
request routing

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ
λ λ λ λ

Job C
λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ

63

Metadata server(s)
request routing

1. Leverage multiple storage technologies

Storage server Storage server Storage server Storage server

Controller
app-driven resource
allocation & scaling

Metadata server(s)
request routing

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ
λ λ λ λ

Job C
λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ

ReFlex

Disk Flash Flash DRAM

64

Metadata server(s)
request routing

2. Allocate resources based on job requirements

Storage server Storage server Storage server Storage server

Controller
app-driven resource
allocation & scaling

Metadata server(s)
request routing

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ
λ λ λ λ

Job C
λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ

Disk Flash Flash DRAM

i. Register job

Optional hints about job:
§ Latency sensitivity
§ Maximum # of concurrent tasks
§ Total ephemeral data capacity
§ Peak aggregate bandwidth required

Resource allocation decision:
1. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)

65

Metadata server(s)
request routing

3. Autoscale resources based on utilization

Storage server Storage server Storage server

Controller
app-driven resource
allocation & scaling

Metadata server(s)

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ
λ λ λ λ

Job C
λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ

CPU
Net

HDD

CPU
Net

Flash

CPU
Net

DRAM

Storage server
CPU
Net

Flash

CPU
Net

DRAM

66

Evaluating Pocket

o Pocket is intended to be managed by cloud providers
o Evaluate Pocket running on Amazon EC2 virtual machines
o Run serverless applications on AWS Lambda:

• Video analytics (object recognition)
• MapReduce sort
• Distributed software compilation

https://github.com/stanford-mast/pocket

https://github.com/stanford-mast/pocket

67

Application performance with Pocket
o Compare Pocket to S3 and Redis, which are commonly used today

S3 does not
provide sufficient

throughput

MapReduce sort job hints

Ephemeral
capacity

100
GB

Latency sensitive False

Aggregate
peak throughput

100
Gb/s

68

Application performance with Pocket
o Compare Pocket to S3 and Redis, which are commonly used today

Pocket has similar
performance to Redis

at lower cost (uses
Flash vs. DRAM)

MapReduce sort job hints

Ephemeral
capacity

100
GB

Latency sensitive False

Aggregate
peak throughput

100
Gb/s

69

Application storage cost with Pocket
o Pocket leverages job attribute hints for cost-effective resource allocation and

amortizes VM costs across multiple jobs, offering a pay-what-you-use model

(with throughput & capacity hints)

Pocket reduces cost
by ~60% compared

to Redis for all 3 jobs

70

Autoscaling the Pocket cluster

Job hints Job1: Sort Job2: Video analytics Job3: Sort

Latency sensitive False False False

Ephemeral data capacity 10 GB 6 GB 10 GB

Aggregate throughput 3 GB/s 2.5 GB/s 3 GB/s

71

Autoscaling the Pocket cluster
The controller elastically

scales resources to
meet the requirements

of multiple jobs

Job hints Job1: Sort Job2: Video analytics Job3: Sort

Latency sensitive False False False

Ephemeral data capacity 10 GB 6 GB 10 GB

Aggregate throughput 3 GB/s 2.5 GB/s 3 GB/s

72

Summary
To build resource-efficient, high performance storage systems, we need to:

Decouple storage from compute resources
• Improve resource allocation flexibility with

fast, predictable access to remote data

Automate storage resource management
• Allocate resources dynamically based on app

requirements, learned via hints or ML

[OSDI’14] IX: Dataplane OS for Fast Networking

[EuroSys’16] Flash Storage Disaggregation

[HotStorage’17] Rack-Scale Disaggregated Storage

[ASPLOS’17] ReFlex: Remote Flash ≈ Local Flash

[ATC’18a] Understanding Ephemeral Storage
for Serverless Analytics

[OSDI’18] Pocket: Elastic Ephemeral Storage
for Serverless Analytics

[ATC’18b] Selecta: ML-based Heterogeneous
Cloud Storage Configuration

73

What’s next?

74

Machine learning for cloud systems

o Use ML to enhance or replace heuristics and user hints
• E.g., Automate cluster resource allocation

75

Profile on 2
reference configs

Training
App
Training

App
Training

AppTraining
App

Target
App

2 2 2 1

8 7 1

6 4 1

5 1 1

2 3 4 1

2 1

2 2 2 2 1

5 8 7 3 1

6 2 4 7 1

1 4 5 1 1

2 3 4 7 1

5 2 3 4 1

performance
prediction

configurations

ap
pl

ic
at

io
ns SVD

Rank configs

Recommended
VM & storage
configuration

SELECTA

Perf/Cost
Objective

e.g., minimize cost

Profile on 20%
of configs

ML-based resource allocation
o Selecta [ATC’18] predicts near-optimal configuration for a job using

sparse training data across jobs

76

ML-based resource allocation

Profile on 2
reference configs

Training
App
Training

App
Training

AppTraining
App

Target
App

2 2 2 1

8 7 1

6 4 1

5 1 1

2 3 4 1

2 1

2 2 2 2 1

5 8 7 3 1

6 2 4 7 1

1 4 5 1 1

2 3 4 7 1

5 2 3 4 1

performance
prediction

configurations

ap
pl

ic
at

io
ns SVD

Rank configs

Recommended
VM & storage
configuration

SELECTA

Perf/Cost
Objective

e.g., minimize cost

Profile on 20%
of configs

o Selecta [ATC’18] predicts near-optimal configuration for a job using
sparse training data across jobs
• 94% probability of recommending near-optimal performing configuration
• 80% probability of recommending near-optimal cost configuration

77

Machine learning for cloud systems

o Use ML to enhance or replace heuristics and user hints
• Automate cluster resource allocation
• Predict resource utilization for opportunistic computing
• Debug performance and security by detecting anomalies

78GPU

Systems for machine learning
ML-based applications

Hardware

79GPU

Systems for machine learning

• Near-storage computing for massive datasets
• Distribute computing between the cloud and edge
• Privacy in the cloud with secure enclaves

80

Acknowledgements
Christos Kozyrakis
Patrick Stuedi
Heiner Litz
Yawen Wang
Adam Belay
Animesh Trivedi
Jonas Pfefferle
Binu John
Eno Thereska
George Prekas
Edouard Bugnion

81

1. Fast access to remote data

2. Automatic, elastic allocation
of storage resources

Conclusion

[OSDI’14] IX: Dataplane OS for Fast Networking

[EuroSys’16] Flash Storage Disaggregation

[HotStorage’17] Rack-Scale Disaggregated Storage

[ASPLOS’17] ReFlex: Remote Flash ≈ Local Flash

[ATC’18a] Understanding Ephemeral Storage for
Serverless Analytics

[OSDI’18] Pocket: Elastic Ephemeral Storage for
Serverless Analytics

[ATC’18b] Selecta: ML-based Heterogeneous Cloud
Storage Configuration

As we continue exponentially generating and analyzing data in the cloud, we need:

Ethernet

